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Joint longitudinal and survival-cure models to improve the assessment of being cured in oncology studies

Mixture cure model

Mixture cure model is a survival model assuming that a fraction (1-p) of the population is cured and a fraction p is uncured (susceptible), such as:

S (t) = (1 -p) + pS (t|D = 1)
where D the cure membership indicator with D i = 1 or D i = 0 if the i-th subject is susceptible or cured, respectively.

Latency Model: survival model defined for susceptible group using a parametric PH model. Let t i = min (t e i , t c i ) and δ i = 1 {t e i < t c i } where t e i and t c i are the event time and censoring time for the i-th subject, respectively.

Incidence Model: probability of being uncured usually modeled via a logistic regression.

p i = Pr (D i = 1) = exp w T i γ 1 + exp w T i γ
where γ is the vector of parameters associated with the vector of baseline covariates w i .

Joint longitudinal-survival models

The longitudinal model: use of a linear mixed model (LMM) to describe the subjectspecific evolution over time of repeated measurements y i = (y i1 , . . . , y in i ) T from subject i(i = 1, . . . , n). For the i-th subject at measurement time j(j = 1, . . . , n i ), the LMM is characterized by:

y ij (t ij ) = x T ij β + u T ij ξ i + ε ij , = m i (t ij ) + ε ij
where β is the vector of fixed effects associated with the design vector x ij , ξ i ∼ N (0, Σ) is the vector of subject-specific random effects associated with the design vector u ij , and ε ij the error term assumed independent of ξ i .

There are two kinds of joint longitudinal-survival models (JMs):

-The shared mixed-effect models (SMEM): function of the mixed effects is included as a covariate in the survival model;

-The joint latent class models (JLCM): both longitudinal and survival behaviors are determined by a latent class membership.

Full joint cure model (FJCM) √ √ √ √ Complete-data likelihood L c (θ) = n i=1    p i h 1 (t i |S i ) S 1 (t i |S i ) n i j=1 f 1 (y ij |ξ i ) φ (ξ i |Σ 1 )    1(δ i =1)1(D i =1) ×    p i S 1 (t i |S i ) n i j=1 f 1 (y ij |ξ i ) φ (ξ i |Σ 1 )    1(δ i =0)1(D i =1) ×    (1 -p i ) n i j=1 f 0 (y ij |ξ i ) φ (ξ i |Σ 0 )    1(δ i =0)1(D i =0)
where {f d (.) = f (.

|D i = d)} d=0,1 , S i = m i (t i
) and the latency model specification using a Weibull parametric form:

h 1 (t i |S i ) = ϑζt ζ-1 i exp z T i α+α L S i S 1 (t i |S i ) = exp - t i 0 h (u|θ s , S i ) du
with ζ and ϑ are the shape and the scale parameters, respectively, α is the vector of parameters associated with the vector of baseline covariates z i and α L the parameter associated with the shared structure S.

Estimation via MCMC methods

• R program using JAGS inspired by the JMbayes package;

• Numerical integration in latency model using Gauss-Kronrod rule.

Prediction of the conditional probabilities of being cured

Pr D i = 0|T i > t, Y (t) i ; θ = (1 -p i ) f 0 Y (t) i |ξ i f 0 (ξ i )dξ i 1 d=0 Pr (D i = d) S d (t|S i ) f d Y (t) i |ξ i f d (ξ i )dξ i , where Y (t) i = {y i (t il ) ; 0 ≤ t il ≤ t, l = 1, . . . , n i } the set of longitudinal measurements.

Results based on simulated datasets

Design of simulations Generation of two datasets (n=600) following the same FJCM: one for the training step and another one for the predictive step.

-Incidence design: γ = (0.5, -1, 1) T and w i = (1, w i1 ∼ Ber (0.4) , w i2 ∼ N (0, 1)) T ; -Latency design: ζ = 4, ϑ = 1.5, α L = -0.1, α = 1 and z i1 ∼ Ber(0.4).

Profile and subject-specific predictions

Preliminary conclusions → Longitudinal information can improve the prediction of being cured, and even more so for subject-specific predictions (c.f. ROC curves); → Tendency to overestimate the probability of being cured when t increases, especially for FJCM (the optimal threshold at t = 4 is determined around 0.80).

N B : identifiability/convergence issue with JSECM because longitudinal information from cured subjects is included in latency model.

Perspectives

• Exhaustive simulation study (ensure the appropriateness for each model and under what conditions) and application on real data from cancer clinical trial;

• Extension of predictions: individual prediction of the longitudinal response and of the event probability;

• Extension of the R program adding longitudinal models for ordinal responses, other shared association structures S (slope of trajectory, AUC or random-effects) and other parametric forms for survival models (piecewise constant or B-splines).
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