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Comparing different Machine-Learning techniques to predict Vehicles' Positions using the received Signal Strength of periodic messages

In this paper, vehicles use the beacons sent by Road Side Units (RSUs) to predict their positions on a road. The reception power is strongly influenced by the distance between a vehicle and the neighboring RSUs and thus Machine-Learning can be used to predict the position of vehicles between RSUs. We have to assume that the vehicles know their own positions, at least for a given duration, to build the model of the machine-learning algorithm. This position information can be obtained for instance from a GPS. When this information is no longer available, the machine-learning algorithm can be used to predict the vehicles' positions. The vehicles can send a position request to the RSUs which will know the reception power of their beacons and the machine-learning algorithm can respond with the estimated position. In this study, we compare four well-known machine-learning techniques : K Nearest Neighbors (KNN), Neural Network (NN), Random Forest (RF) and Support Vector Machine (SVM). We study these techniques with different assumptions and discuss their respective advantages and drawbacks. Our results show that these four techniques provide very good results in terms of position predictions when the error on the transmission power is small.

I. INTRODUCTION

In Vehicular Ad Hoc NETworks (VANETs), the vehicles and the RoadSide Units use the IEEE 1609 WAVE (Wireless Access in Vehicular Environments [START_REF] Bouzefrane | Wireless Access in Vehicular Environments (WAVE) Draft Standard[END_REF]) protocol built on the IEEE802.11p access protocol to provide communication between vehicles (V2V), and between vehicles and roadside infrastructure (V2I). VANETs are primarily designed to carry communication concerning safety applications. These applications use periodic packet transmissions which carry the speed and the position of the sending vehicles. In Europe we have two types of messages for safety: Car Awareness Messages (CAMs) [START_REF]Intelligent Transport Systems (ITS) -Vehicular Communications -Basic Set of Applications -Part 2 : Specification of Cooperative Awareness Basic Service[END_REF] and Decentralized Environmental Notification Messages (DENMs) [START_REF]Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applications; Part 3: Specifications of Decentralized Environmental Notification Basic Service[END_REF]. DENMs are multihop broadcasted when a hazardous event occurs on the road, whereas the CAMs sent only at one-hop, carry information about the vehicles' velocities and positions. VANETs can also be used for other purposes. For instance, information about the status of the vehicular traffic such as fluid traffic, traffic jams, etc. can be sent to vehicles. Other less important information can be sent to vehicles or their passengers such as advertising or entertainment, which is usually called infotainment. VANETs can also be used as a positioning system. In the previous section we have seen that for safety reasons the vehicles send periodic CAM messages which carry their positions and speeds. This information is usually obtained with the GPS; thus if RoadSide Units exist along the road where the vehicles are moving, a huge quantity of positioning data can be made available to machine-learning algorithms. We assume that the vehicles continue to send their CAMs carrying no (or very little) position information. These messages can be used to establish the vehicle's position by using the power at which the RSUs or the vehicles receive the beacons. Machinelearning can be used to perform this task. In this study we will consider four well-known machine-learning techniques namely: K Nearest Neighbors (KNN), Random Forest (RF), Neural Networks and Support Vector Machine (SVM). In this paper, the contributions are as follows:

• We use the reception power to predict a vehicle's position. The remainder of this paper is organized as follows: Section II presents related work. Section III describes the four machinelearning techniques: K Nearest Neighbor (KNN), Neural Network (NN), Random Forest (RF) and Support Vector Machine (SVM) In Section IV, the simulation scenario and numerical results are presented. These different machine-learning techniques and their optimizations are discussed. The methods and their performances are compared. Finally, Section V concludes the paper.

II. RELATED WORK

Three main techniques are used for outdoor positioning which are given below:

• Time-Of-Arrival (TOA)-based techniques. These techniques rely on the measurements of the distance between the receiver of a signal and the base station. The position is computed using a triangulation technique. Precised time measurements are not possible for VANETs, mostly because these techniques require a perfect synchronization between the clocks of the base stations and the receivers. To obtain this result, the use of atomic clocks which are very expensive is required. TOA is however the basis of GPS and other similar positioning systems. • Techniques based on the round trip delay [START_REF] Porretta | Location, location, location[END_REF]. A small packet is sent by the transmitter to the base station and the sender waits for a reply. The distance between the base station and the sender is proportional to the time elapsed The transmitter can compute its position by triangulation if it can compute three round trip delays from three different base stations. A precise estimation of the location requires a large distance between the sender and the base station. However, like TOA schemes, techniques based on round trip delay require very accurate delay evaluation, which is very difficult unless dedicated transmission modems are used. VANETs use off-the-shelf IEEE 802.11p communication units thus techniques based on the round trip delay are generally not suitable for these networks.

• Signal-strength-based techniques. Based on the received signal strength from several wireless access points the vehicles can compute an estimation of their location. In this case, the road must be completely covered by the access points. Reported results based on this technique show poor accuracy [START_REF] Liu | Sssd-based mobile positioning: On the accuracy improvement issues in distance and location estimations[END_REF], [START_REF] Mohamed | Why the accuracy of the received signal strengths as a positioning technique was not accurate?[END_REF].

In vehicular networks the GPS or other similar positioning systems are the most widely used positioning techniques [START_REF] Porretta | Location, location, location[END_REF] even though they have three main drawbacks: limited accuracy, incomplete coverage and security problems. In machine-learning schemes, we often have a vector X j = {x1 j , . . . , x n j } of observations and these observations of X j are linked to the variables Y j . The problem is to infer Y j knowing the vector X j . In general (but not always) we have to train the algorithm. In this case the algorithm must work on a given number of observations {Y j , X j } 1 j K to build a model which will be used to perform the predictions. Building this model is equivalent to computing a function Ŷ = f (X). Then, given an observation

X i the model can compute Ŷi = f (X i ). When Y i is known, we can compute the prediction error i = Y i -Ŷi = Y i -f (X i ).
With the same situation, machine-learning can perform classification; in this case X belongs to a class Y l for l ∈ {1, . . . , p} 1 . When we have an observation X i , the prediction algorithm will have to predict the most probable class given the observation X i . In this paper, the issue is a positioning problem, and thus it comes down to a regression problem.

A. k Nearest Neighbors (KNN)

K Nearest Neighbors (KN N ) is one of the simplest machinelearning algorithms which was first described, to the best of our knowledge, in [START_REF] Altman | An introduction to kernel and nearestneighbor nonparametric regression[END_REF]. As previously stated, we have a given number of observations {Y j , X j } 1 j K where X j is usually a vector and Y j is a real number. Assuming that we have an observation X i , we want to predict Y . The KN N algorithm must select the k nearest observations of X i in {Y j , X j } 1 j K . Let i 1 , . . . , i k be the k values which provide the k minimum values of the function

g(j) = d(X j -X i ).
In other words i 1 , . . . , i k are the indexes of the k minimum values of g(j) = d(X j -X i ). These minimum values can be equal if there are multiple values of X j at the same distance from X i . We have at least the three possibilities for the distance, the most often used being the Euclidean distance.

d(X j -X i ) = n l=1 (x j l -x i l ) 2 Euclidean d(X j -X i ) = n l=1 |x j l -x i l | Manhattan d(X j -X i ) = n l=1 |x j l -x i l | q 1/q Minkowski
The value predicted for Y i will be the mean value of the k values Y j for the k nearest neighbors of x i .

Ŷi = 1 k k 1 Y i k B. Neural Networks
Neural networks take a given number of observations {Y j , X j } 1 j K where X j is usually a vector and Y y is a real number. The idea is to build a network consisting of successive layers which combine the coordinates of X j in successive layers to obtain the output which is the real number Y y . The successive layers generally perform linear combination of the previous layer and the result in the neurones is obtained with an activation function which is usually a sigmoid function, see To boost the performance of neural networks we have used ensemble neural networks. The idea is to randomly pick observations in the test set and create a neural network based on these observations. We can thus create many different sets of observations and for each set derive the associated neural network. Our final prediction network will be the average of these neural networks' predictions. The theory shows that the individual neural networks have a small bias and a high variance but the final prediction network will have a small bias and a small variance.

Hidden layers

C. Random Forest

We still have a given number of observations {Y j , X j } 1 j K where X is usually a vector and Y is a real number. The first step in a random forest scheme is to create a selection tree. Using the observations {Y j , X j } 1 j K we build different sets using different splitting criteria which operate on the vectors {X j } 1 j K . Each criterion allows the initial subset to be divided into two subsets. For instance, in Figure III.2 the criterion X j < A provides the first splitting of the observations. The following two criteria complete the selection tree which ends with four final leaf nodes. Suppose now that we have a vector X i and that we want to predict Ŷi . We will use the previous selection tree and determine in which final node the vector X i is classified. Let us assume that X i is classified in node 3 as are X i1 , . . . , X i k .

In this case, the prediction of Ŷi will simply be:

Ŷi = 1 k k j=1 Y i k
The idea of Random Forest is to correct the error obtained in one selection tree by using the predictions of many independent trees and by using the average value predicted by all these trees. This Random Forest technique was first introduced in [START_REF] Breiman | Random forests[END_REF].

D. The Support Vector Machine regression technique

Generally the positions y i and the related values x i are known (thus we know (y i , x i ) 1 i N ) and we have to predict the positions using other values: (x i ) 1 i N . We assume that

y i = w T φ(x i ) + b (III.1)
where w and b are two unknown vectors and φ(x) an unknown function of a vector x.

To solve these equations, we introduce the following convex optimization problem:

minimize 1 2 ||w|| 2 subject to - w T φ(x i ) + b . (III.2)
This problem assumes that the function given in III.1 can approximate the set of points that is given i.e. (y i , x i ) 1 i N with an accuracy of . Sometimes this is not possible and some errors must be accepted. In this case, slack variables which allow us to cope with impossible constraints, are introduced. This relaxation procedure uses a cost function. The convex problem then becomes :

minimize 1 2 ||w|| 2 + C N i=1 (ξ i + ξ * i ) subject to --ξ * i w T φ(x i ) + b + ξ i with ξ * i , ξ i > 0 (III.
3) This problem can be solved by using Lagrange multipliers. The problem becomes:

L : = 1 2 ||w|| 2 + C N i=1 (ξ i + ξ * i ) - N i=1 (ν i ξ i + ν * i ξ * i ) - N i=1 α i ( + ξ i -y 1 + w T φ(x i ) + b) - N i=1 α * i ( + ξ * i + y 1 -w T φ(x i ) -b)
where L is the Lagrangian and ν i , ν * i , ξ * i , ξ * i are the Lagrangian multipliers which are thus positive i.e. ν i , ν * i , ξ * i , ξ * i > 0 We know that the minimum of L is attained when the partial derivatives are zero, thus:

∂L/∂b = N i=1 (α i -α * i ) = 0 ∂L/∂w = w - N i=1 (α i -α * i )φ(x i ) = 0 ∂L/∂ξ ( * ) i = C -α ( * ) i -ν ( * ) i = 0
The substitution of these equations in the Lagrangian leads to the following problem:

maximize - 1 2 N i,j=1 (α i -α * i )(α j -α * j )φ(x i ) T φ(x j ) - N i=1 (α i + α * i ) + N i=1 y i (α i -α * i ) subject to N i,j=1 (α i -α * i ) = 0 and α i , α * i ∈ [0, C].
Thus we have:

w = N i=1 (α i -α * i )φ(x i ) and f (x) = N i=1 (α i -α * i )φ(x i ) T φ(x) + b
This formula is called the Support Vector expansion. The complexity of the function representation only depends on the dimensionality of the input space. The rest of the analysis uses the Karush-Kuhn-Tucker (KKT) conditions. These conditions imply that at the solution the product between the constraints and the dual variable must vanish. In other words, we have

α i ( + ξ i -y i + w T φ(x i ) + b) = 0 (III.4) α * i ( + ξ * i + y i -w T φ(x i ) -b) = 0 and (C -α i )ξ i = 0 (C -α * i )ξ * i = 0
We can deduce that only the samples which do not satisfy the constraint of III.3 have α ( * ) i = C. Moreover, since the two values of the right part of III.5 can not be simultaneously 0 then we have α i α * i = 0. Thus after some observations we have :

max(-+ y 1 -w T φ(x i )|α i < C or α * i > 0) b min(-+ y 1 -w T φ(x i )|α i < C or α * i > 0)
This part is adapted from [START_REF] Smola | A tutorial on support vector regression[END_REF] a tutorial by Smola.

IV. NUMERICAL RESULTS

Our numerical results are obtained on a straight road of length 600 m. The position on the road is given by x ∈ [0, 600]. We assume that we have three RoadSide Units (RSUs) located at x = 0m, x = 305m and x = 600m. Since we consider that there are no obstacles on the road to hinder free propagation, the signal strength received by the vehicles (or by the RSUs) depends solely on the distance between the vehicles and the RSUs. The power received is given by the following equation:

P = P 0 r β with β ∈ [2, 4]
We measure the power received in dB thus P dB = 10 log(P ) log [START_REF] Core | R: A Language and Environment for Statistical Computing[END_REF] .

Moreover, errors in the measurements are taken into account; we assume a Gaussian noise of zero mean and with a variance 0.05. This can also be interpreted by a log-normal fading which would affect the reception. This assumption is realistic when the transmissions between the vehicles and the RSUs are in line of sight. In the second analysis we assume a Raleigh fading of rate µ = 1. This corresponds to the case where there are multi-path links between sources and destinations as, for example, in built up areas in a town. The data base is obtained by 20 different measurements at each location of the vehicle, the locations being 15 meters apart. Thus the data consist of 780 sets with three different powers, each of them corresponding to the power received by the three roadside units respectively. Even if it were possible to do otherwise, for the sake of simplicity we assume that the vehicles send beacons which are received by the three roadside units. The RSUs fuse these data and perform the machine-learning process. The location of the vehicles having been established, it can then be sent to them by one of the RSUs.

For the KN N algorithm, we use the data set directly derived from the power measurements in dB; we do not perform any data processing before using the KN N algorithm. The code of KN N is found in the R software [START_REF] Core | R: A Language and Environment for Statistical Computing[END_REF] and in its KN N library. We use the Euclidean distance.

For the Neural Network we use a library coded in Visual C++. The neural network has one hidden layer with three neurones. The activation function used is a sigmoid. We create an ensemble of 50 neural networks using a bagging technique and the final prediction is that of the average of the 50 neural networks previously obtained.

For the Random Forest algorithm, we use the data set directly derived from the power measurements in dB; we do not process the data before using the algorithm. We use the Random Forest library found in the R software [START_REF] Core | R: A Language and Environment for Statistical Computing[END_REF].

For the Support Vector Machine, the libsvm library [START_REF] Chang | Libsvm: A library for support vector machines[END_REF] is used. The data set (powers in dB) is not directly processed.

A linear transformation of these powers is performed so that the minimum power becomes 0 and the maximum power 1.

The following values for the parameters are used: C = 10, = 10 -6 and an exponential kernel. This means that we have to significantly increase the penalization of not respecting the bounds for the estimation since the default value for C is 1.

A. Direct link and log-normal fading

The comparison between KN N , N N , Random Forest and Support Vector Machine is presented in Figure IV.1. We observe that except for KN N the position error remains in the interval [-20m, 20m], which shows that when have a direct link, the machine-learning techniques offer reasonably good predictions. We also observe that the N N and RF techniques seem to perform the best and apparently there is no clear segment on the road where the prediction is better. We nonetheless observe a notable degradation of the prediction close to x = 300m for the KNN and the RF techniques. Table I proposes a quantitative evaluation of the four methods with the mean absolute error and the root mean square deviation. From these results we note the N N approach provides the best performances with a mean absolute error of 3.3m and a root mean square deviation of 4.7m followed by the RF technique with an absolute error of 5.2m and a root mean square deviation of 7.1m. We then have the KN N scheme with an absolute error of 7.3m and a root mean square deviation of 10.8m and the least effective scheme is SVM with an absolute error of 9.4m and a root mean square deviation of 11.1m B. Direct link and log-normal fading but measurements only every 30m

Here we perform the same comparison as in the previous section but we only have training data every 30m instead of every 15m as in the previous section. The predictions of the four algorithms remains acceptable and the ranking is still: first Neural Network, second Random Forest, third KNN and fourth SVM. Table IV provides the quantitative results; NN offers the best estimation with an absolute mean error of 4.7m with an RMS of 7.8m, then comes RF with an absolute mean error of 5.85m and an RMS of 7.3m. The two last places are for KNN: absolute mean error of 8.8m and an RMS of 13.8m. followed by SVM: absolute mean error of 10.1m and an RMS of 11.3m.

The degradation of precision of the localization is roughly 50% in terms of absolute error for NN and RF and there is no significant degradation for KNN and SVM. Here we study the performance of our algorithms when we have no training data for a given section of the road for x ∈ [30m, 105m]. We observe (except for NN) that the algorithms exhibit larger estimation errors in the segment where there is no training data available and the mean absolute error also increases. We still have the following ranking of the four algorithms: NN, RD, SVM and KNN. We observe that the least effective scheme in this scenario is KNN but we have not changed the number of nearest neighbors (which might be considered unfair).

Table III provides a qualitative analysis of the scenario with no data for x ∈ [30m, 105m]. For the NN algorithm the performance degradation is around 30% whereas the degradation is around 60% for the RF algorithm. There is almost no degradation for SVM and the degradation is around 130% for KNN. A significant loss in the training data leads to a significant degradation in the estimation of the position, except for NN. In the following, we present the results of our four algorithms when the power received is more affected by the fading. A Rayleigh fading (of rate 1) is assumed which means that there is no prominent direct path between the vehicle and the roadside units. The power received consists in a random combination of many independent paths. In these conditions, the predictions, without filtering the measurement, lead to really poor results. V. CONCLUSION

In this paper, we compare four machine-learning techniques to predict the position of a vehicle using the reception power of packets sent to fixed nodes whose positions are precisely known.

We have studied the KN N technique, the Neural Network technique, the Random Forest technique and the Support Vector Machine technique. The simplest method is the KN N technique: in the data set the scheme selects the k closest samples of the actual measurement. The neural scheme we have tested in this paper consists of one hidden layer with three neurones. To boost this technique we use an ensemble neural network with 50 elements built with a bagging algorithm. In the Random Forest scheme, we use a classification tree to generate different classes according to a random classification tree. The location in each class is assumed to be the average location of the points in this class. The tree is then used for the prediction; the location predicted being that of the training samples at the same leaf of the random trees. The Support Vector Machine is an approximation technique which usually uses kernels as base functions. The main goal is to maintain, as far as possible, the samples and their approximations with a bounded error as much as possible. In general, the base functions are exponential functions.

The numerical experiments presented in this paper demonstrate that a precise prediction can only be obtained when there is a main direct path of propagation. The prediction is altered when the training is incomplete or less precise but the precision remains acceptable. In contrast, with Rayleigh fading, the accuracy obtained is much less striking. We observe that the Neural Network is nearly always the best approach. With a direct path the ranking is: Neural Network, Random Forest, KNN and SVM except in the case when we have no measurement in [30m, 105m] where the ranking is Neural Network, Random Forest, SVM and KNN. When there is no direct path, the ranking is SVM, NN, RF and KNN but the difference in performance between SVM and NN is small.
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 1 Fig. IV.1. Position errors versus position x ∈ [0, 600m] on the roads with the different machine-learning techniques σ = 0.05.
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 2 Fig. IV.2. Position errors versus position x ∈ [0, 600m] on the roads with the different machine-learning techniques σ = 0.05. Training data measurements available only every 30m

Fig. IV. 3 .

 3 Fig. IV.3. Position errors versus position x ∈ [0, 600m] on the roads with the different machine-learning techniques σ = 0.05. No training data available in [30m,105m]

  Thus they are not included in our presentation. The comparison between KN N , N N , Random Forest and Support Vector Machine is presented in Figure IV.4. We observe that,except for KN N , the position error remains in the interval [-60m, 60m], which shows that when have no direct link, the machine-learning techniques offer only average predictions. TableIVproposes a quantitative evaluation of the four methods with the mean absolute error and the root mean square deviation. From these results we note the N N and SVM approaches provide the best performances with mean absolute errors of respectively 17.63m and of 17.45m and with root mean square deviations of respectively 23.08m and 23.51m. These techniques are followed by the RF technique with an absolute error of 26.9m and a root mean square deviation of 37.1m. The least effective scheme is KN N with an absolute error of 30.30m and a root mean square deviation of 35.63m
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We can observe that regression and classification problems are very close.