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Abstract

We study experimentally—using Janus colloids—and theoretically—using Active Brownian Particles
—the sedimentation of dilute active colloids. We first confirm the existence of an exponential density
profile. We show experimentally the emergence of a polarized steady state outside the effective
equilibrium regime, i.e. when the sedimentation speed v, is not much smaller than the propulsion
speed vy. The experimental distribution of polarization is very well described by the theoretical
prediction with no fitting parameter. We then discuss and compare three expressions which have been
proposed to measure the pressure of sedimenting particles: the weight of particles above a given
height, the flux of momentum and active impulse, and the force density measured by pressure gauges.

1. Introduction

The sedimentation of active particles has recently attracted alot of interest, both experimentally [1, 2] and
theoretically [3—10]. In the simplest of limits in which the interactions between particles can be neglected and
their sedimentation speed v, is much smaller than their self-propulsion speed v, the system behaves as an
equilibrium one, leading to an exponential density profile

p(2) x exp(—mgz/kTe). €))

The effective temperature is then given by a Stokes—Einstein relation kT = D/, with D and p the diffusivity
and the mobility of the particles. This regime was observed experimentally for self-diffusiophoretic Janus
colloids [2]. The impact of interactions between particles on the above small v,/v, regime was recently explored
experimentally and numericallyin [1].

In this article, we consider experimentally and theoretically the fate of dilute active sedimenting systems
when the sedimentation speed cannot be neglected, i.e. beyond the effective equilibrium regime. We use self-
propelled Janus colloids in 2D as a model experimental active system, and model them using non-interacting
Active Brownian Particles (ABPs, see section 2). We first consider the distribution of particles in the
sedimentation profile (section 3). Our experiments show that the gravity field leads to a polarized steady state in
agreement with earlier theoretical predictions [3, 5, 1 1]. Furthermore, the distribution of orientations of the
particles within the exponential sedimentation profile agrees quantitatively, without any fitting parameter, with
the one predicted analytically for sedimenting ABPs [5].

The pressure of active particles has attracted a lot of interest recently [ 12—-25]. We discuss the expression of
pressure for sedimenting active particles [1] (section 4). For our ABP model, we give a clear interpretation of a
bulk pressure, defined as the weight exerted on the system above a certain height [ 1, 26-30], in terms of
momentum transfer. We give a complete characterisation of the latter in terms of correlators measured in the
bulk of the system and a recently introduced active impulse [ 14]. Excellent agreement is shown between
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Microscope PZD

Figure 1. Left: illustration of the experimental setup. Janus particles are immersed in a hydrogen peroxide bath and sediment towards
the bottom of the experimental cell. They then form a monolayer where each particle moves with 2D velocity f resulting from both
self-propulsion and sedimentation. Using a piezoelectric device we tilt the experimental cell by an angle o which leads to a reduced
gravity field gsin a.. Right: 2D scheme of a Janus particle under sedimentation. The particle moves forward with a mean velocity v, and
an orientation 6, but due to the sedimentation velocity v, the (average) velocity vectoris ¥ = vyu(f) — ve,.

experimental measurements of the pressure and these bulk observables. Finally, we discuss whether such an
expression of pressure can be related to force densities exerted on pressure gauges.

2. Experimental setup and theoretical model

When immersed in a hydrogen peroxide (H,O,) bath, gold Janus colloids of radiusa = 1.1 &£ 0.1 ym half
coated with Platinum become active and propel themselves with a force f ;D by self-diffusiophoresis [31]. Their
density being very high around p = 11 g cm ™, the colloids immediately sediment onto the flat bottom of an
experimental cell to form a bi-dimensional layer of particles. Due to the huge reservoir of peroxide, activity can
be considered as constant during each experiment. For each experiment we record movies of 5000 images @ 20
fps, for a total duration of 250 s. This experimental set-up, sketched in figure 1, was previously used to study the
cluster phase [32] and the weak sedimentation limit [1] of active Janus colloids.

Here, using a piezoelectric module, we tilt the experimental cell with an angle « to create a reduced gravity
field g sin v, leading to a controllable sedimentation velocity v,, that we take along the z-axis: —v;e,. We start
with an angle «v as small as possible, and we increase v, by increasing «, until all the gas collapses into the dense
phase. In the following we denote vou(#) the 2D propulsion velocity of a colloid in the (x, z) plane (see figure 1).
Note that, experimentally, we measure the velocity of a particle at position r: ¥ = vyu(f) — 1e,. For each
experiment we measure v,, which is found around 4 4 0.2 um s~ ', and v, (see appendices A and B for details). In
the following, we will present experimental results for different realisations corresponding to values of the ratio
v/ vy from ~0.08 to ~0.28.

To account for our experimental results, we model the colloids as ABPs [33] that are self-propelled at a
constant velocity v, along their internal direction of motion u and subject to rotational diffusion. As in the
experiments, the motion of the particles is restricted to the 2D plane parallel to the bottom plate and subject to a
sedimentation velocity —v;e, downward along the z-axis. Furthermore, we will assume that the orientation
vectors u of the particles are also restricted to this 2D plane. This is not the case experimentally since the
propulsion force f ?,D can point in any direction in 3D. However, we do not have experimental access to the 3D
statistics of f ;D and we show in appendix B that allowing rotational diffusion in 3D for the ABPsleads only to
quantitatively similar results with small corrections, so that our experimental data are not able to distinguish
between the two situations. For simplicity, we thus consider a propulsion velocity of fixed norm v, and 2D
orientation vector u(f) = (—sin 6, cos 6), subject to rotational diffusion with diffusion coefficient D,. The
overdamped dynamics of a particle at position r and with a sedimentation speed v, then follows the Langevin
equation

I = VOu(H) — Vs€s; 0= \IZDr 5) @)

where £ is a Gaussian white noise with zero mean and unit variance (£ ()£ (¢/)) = 6(t — t'). The persistence
time 7, = D, 'andlength I, =wD, ! provide natural time and length units. Numerically, we integrate
equation (2) using Euler time-stepping with time step dt = 0.17,,.

Equation (2) does not include interactions between particles and thus only attempts to describe the dilute
gaseous phase of the experiments. It would be interesting to ultimately describe interacting particle systems, to
be able to resolve the full sedimentation profile. This would require adding short-range pairwise forces to the
dynamicsin (2). It could also be interesting to study the role of inter-particle torques, even if nothing indicates
that these play an important role in our experimental setup. Then, the external field could induce external
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Figure 2. Left: p(z) for v,/vy = 0.09,0.13,0.18, 0.29. We observe an exponential decay in the dilute gas phase, where particle
interactions become negligible. Note that for a better display the origin of zis arbitrary. The plain lines correspond to a joint fit of all
data sets with one free parameter, D,, which is found to be D, = 0.08 4 0.003 s~ . Right: picture of the experimental system for
vy/Vo = 0.29. Blurry particles at the top are due to the defocus induced by the tilt of the sample.

torques on the particles, a topic which has been studied recently in [34]. Note finally that equation (2) does not
include the fluid which surrounds the colloids. The latter indeed rest on a tilted surface which acts as a local
momentum sink, which legitimates neglecting the role of hydrodynamics in this setup®.

3. Sedimentation profile and polarization

The steady state distribution of sedimenting ABPs described by equation (2) is an exponential density profile
[3,5,6, 11].Indeed, the Fokker—Planck equation for the probability P(r, 6, t) to find a particle at position r
with orientation 6 at time ¢ reads

0P =—V - [(vou — ve)P] + D,0;P, ©)
and by symmetry P(r, 6) = P(z, 0). Asshown in [5], equation (3) can be solved by separation of variables.
Writing P(z, 0) = f(0)p(z) in equation (3), p and fsatisfy in steady state

pl(@) = —p@)/A 4
1
"O) = ———(vgcos — v)f(0) = 0. 5
10 D,)\(VO ) f (0) (5)

The density profile is thus of the form p(z) o e *, with a sedimentation length \. The solutions of
equation (5) are Mathieu functions. The periodicity of f () then implies [5] —4v; /(AD,) = ao(—2vy/(AD;))
where g, is the first characteristic value of the Mathieu equation (see [35] for properties of the solutions of
equation (5)). Expanding a, for small v,/v, [35], one gets the sedimentation length A as

V5 7| vs : Vs !
A= 1——|—| +O||— . (6)
2D, v, 4\ vy Vo

At the same order in v,/v,, one gets for the orientation distribution:

2 3
2rf(0) =1+ %cosﬁ + s cos26 + O((ﬁ) ] 7)

Yo 21/02 Vo

3.1. Density profile

We first measure experimentally the density profile p(z). To do so, we use a coarse graining operation (5.1 ym
height slices) and both a spatial average over the x-axis and a time average over the experiment duration. In
figure 2 the resulting experimental sedimentation profiles are shown for several values of v,/v,. The density
profiles indeed exhibit an exponential decay in the dilute phase—which corresponds to alinear dependence in
our semi-log plot—with a sedimentation length A.

For weak sedimentation speeds, the role of hydrodynamics in sedimenting active particles has been shown to be rather limited [4].
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Figure 3. Probability distribution of the measured velocities . The colour code corresponds to a normalised distribution P (x, z). The
polarization becomes more apparent as v,/ v, increases. The downward offset of the distribution gives access to the sedimentation
velocity v, (see appendix A), represented to scale by the white arrows in the upper right corner of each sub-figure.

The theoretical expression for the sedimentation length equation (6) depends only on parameters that
should be accessible experimentally. However, measuring precisely the rotational diffusion coefficient D, of the
active colloids is difficult. The statistics of the velocity autocorrelation in the dilute gas region is indeed too
limited to accurately measure D,. Therefore, we use D, as a free parameter and fit the density profiles shown in
figure 2 with equation (6). This leads to D, = 0.08 £ 0.003 s~!. Note that this value is compatible with the
Brownian estimate D, = 0.12 4 0.04 s~ ' (the significant errorbar is due to 10% polydispersity). Our slightly
smaller measurement could be due to the proximity of the bottom surface.

3.2. Polarization

A remarkable feature of the sedimentation profile of active particles is the existence of a non-vanishing mean
polarization. A first visualisation of this polarization can be obtained from the distribution of velocities in the
sedimentation profile. We measure the instantaneous velocities of free particles f—positions are smoothed with
a Gaussian average over 1s, particles are considered free if they have no neighbour in aradius of 5.1 gm—and
build the corresponding 2D probability distribution function (see figure 3). Note that  corresponds to the
observed velocity, which includes both the propulsion velocity vou(6) and the sedimentation velocity —v.e,.

As expected, when the sedimentation field is negligible, for example when v,/v, ~ 0.09, the distribution of
velocities has an isotropic ‘ringlike’ shape, with aradius ~v,. On the contrary, when the sedimentation speed
increases, a striking behaviour emerges as the microswimmers polarise against the gravity field: the distribution
of velocities is no longer isotropic and colloids are most likely oriented upwards, leading to a strong peak of
probability at the top of the ringlike distribution. Note that, due to the sedimentation velocity, thereisalso a
downward shift of the centre of the ring, which is clearly visible when v,/ v, is large enough.

To compare with theoretical predictions based on the ABP model (2), we extract the orientation
distribution f(0) from the experimental 2D probability distribution of i (see appendix A). We plot the
orientation distribution 27f () in figure 4 (symbols) against the theoretical prediction from equation (7) (solid
lines). Note that the agreement between experiments and theory is remarkable, without any fitting parameter.
Modelling our self-propelled Janus colloids as ABPs thus allows us to quantitatively account for their
sedimentation profile.

4. Pressures in sedimentation profiles

Studying the pressure of active systems is a fascinating challenge for at least two reasons: first as the out-of-
equilibrium fate of a thermodynamic state variable that controls phase equilibria and flows in passive systems.

4
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Figure 4. Distribution of particle orientations for increasing v,/vo = 0.09,0.13,0.18, 0.29. Symbols correspond to experiments and
solid lines to the theoretical predictions from equation (7).

Then as a measurement of the force that active particles collectively exert on their environment. Since active particles
exchange momentum with the environment, their momentum does not satisfy a conservation equation so that
pressure cannot be unambiguously defined from their momentum flux. In particular, such a bulk expression is not,
in general, equivalent to the force density exerted by active particles on a confining boundary [20].

There are notable exceptions to this lack of equation of state, such as non-interacting ABPs [17, 21, 23, 25].
For such models, a homogeneous isotropic system exerts a force density on a container that can be expressed as
observables measured in the bulk of the system, despite wall-dependent boundary layers. The question as to
whether this extends to our polarized sedimentation profile is completely open. (See [34] for the case of weak
sedimentation where the polarization can be neglected.) In section 4.1, we first show that a pressure defined as
the weight exerted on the active system above a certain height can be related to momentum transfer in the bulk of
the system, as suggested in [ 1]. Nevertheless, we show in section 4.2 that this bulk pressure cannot be related to
the force density measured by a confining interface: it cannot be read with a pressure gauge. The difference
between such a mechanical measurement and our bulk pressure however vanishes as v,/v, — 0, provided the
pressure gauge is oriented orthogonally to the gravity field.

4.1. Pressure as momentum flux: the active impulse

In equilibrium, the equation of state relating the osmotic pressure to bulk properties of a system can be directly
measured using a sedimentation profile [26, 28], within a local density approximation. The underlying idea is
that the total weight exerted on the particles above a given height zis balanced by the osmotic pressure at this
height so that the pressure can be measured as:

M@ = [ mgp@hdz, ®)

where mg.¢1s the effective weight of the particles. Within the local density approximation, one then infers
IT,.(p(2)) from IT,,(z). Equation (8) can be seen as a consequence of momentum conservation above a height z:
the incoming momentum flux, which we write I1,,,(2), is balanced by the total external force (density) applied
above a plane z, I1,(z), which is the only external source of momentum.

Itis natural to ask whether this construction also applies to active systems, as recently proposed [1]. Indeed,
each active particle injects momentum into the active fluid so that momentum is not conserved. This injection of
momentum can be quantified using the active impulse Ap? [14]. For particle 7, at position r; and orientation 6;,
Ap? measures the total momentum the particle will receive on average from the environment in the future:

apo = [ T, ©)

where f¥ = fPu(#)) is the propulsion force of the particle and the overbar represents an average over future
histories, for fixed ri(¢) and 0(t). Interestingly, it was recently shown that a class of active systems, to which our
ABP model (2) belongs, admits a generalised conservation law: the sum of the particles’ momenta and of their
active impulses [ 14] form a conserved quantity. In such cases, one can show [14] that the active impulse
corresponds in steady-state to the swim pressure introduced in [23, 25]. We now show that, in this context,
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IT,.(2), defined in equation (8), can be related to the flux of momentum and active impulse through an interface
atheight z.
We consider particles evolving under the dynamics (2). The dynamics of the microscopic density field
p=>,0(r — r;)isgivenby
p=-V-J (10)
J=—vep+ Zvou(H,-)é(r — 1. (11)

In a sedimentation profile, the steady state is flux-free leading to a vanishing mean current J = (J) = 0, so that

Vsp(r)ez = Z<V0u(0i)5(l‘ - ri)>) (12)

1
where the angular brackets are steady-state averages and we have introduced p = (p). Equation (12) simply states
that the downward contribution to the density current due to the sedimentation of the particles is opposed by an
average upward bias of their active force orientations as already shown in the study of the polarization in section 3. For
non-interacting ABPs, the rhs of equation (12) can be rewritten as the flux of active impulse (see [ 14] and appendix D)

(Z vou(@)6(x — 1)) = -V - <Z LuAplo(r — 1)),
Integrating equation (12) from z to 00, projecting along e, and dividing by y then leads to
M@ = [ mgep@ = (289260 — 1) = (@) (13)

where I1,(z) is the upward flux of active impulse. Note that, here and thereafter, we retain the x-dependence in

6 (r — r;) for dimensionality reasons, even though the result solely depends on z. Equation (13) balances the total
force exerted on the system above z, given by the lhs, with the flux of active impulse through the horizontal plane
atheight z. If we were to include a diffusive contribution to the dynamics (2), this balance would become

foo Mg p(2) — <Z ZiAp} 6(r — 1)) + pkT — DGZ(Z Aplé6(r — 1)), (14)

where the last two terms come from the diffusive fluxes of momentum and active impulse, respectively. The central
result (13) shows that, rather surprisingly in this momentum non-conserving system, the total force density
applied above a height z, I1,,(2), is balanced, as in equilibrium, by an upward effective momentum flux, I1,(z).

To make connection with our experimental system, we note that, for ABPs, the active impulse (9) can be
readily computed as [14]

Ap? = %u(@(t)). (15)
Rewriting (13) thenleads to
2
() = —2 (3 cos2(B)6(x — 1)) — ~25(3 cos(6)8(r — 1) (16)
pDr pDr

Introducing the orientation and nematic fields
m,(x) = (O cos(0)6(r — 1)) (17)
Q(r) = <Z cos(20)6(r — 1)), (18)

which solely depend on zin the steady state, equation (16) can be rewritten as
2

I, (2) = 2:(1’) [p(2) + Qu(2)] — :(g

m;(z). (19)

Equation (19) shows that, unlike in equilibrium, I1,,,(z) measured in a sedimentation profile, and thus I1,,(2),
do not give access to the pressure of a bulk homogeneous system of density py = p(z). Indeed, the latter would be
. 1/2
givenby G = Z;LOD,
sedimentation profile. Note that the local density approximation of the equilibrium case is here generalised into
anew local approximation involving m, and Q,,, and not only p(z). The fact that these two new fields are
different in sedimenting and homogeneous isotropic active systems is the reason why the EOS of the latter
cannot be directly read from sedimentation experiments; it can however be reconstructed from the joint
measurement of I, m,and Q,, (provided vy, v,, 1t and D, are known). Note that the difference between I1,,(2)
and G vanishes in the limit v,/vy — 0, as expected in this effective equilibrium regime in which active particles
become indistinguishable from passive colloids with an effective temperature kTo = v¢ /(2uD;,) [2, 5].

po- The difference is due to the non-isotropic orientation of the active particles in the

6
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Figure 5. Pressure profiles for v, /vy = 0.29.Inblack, the pressure I1,,(z) measured experimentally by integrating the density above
aheight z, following equation (22). In blue, the effective momentum flux I1,,(z) predicted by equation (19) and, in green, its
approximation equation (21). Note that the curves for IT,, correspond to local measurements whereas I1,,(z) results from an
integration. The noise level in the latter is thus much lower than in the former.

Using f (6) computed in section 3, one can rewrite #1, and Q,, as
2 2
Ve Vg 1% Ve
m,(z) = p(z2)— + o(—); Q(2) = p(2)—=5 + o((—) ) (20)
Vo 4 4v; 14
so that I1,,,(z) can be rewritten as:

2
Yo

2 2
Drp(z)[l - Z:OZ + 0((%) )) 1)

For the experimental system described in section 2 we measure:

Hm(z) = >

L
W@ = [ dzp(2) + pllous (22)

where L corresponds to the top of the experimental observation box and
/’(‘Hout =V J; de (2). (23)

We extract ull,,, by plotting equation (22) against equation (21) for all accessible values of z (see appendix C).
We could equivalently use equation (19) but the measurements of Q,,(z) and m,(z) are noisier and the
corresponding estimate of I1,,,,; slightly less reliable. As shown in figure 5, the agreement between the
experimental measurements of I1,,(z) and our theoretical predictions for I1,(z) is very good. This agreement is
quantified in figure 6 using a parametric plot. Finally, note that, in our experiments, the ratio v,/v, is large
enough to lead to a clear polarization of the sedimentation profile, as shown in section 3. The correction to
pressure due to polarization however scales as (v,/v,)* so that, although measurable, the impact of polarization
on the pressure measurement is limited (see figure 6).

4.2. Connection to mechanical forces
In equilibrium, the relation between momentum flux and force densities exerted on confining interfaces is well
understood. In particular the mechanical pressure, defined as the force density on a confining vessel, is equal to the
hydrodynamic pressure defined from a bulk stress tensor so that the former satisfies an equation of state: it does not
depend on the details of the confining potential. In active matter, on the other hand, the mechanical pressure is
generically not given by an equation of state, except in exceptional cases to which our ABP model (2) belongs. Itis
thus natural to wonder whether these results, obtained for bulk homogeneous systems, extend to the case of
sedimenting profiles. Note that a complementary approach based on continuum mechanics can be found in [34].
To answer this question, we compare the ‘bulk’ pressures I1,,(z), defined in equation (8), and its expression
as an effective momentum flux, IT,,, computed as equation (19), to the mechanical pressure felt by
(semi-permeable) pressure gauges. We first consider a pressure gauge modelled as a confining potential starting
atheight z,,, invariant by translation along x, and confining the particles from above (see figure 7). We thus
measure a force density along the Z axis, that we call P,. We then turn to the complementary problem of a vertical
confining potential starting at x,, and compute the corresponding force density P, (see figure 7).

7
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Figure 7. [llustration of the measurements of the mechanical pressure defined as a force density exerted on a pressure gauge. Left: upon
inserting a horizontal pressure gauge, the particles are confined from above. They start experiencing a repulsive potential when
reaching a height z,,. Right: the pressure gauge is now oriented along gravity. Particles start experiencing a repulsive potential when
they reach x,,. In both cases, the repulsive potential has a finite range o so that no particle goes beyond z,, + corx,, + o.

Taking into account the confining potential V,,, the dynamics of the system becomes
= vou(d) — vie, — uVV,(1). (24)

The mechanical pressure exerted by the particles on the confining gauge boundary can be computed as

PG = [ p@0.% 60, (25)

b
where z, is any height in the bulk of the system, with z, < z,,. Note that the formula (25) is completely generic and
holds for any confining potential. It does not depend on the choice of z, since V,, vanishes for z < z,,. Furthermore,
the convergence of the integral as z — 00 is ensured by the fact that the density of particle vanishes in the wall.
Using standard methods [20] detailed in appendix E, one gets that

2

Yo Vo Vs
Zy + 222w -
2D, [p(zw) + Qzz(zw)] D,

where we have introduced the weight W (z) = fz * mg.¢ p(z)dz of active particles above a given height z in the
presence of the confining boundary.

Crucially, comparing (19) with (26) shows that measuring the weight I1,,(z,,) of active particles above a
given height z,, in an unbounded sedimentation profile (or the effective momentum flux I1,,,(z,,) at this height) is

P(zy) + W(zy) =

mz(zw), (26)
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not equal to the force density P,(z,,) felt by the pressure gauge. This has two origins that we now detail. First,

the rhs of (26), even though functionally identical to the rhs of (19), will take a different value because of the
presence of the confining interface: p(z,,), m,(z,,) and Q_.(z,,) take different values with or without the confining
potential. More importantly, the factor W(z,,) tells us that the force that the wall has to exert to confine active
particles is equal to their effective momentum flux minus the force exerted by the gravity field on the active
particles in the wall region. The mechanical pressure P,(z,,) is thus lower than I1,,(z,,) (even measured in the
presence of the confining interface) because part of the confinement is done by gravity itself. This contribution is
clearly wall-dependent and will thus always prevent the existence of an equation of state for P,(z,,).

Interestingly, the computation of the mechanical pressure felt by a confining interface for, say, an equilibrium
ideal gas wouldlead to P,(z,,) + W(z,,) = p(z,,)kT. Strictly speaking, there is thus no equation of state for the
mechanical pressure P, measured in a sedimentation profile of an equilibrium system. Note that this does not
contradict the statistical mechanics expression of pressure P = — 3—5: this onlyleads to boundary-independent
equation of states when the boundary contributions to the free energy are negligible. This only applies in systems in
which the free energy is extensive, which is not the case for sedimenting systems. That said, the weight (density) of
passive particles interacting with the pressure gauge is of the order of pmgo, where o is the interaction range of the
confining potential; for non-interacting sedimenting particles, it has to be compared with a pressure pkT so that the
violation of the equation of state is measured by omg/kT. This is the ratio between the range of the confining
potential and the sedimentation height; for sedimenting colloidal particles, this would be completely negligible. On
the contrary, for an active system, there is a finite boundary layer of particles that accumulate at the wall, which
makes this contribution non-vanishing even when o — 0. Using standard results on the accumulation of active
particles at confining boundaries [36], we find this contribution to be of the order of v/v;.

Let us now look at what happens for a confining boundary oriented normal to the X direction (see figure 7).
The exact same computation as above leads to

v

P(z) = kTp(xp, 2) + 5 [o(xps 2) + Qux(xp 2)], (27)

r

where (xy, z) corresponds to a point in the bulk of the system. Interestingly, this z-dependent force density
satisfies an equation of state, and will not depend on the details of the confining boundary. It is entirely predicted
by bulk properties of the fluid, but, again, these properties are not measured by I1,,(2), since (27) differs

from (19) because the fluid is anisotropic. Note that for weakly sedimenting systems, however, equation (21)
shows the difference between P,(z) and I1,,(z) to vanish so that a pressure gauge could be used, in principle, to
access I1,,(z) or I1,,(z) when the self-propulsion speed is much larger than the sedimentation velocity.

5. Conclusion

In this paper we have used active Janus colloids and ABPs to study sedimenting active particles. We have shown
experimentally that when the sedimentation speed is comparable to the propulsion speed, a net polarization of the
active colloids develops in the bulk of the system. The theoretical predictions for the distribution of orientations of
the particles agree very well with the experimental results without any free parameter. We then discussed different
expressions of pressure for sedimenting active particles. Using our ABP model, we have shown that the bulk
pressure defined as the weight exerted on the system above a certain height can be interpreted in terms of local
momentum transfer. This is verified to a very good approximation in our experiments. Finally we discussed when
such bulk expressions of pressure can be related to local force densities exerted on pressure gauges.
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Appendix A. Measuring v, and maximum v; /v, ratio
A.1. v, measurement
Getting a precise measure of v, is essential as we do not have direct access to vou(#) butto r = wyu(f) — ve,.

While we measure the tilt of the experimental chamber with the resulting o angle, and could a priori compute v,,

4 The bulk pressure indeed scales as pvg /(2.D;) while the weight of particles at the boundary scales as (v, /1) pvo / D;
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Figure Al. Red, (0) is not isotropic due to v, contribution. We measure v, using £(0) — #(7) = 2. Blue, as expected
vou(f) =  — ve, becomes isotropic when we remove v, contribution.

the resulting error bars are too large for a quantitative study. We thus decided to measureita posteriori using the
2D probability density function, and the fact that 7(0) — 7(7) = 2v. This gives much more precise
measurement of v and indirectly vy and f (). We verify in figure A1 that 7 () is not isotropic due to v,
contribution (red), but that as expected vou(f) = ¥ — v;e, becomes isotropic when we remove v,

contribution (blue).

A.2. Maximum v, /v, ratio

In the experiments the ratio v,/v, varies from ~0.09 to ~0.29. Higher ratios are experimentally difficult to access
quantitatively as the gas phase is so sparse that there is not enough consistent data. Another difficulty arises from
the fact that we are tilting solely the experimental chamber, and not the full microscope. This induces strong
defocus for the highest v, /v, ratio, which limits the effective size of observation. While it would be possible to tilt
the full experiment, including the microscope, the control and precision would then be much more difficult
than with a piezoelectric device.

Appendix B. Projected 3D

In the main text, we modelled the experimental Janus colloids as ABPs living in the two dimensions of the
bottom plate. However, in practice, the orientation of the colloids is not constrained to the 2D plane and can
venture in the third dimension. We show in this appendix that taking into account the 3D orientation of the
particles leads to very small corrections to the predictions of the 2D model, so that the two cannot be
distinguished by the experiments.

In 3D, the Active Brownian dynamics of equation (2) now read

= vou — vie,; u=ux 2D,§, (B.1)

where £ is a 3D vector of Gaussian white noises with zero mean and unit variance (¢; 1§ (") = 66t — ),
iand jbeing Cartesian coordinates. (Equation (B.1) uses Stratonovich convention.) Contrary to ABPs in 2D, we
do not have an exact solution for this model and thus resort to simulations.

The orientation u can be parametrized in 3D by two angles € and ¢. We take 6 as before in the (x—z)-plane
with # = 0along the z-axis so that, once integrated over ¢ we can compare the angular distributions f;;(6)
measured in simulations of equation (B.1) and the analytical result for £, ;(6). The two are compared in figure B1
for the values of v, /v,; corresponding to the experiments, taking into account that, for the 3D model, the speed
vpappearing in equation (B.1) is related to the speed measured in the 2D bottom plane by a geometric factor
V24 = (7 /4)vy. The difference between the distributions predicted by the 2D and 3D models is smaller than 5%
and the experiments thus cannot discriminate between the two.
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2 f(6)

Vs /vaq = 0.08

’Us/’U2d =0.12
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0
- 771"/2 6 71"/2 ™

Figure B1. Exact angular distribution for 2D ABPs (plain lines) and angular distribution for 3D ABPs measured in simulations of
equation (B.1) (symbols).

Appendix C. Measuring pI1,,

We discuss how to measure in experiments the pressure at height z, defined as the weight above this position:
oo
i@ = v [ dzpa) C.1)

In theory, for an open system, the density profile follows an exponential decay, and should only vanish at
z = 4o00. In the experiment, however, we can only integrate the density profile up to a height L, because we lose
particles that are out of the experimental window, or due to the defocus of the microscope. We call the missing
contribution IT,, and write

L
pIL(2) = Tow) = v [ dzp(2) (€2)

s = v, [ dzp(a) (C3)

We extract 11, using a parametric plot of equation (C.2) against equation (21) for all accessible values of z.
We obtain an affine relationship (see figure C1, left). We then measure — Il at the intersect between the affine
fit and the y-axis, and find pIT,, = 0.024 + 0.004 s~ '. Note that we could equivalently use equation (19)

(see figure C1, right) but the measurements of Q_,(z) and m,(z) are noisier (figure C2) and the corresponding
estimate of Iy, = 0.03 & 0.005 s~ slightly less reliable.

Appendix D. Sedimentation and active impulse

For the sake of generality, we derive in this appendix the relationship between the bulk pressure I1,,(2), as defined
in (8), and momentum and active impulse transfers in the bulk of the active system, in the presence of
translational diffusion. We consider particles evolving with the dynamics

i = vou(d) — ve, + VDn. (D.1)

Using Ito calculus, the dynamics of the exact microscopic density field p = >, 6 (r — r;) is given by [21, 37]
p=-V-] (D.2)
j=-DV)+ 2DpA — vie D + Z vou(0;)6(r — r;), (D.3)

where A(r, t)isa §-correlated Gaussian white noise field of zero mean and unit variance. In a sedimentation
profile, the steady state is flux-free leading to a vanishing mean current J] = (J) = 0, so that
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(19),and gl = 0.024 =+ 0.004 s~ for (21).
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Figure Cl1. plIl,, — pllyw = % LL dzp(z) versus pIl,, (21) (left) and (19) (right) for experiment with v,/vy = 0.29. We use this plot
to measure uIT,, bylooking at the intersect between the affine fity = x + band the y-axis. We find uTTo, = 0.03 4 0.005 s~ for

g X107
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are the theoretical values from equation (20).
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Figure C2. Blue circles: experimental measurements for 1, (left) and Q,, (right) versus z, using equations (17) and (18). Black circles

vip(z) = > (vocos;6(r — 1)) — DO, p(2),

1

(D.4)

where we have introduced p = (p) and we have used that the system is invariant by translation along % to
replace V by 0, and to drop any useless dependence on x. Equation (D.4) simply states that the downward
contribution to the density current due to the sedimentation of the active particles is opposed both by the average
upward motion of the particles and by the upward diffusive flux. For non-interacting ABPs, the first term of the
rhs of equation (D.4) can be rewritten as the flux of active impulse [14]. Using Ito calculus, one writes

01{cosb;6(r — 1)) = —V(¥;cos0;6(r — 1)) + DA(cosb;6(r — 1))
— D,{cos0;6(r — 1))

so that, in steady state,

(cosb;6(r — 1)) = 8zz<§ cosb;6(r — 1)) — 8Z<% cos0;6(r — 1,)).

r

'

(D.5)

(D.6)
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Integrating equation (D.4) from zto 00 then leads to

Vs j;oo p(z) = Dp(z) + <Z %Z}COSQ,‘&(I‘ — l'i)>

1 T

— D, (Y g cos 0;6(r — 17)). (D.7)

1 r

Writing vy = ufy, with f, the propulsive force of an active particle, and dividing equation (D.7) by iz then leads to
the effective momentum balance equation

'

Iy (2) = kTp(z) + (D z',-g cos0;6(r — 1))

- D@Z(Z gcos 0;6(r — 1)) = I (2) (D.8)

i T
which is equation (14) of the main text.

We note that the same result can also be obtained, more in line with [ 14], by considering an underdamped
system and taking the overdamped limit at the end.

Appendix E. Force density exerted by ABPs in a sedimentation profile

In this appendix we detail the computation of the force density exerted by an active system on a confining
interface located at height z,,:

B = [ p®0.%wdz (E.1)
zp
As before, we compute the dynamics of p(r) and find, in the steady state
P (1‘) =0=-0,J; (I‘), (EZ)
where ], is the mean density current along Z, which vanishes in the steady state:
L)) = 0= —vp(®) — p(R)ud.Vy + vom, (©). (E.3)
This allows us to write the mechanical pressure as
R === [ dzpm + 2 [ mmdz. (E4)
oYz 1% Zp

Using It6 calculus, we now compute the dynamics of m,, defined in (17), which yields in the steady-state
i, =0 = —0,() cosb;z;6(r — 1;)) — Dym,. (E.5)

Together with equation (24), one gets

P+ Qe v B v (E.6)

m, = —0,[v
: oD, D, D,

Therefore, the mechanical pressure felt by the boundary is given by

v

[p(r) + Qu(ry)] — ~2=

m,(rp). E.7
ZMDr ,U,Dr 2(1p) (E.7)

p==2 [ dzp@ +
oz

This expression is valid for any z;, < z,,. In particular, for z, = z,, we recover equation (26) of the main text.
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