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Abstract. In this paper we introduce a Wasserstein-type distance on the set of Gaussian mixture models. This4
distance is defined by restricting the set of possible coupling measures in the optimal transport5
problem to Gaussian mixture models. We derive a very simple discrete formulation for this distance,6
which makes it suitable for high dimensional problems. We also study the corresponding multi-7
marginal and barycenter formulations. We show some properties of this Wasserstein-type distance,8
and we illustrate its practical use with some examples in image processing.9
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1. Introduction. Nowadays, Gaussian Mixture Models (GMM) have become ubiquitous13

in statistics and machine learning. These models are especially useful in applied fields to rep-14

resent probability distributions of real datasets. Indeed, as linear combinations of Gaussian15

distributions, they are perfect to model complex multimodal densities and can approximate16

any continuous density when the numbers of components is chosen large enough. Their pa-17

rameters are also easy to infer with algorithms such as the Expectation-Maximization (EM)18

algorithm [13]. For instance, in image processing, a large body of works use GMM to represent19

patch distributions in images1, and use these distributions for various applications, such as20

image restoration [36, 28, 35, 32, 19, 12] or texture synthesis [16].21

The optimal transport theory provides mathematical tools to compare or interpolate be-22

tween probability distributions. For two probability distributions µ0 and µ1 on Rd and a23

positive cost function c on Rd × Rd, the goal is to solve the optimization problem24

(1.1) inf
Y0∼µ0;Y1∼µ1

E (c(Y0, Y1)) ,25

where the notation Y ∼ µ means that Y is a random variable with probability distribution µ.26

When c(x, y) = ‖x−y‖p for p ≥ 1, Equation (1.1) (to a power 1/p) defines a distance between27

probability distributions that have a moment of order p, called the Wasserstein distance Wp.28

While this subject has gathered a lot of theoretical work (see [30, 31, 27] for three refer-29

ence monographies on the topic), its success in applied fields was slowed down for many years30

by the computational complexity of numerical algorithms which were not always compatible31

with large amount of data. In recent years, the development of efficient numerical approaches32
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2 J. DELON AND A. DESOLNEUX

has been a game changer, widening the use of optimal transport to various applications no-33

tably in image processing, computer graphics and machine learning [23]. However, computing34

Wasserstein distances or optimal transport plans remains intractable when the dimension of35

the problem is too high.36

Optimal transport can be used to compute distances or geodesics between Gaussian mix-37

ture models, but optimal transport plans between GMM, seen as probability distributions38

on a higher dimensional space, are usually not Gaussian mixture models themselves, and the39

corresponding Wasserstein geodesics between GMM do not preserve the property of being a40

GMM. In order to keep the good properties of these models, we define in this paper a variant41

of the Wasserstein distance by restricting the set of possible coupling measures to Gaussian42

mixture models. The idea of restricting the set of possible coupling measures has already43

been explored for instance in [3], where the distance is defined on the set of the probability44

distributions of strong solutions to stochastic differential equations. The goal of the authors is45

to define a distance which keeps the good properties of W2 while being numerically tractable.46

In this paper, we show that restricting the set of possible coupling measures to Gaussian47

mixture models transforms the original infinitely dimensional optimization problem into a48

finite dimensional problem with a simple discrete formulation, depending only on the param-49

eters of the different Gaussian distributions in the mixture. When the ground cost is simply50

c(x, y) = ‖x−y‖2, this yields a geodesic distance, that we call MW2 (for Mixture Wasserstein),51

which is obviously larger than W2, and is always upper bounded by W2 plus a term depending52

only on the trace of the covariance matrices of the Gaussian components in the mixture. The53

complexity of the corresponding discrete optimization problem does not depend on the space54

dimension, but only on the number of components in the different mixtures, which makes it55

particularly suitable in practice for high dimensional problems. Observe that this equivalent56

discrete formulation has been proposed twice recently in the machine learning literature, but57

with a very different point of view, by two independent teams [8, 9] and [6, 7].58

Our original contributions in this paper are the following:59

1. We derive an explicit formula for the optimal transport between two GMM restricted to60

GMM couplings, and we show several properties of the resulting distance, in particular61

how it compares to the classical Wasserstein distance.62

2. We study the multi-marginal and barycenter formulations of the problem, and show63

the link between these formulations.64

3. We propose a generalized formulation to be used on distributions that are not GMM.65

4. We provide two applications in image processing, respectively to color transfer and66

texture synthesis.67

The paper is organized as follows. Section 2 is a reminder on Wasserstein distances and68

barycenters between probability measures on Rd. We also recall the explicit formulation of W269

between Gaussian distributions. In Section 3, we recall some properties of Gaussian mixture70

models, focusing on an identifiabiliy property that will be necessary for the rest of the paper.71

We also show that optimal transport plans for W2 between GMM are generally not GMM72

themselves. Then, Section 4 introduces the MW2 distance and derives the corresponding73

discrete formulation. Section 4.5 compares MW2 with W2. Section 5 focuses on the corre-74

sponding multi-marginal and barycenter formulations. In Section 6, we explain how to use75

MW2 in practice on distributions that are not necessarily GMM. We conclude in Section 776

This manuscript is for review purposes only.



A WASSERSTEIN-TYPE DISTANCE IN THE SPACE OF GMM 3

with two applications of the distance MW2 to image processing. To help the reproducibility of77

the results we present in this paper, we have made our Python codes available on the Github78

website https://github.com/judelo/gmmot.79

Notations. We define in the following some of the notations that will be used in the paper.80

• The notation Y ∼ µ means that Y is a random variable with probability distribution81

µ.82

• If µ is a positive measure on a space X and T : X → Y is an application, T#µ stands83

for the push-forward measure of µ by T , i.e. the measure on Y such that ∀A ⊂ Y,84

(T#µ)(A) = µ(T−1(A)).85

• The notation tr(M) denotes the trace of the matrix M .86

• The notation Id is the identity application.87

• 〈ξ, ξ′〉 denotes the Euclidean scalar product between ξ and ξ′ in Rd88

• Mn,m(R) is the set of real matrices with n lines and m columns, and we denote by89

Mn0,n1,...,nJ−1(R) the set of J dimensional tensors of size nk in dimension k.90

• 1n = (1, 1, . . . , 1)t denotes a column vector of ones of length n.91

• For a given vector m in Rd and a d× d covariance matrix Σ, gm,Σ denotes the density92

of the Gaussian (multivariate normal) distribution N (m,Σ).93

• When ai is a finite sequence of K elements (real numbers, vectors or matrices), we94

denote its elements as a0
i , . . . , a

K−1
i .95

2. Reminders: Wasserstein distances and barycenters between probability measures96

on Rd. Let d ≥ 1 be an integer. We recall in this section the definition and some basic97

properties of the Wasserstein distances between probability measures on Rd. We write P(Rd)98

the set probability measures on Rd. For p ≥ 1, the Wasserstein space Pp(Rd) is defined as the99

set of probability measures µ with a finite moment of order p, i.e. such that100 ∫
Rd
‖x‖pdµ(x) < +∞,101

with ‖.‖ the Euclidean norm on Rd.
For t ∈ [0, 1], we define Pt : Rd × Rd → Rd by

∀x, y ∈ Rd, Pt(x, y) = (1− t)x+ ty ∈ Rd.

Observe that P0 and P1 are the projections from Rd×Rd onto Rd such that P0(x, y) = x and102

P1(x, y) = y.103

2.1. Wasserstein distances. Let p ≥ 1, and let µ0, µ1 be two probability measures in104

Pp(Rd). Define Π(µ0, µ1) ⊂ Pp(Rd×Rd) as being the subset of probability distributions γ on105

Rd × Rd with marginal distributions µ0 and µ1, i.e. such that P0#γ = µ0 and P1#γ = µ1.106

The p-Wasserstein distance Wp between µ0 and µ1 is defined as107

(2.1) W p
p (µ0, µ1) := inf

Y0∼µ0;Y1∼µ1
E (‖Y0 − Y1‖p) = inf

γ∈Π(µ0,µ1)

∫
Rd×Rd

‖y0 − y1‖pdγ(y0, y1).108

This formulation is a special case of (1.1) when c(x, y) = ‖x − y‖p. It can be shown (see109

for instance [31]) that there is always a couple (Y0, Y1) of random variables which attains the110
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4 J. DELON AND A. DESOLNEUX

infimum (hence a minimum) in the previous energy. Such a couple is called an optimal coupling.111

The probability distribution γ of this couple is called an optimal transport plan between µ0112

and µ1. This plan distributes all the mass of the distribution µ0 onto the distribution µ1 with113

a minimal cost, and the quantity W p
p (µ0, µ1) is the corresponding total cost.114

As suggested by its name (p-Wasserstein distance), Wp defines a metric on Pp(Rd). It115

also metrizes the weak convergence2 in Pp(Rd) (see [31], chapter 6). It follows that Wp is116

continuous on Pp(Rd) for the topology of weak convergence.117

From now on, we will mainly focus on the case p = 2, since W2 has an explicit formulation118

if µ0 and µ1 are Gaussian measures.119

2.2. Transport map, transport plan and displacement interpolation. Assume that p = 2.120

When µ0 and µ1 are two probability distributions on Rd and assuming that µ0 is absolutely121

continuous, then it can be shown that the optimal transport plan γ for the problem (2.1) is122

unique and has the form123

(2.2) γ = (Id, T )#µ0,124

where T : Rd 7→ Rd is an application called optimal transport map and satisfying T#µ0 = µ1125

(see [31]).126

If γ is an optimal transport plan for W2 between two probability distributions µ0 and µ1,
the path (µt)t∈[0,1] given by

∀t ∈ [0, 1], µt := Pt#γ

defines a constant speed geodesic in P2(Rd) (see for instance [27] Ch.5, Section 5.4). The path127

(µt)t∈[0,1] is called the displacement interpolation between µ0 and µ1 and it satisifes128

(2.3) µt ∈ argminρ (1− t)W2(µ0, ρ)2 + tW2(µ1, ρ)2.129

This interpolation, often called Wasserstein barycenter in the literature, can be easily130

extended to more than two probability distributions, as recalled in the next paragraphs.131

2.3. Multi-marginal formulation and barycenters. For J ≥ 2, for a set of weights λ =132

(λ0, . . . , λJ−1) ∈ (R+)J such that λ1J = λ0 + . . . + λJ−1 = 1 and for x = (x0, . . . , xJ−1) ∈133

(Rd)J , we write134

(2.4) B(x) =
J−1∑
i=0

λixi = argminy∈Rd

J−1∑
i=0

λi‖xi − y‖2135

the barycenter of the xi with weights λi.136

For J probability distributions µ0, µ1 . . . , µJ−1 on Rd, we say that ν∗ is the barycenter of137

the µj with weights λj if ν∗ is solution of138

(2.5) inf
ν∈P2(Rd)

J−1∑
j=0

λjW
2
2 (µj , ν).139

2A sequence (µk)k converges weakly to µ in Pp(Rd) if it converges to µ in the sense of distributions and if∫
‖y‖pdµk(y) converges to

∫
‖y‖pdµ(y).
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Existence and unicity of barycenters for W2 has been studied in depth by Agueh and140

Carlier in [1]. They show in particular that if one of the µj has a density, this barycenter141

is unique. They also show that the solutions of the barycenter problem are related to the142

solutions of the multi-marginal transport problem (studied by Gangbo and Świéch in [17])143

MW2(µ0, . . . , µJ−1) = inf
γ∈Π(µ0,µ1,...,µJ−1)

∫
Rd×···×Rd

1

2

J−1∑
i,j=0

λiλj‖yi − yj‖2dγ(y0, y1, . . . , yJ−1),(2.6)144

where Π(µ0, µ1, . . . , µJ−1) is the set of probability measures on (Rd)J having µ0, µ1, . . . , µJ−1145

as marginals. More precisely, they show that if (2.6) has a solution γ∗, then ν∗ = B#γ∗ is a146

solution of (2.5), and the infimum of (2.6) and (2.5) are equal.147

2.4. Optimal transport between Gaussian distributions. Computing optimal transport148

plans between probability distributions is usually difficult. In some specific cases, an explicit149

solution is known. For instance, in the one dimensional (d = 1) case, when the cost c is a150

convex function of the Euclidean distance on the line, the optimal plan consists in a mono-151

tone rearrangement of the distribution µ0 into the distribution µ1 (the mass is transported152

monotonically from left to right, see for instance Ch.2, Section 2.2 of [30] for all the details).153

Another case where the solution is known for a quadratic cost is the Gaussian case in any154

dimension d ≥ 1.155

2.4.1. Distance W2 between Gaussian distributions. If µi = N (mi,Σi), i ∈ {0, 1} are156

two Gaussian distributions on Rd, the 2-Wasserstein distance W2 between µ0 and µ1 has a157

closed-form expression, which can be written158

(2.7) W 2
2 (µ0, µ1) = ‖m0 −m1‖2 + tr

(
Σ0 + Σ1 − 2

(
Σ

1
2
0 Σ1Σ

1
2
0

) 1
2

)
,159

where, for every symmetric semi-definite positive matrix M , the matrix M
1
2 is its unique160

semi-definite positive square root.161

If Σ0 is non-singular, then the optimal map T between µ0 and µ1 turns out to be affine162

and is given by163

(2.8) ∀x ∈ Rd, T (x) = m1 +Σ
− 1

2
0

(
Σ

1
2
0 Σ1Σ

1
2
0

) 1
2

Σ
− 1

2
0 (x−m0) = m1 +Σ−1

0 (Σ0Σ1)
1
2 (x−m0),164

and the optimal plan γ is then a Gaussian distribution on Rd × Rd = R2d that is degenerate165

since it is supported by the affine line y = T (x). These results have been known since [14].166

Moreover, if Σ0 and Σ1 are non-degenerate, the geodesic path (µt), t ∈ (0, 1), between µ0167

and µ1 is given by µt = N (mt,Σt) with mt = (1− t)m0 + tm1 and168

Σt = ((1− t)Id + tC)Σ0((1− t)Id + tC),169

with Id the d× d identity matrix and C = Σ
1
2
1

(
Σ

1
2
1 Σ0Σ

1
2
1

)− 1
2

Σ
1
2
1 .170

This property still holds if the covariance matrices are not invertible, by replacing the171

inverse by the Moore-Penrose pseudo-inverse matrix, see Proposition 6.1 in [33]. The optimal172

map T is not generalized in this case since the optimal plan is usually not supported by the173

graph of a function.174
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2.4.2. W2-Barycenters in the Gaussian case. For J ≥ 2, let λ = (λ0, . . . , λJ−1) ∈ (R+)J175

be a set of positive weights summing to 1 and let µ0, µ1 . . . , µJ−1 be J Gaussian probability176

distributions on Rd. For j = 0 . . . J − 1, we denote by mj and Σj the expectation and the177

covariance matrix of µj . Theorem 2.2 in [26] tells us that if the covariances Σj are all positive178

definite, then the solution of the multi-marginal problem (2.6) for the Gaussian distributions179

µ0, µ1 . . . , µJ−1 can be written180

(2.9) γ∗(x0, . . . , xJ−1) = gm0,Σ0(x0) δ(x1,...,xJ−1)=(S1S
−1
0 x0,...,SJ−1S

−1
0 x0)181

where Sj = Σ
1/2
j

(
Σ

1/2
j Σ∗Σ

1/2
j

)−1/2
Σ

1/2
j with Σ∗ a solution of the fixed-point problem182

(2.10)

J−1∑
j=0

λj

(
Σ

1/2
∗ ΣjΣ

1/2
∗

)1/2
= Σ∗.183

The barycenter ν∗ of all the µj with weights λj is the distribution N (m∗,Σ∗), with m∗ =184 ∑J−1
j=0 λjmj . Equation (2.10) provides a natural iterative algorithm (see [2]) to compute the185

fixed point Σ∗ from the set of covariances Σj , j ∈ {0, . . . , J − 1}.186

3. Some properties of Gaussian Mixtures Models. The goal of this paper is to investigate187

how the optimisation problem (2.1) is transformed when the probability distributions µ0, µ1188

are finite Gaussian mixture models and the transport plan γ is forced to be a Gaussian mixture189

model. This will be the aim of Section 4. Before, we first need to recall a few basic properties190

on these mixture models, and especially a density property and an identifiability property.191

In the following, for N ≥ 1 integer, we define the simplex

ΓN = {π ∈ RN+ ; π1N =
N∑
k=1

πk = 1}.

Definition 1. Let K ≥ 1 be an integer. A (finite) Gaussian mixture model of size K on Rd192

is a probability distribution µ on Rd that can be written193

(3.1) µ =

K∑
k=1

πkµk where µk = N (mk,Σk) and π ∈ ΓK .194

We write GMMd(K) the subset of P(Rd) made of probability measures on Rd which can
be written as Gaussian mixtures with less than K components (such mixtures are obviously
also in Pp(Rd) for any p ≥ 1). For K < K ′, GMMd(K) ⊂ GMMd(K

′). The set of all finite
Gaussian mixture distributions is written

GMMd(∞) = ∪K≥0GMMd(K).

3.1. Two properties of GMM. The following lemma states that any measure in Pp(Rd)195

can be approximated with any precision for the distance Wp by a finite convex combination196

of Dirac masses. This classical result will be useful in the rest of the paper.197
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Lemma 3.1. The set198 {
N∑
k=1

πkδyk ; N ∈ N, (yk)k ∈ (Rd)N , (πk)k ∈ ΓN

}
199

is dense in Pp(Rd) for the metric Wp, for any p ≥ 1.200

For the sake of completeness, we provide a proof in Appendix, adapted from the proof of201

Theorem 6.18 in [31]. Since Dirac masses can be seen as degenerate Gaussian distributions, a202

direct consequence of Lemma 3.1 is the following proposition.203

Proposition 1. GMMd(∞) is dense in Pp(Rd) for the metric Wp.204

Another important property will be necessary, related to the identifiability of Gaussian205

mixture models. It is clear such models are not stricto sensu identifiable, since reordering206

the indexes of a mixture changes its parametrization without changing the underlying proba-207

bility distribution, or also because a component with mass 1 can be divided in two identical208

components with masses 1
2 , for example. However, if we write mixtures in a “compact” way209

(forbidding two components of the same mixture to be identical), identifiability holds, up to210

a reordering of the indexes. This property is reminded below.211

Proposition 2. The set of finite Gaussian mixtures is identifiable, in the sense that two212

mixtures µ0 =
∑K0

k=1 π
k
0µ

k
0 and µ1 =

∑K1
k=1 π

k
1µ

k
1, written such that all {µk0}k (resp. all {µj1}j)213

are pairwise distinct, are equal if and only if K0 = K1 and we can reorder the indexes such214

that for all k, πk0 = πk1 , mk
0 = mk

1 and Σk
0 = Σk

1.215

This result is also classical and the proof is provided in Appendix.216

3.2. Optimal transport and Wasserstein barycenters between Gaussian Mixture Mod-217

els. We are now in a position to investigate optimal transport between Gaussian mixture218

models (GMM). A first important remark is that given two Gaussian mixtures µ0 and µ1 on219

Rd, optimal transport plans γ between µ0 and µ1 are usually not GMM.220

Proposition 3. Let µ0 ∈ GMMd(K0) and µ1 ∈ GMMd(K1) be two Gaussian mixtures such221

that µ1 cannot be written T#µ0 with T affine. Assume also that µ0 is absolutely continuous222

with respect to the Lebesgue measure. Let γ ∈ Π(µ0, µ1) be an optimal transport plan between223

µ0 and µ1. Then γ does not belongs to GMM2d(∞).224

Proof. Since µ0 is absolutely continuous with respect to the Lebesgue measure, we know225

that the optimal transport plan is unique and is of the form γ = (Id, T )#µ0 for a measurable226

map T : Rd → Rd that satisfies T#µ0 = µ1. Thus, if γ belongs to GMM2d(∞), all of its227

components must be degenerate Gaussian distributions N (mk,Σk) such that228

∪k (mk + Span(Σk)) = graph(T ).229

It follows that T must be affine on Rd, which contradicts the hypotheses of the proposition.230

When µ0 is not absolutely continuous with respect to the Lebesgue measure (which means231

that one of its components is degenerate), we cannot write γ under the form (2.2), but we232

conjecture that the previous result usually still holds. A notable exception is the case where233
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8 J. DELON AND A. DESOLNEUX

all Gaussian components of µ0 and µ1 are Dirac masses on Rd, in which case γ is also a GMM234

composed of Dirac masses on R2d.235

We conjecture that since optimal plans γ between two GMM are usually not GMM, the
barycenters (Pt)#γ between µ0 and µ1 are also usually not GMM either (with the exception
of t = 0, 1). Take the one dimensional example of µ0 = N (0, 1) and µ1 = 1

2(δ−1 + δ1). Clearly,
an optimal transport map between µ0 and µ1 is defined as T (x) = sign(x). For t ∈ (0, 1), if
we denote by µt the barycenter between µ0 with weight 1− t and µ1 with weight t, then it is
easy to show that µt has a density

ft(x) =
1

1− t

(
g

(
x+ t

1− t

)
1x<−t + g

(
x− t
1− t

)
1x>t

)
,

where g is the density of N (0, 1). The density ft is equal to 0 on the interval (−t, t) and236

therefore cannot be the density of a GMM.237

4. MW2: a distance between Gaussian Mixture Models. In this section, we define238

a Wasserstein-type distance between Gaussian mixtures ensuring that barycenters between239

Gaussian mixtures remain Gaussian mixtures. To this aim, we restrict the set of admissible240

transport plans to Gaussian mixtures and show that the problem is well defined. Thanks to241

the identifiability results proved in the previous section, we will show that the corresponding242

optimization problem boils down to a very simple discrete formulation.243

4.1. Definition of MW2.244

Definition 2. Let µ0 and µ1 be two Gaussian mixtures. We define245

(4.1) MW 2
2 (µ0, µ1) := inf

γ∈Π(µ0,µ1)∩GMM2d(∞)

∫
Rd×Rd

‖y0 − y1‖2dγ(y0, y1).246

First, observe that the problem is well defined since Π(µ0, µ1)∩GMM2d(∞) contains at least
the product measure µ0 ⊗ µ1. Notice also that from the definition we directly have that

MW2(µ0, µ1) ≥W2(µ0, µ1).

4.2. An equivalent discrete formulation. Now, we can show that this optimisation prob-247

lem has a very simple discrete formulation. For π0 ∈ ΓK0 and π1 ∈ ΓK1 , we denote by248

Π(π0, π1) the subset of the simplex ΓK0×K1 with marginals π0 and π1, i.e.249

Π(π0, π1) = {w ∈MK0,K1(R+); w1K1 = π0; wt1K0 = π1}(4.2)250

= {w ∈MK0,K1(R+); ∀k,
∑
j

wkj = πk0 and ∀j,
∑
k

wkj = πj1 }.(4.3)251

252

Proposition 4. Let µ0 =
∑K0

k=1 π
k
0µ

k
0 and µ1 =

∑K1
k=1 π

k
1µ

k
1 be two Gaussian mixtures, then253

(4.4) MW 2
2 (µ0, µ1) = min

w∈Π(π0,π1)

∑
k,l

wklW
2
2 (µk0, µ

l
1).254
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Moreover, if w∗ is a minimizer of (4.4), and if Tk,l is the W2-optimal map between µk0 and
µl1, then γ∗ defined as

γ∗(x, y) =
∑
k,l

w∗k,l gmk0 ,Σk0
(x) δy=Tk,l(x)

is a minimizer of (4.1).255

Proof. First, let w∗ be a solution of the discrete linear program256

(4.5) inf
w∈Π(π0,π1)

∑
k,l

wklW
2
2 (µk0, µ

l
1).257

For each pair (k, l), let258

γkl = argminγ∈Π(µk0 ,µ
l
1)

∫
Rd×Rd

‖y0 − y1‖2dγ(y0, y1)259

and260

γ∗ =
∑
k,l

w∗klγkl.261

Clearly, γ∗ ∈ Π(µ0, µ1) ∩GMM2d(K0K1). It follows that262 ∑
k,l

w∗klW
2
2 (µk0, µ

l
1) =

∫
Rd×Rd

‖y0 − y1‖2dγ∗(y0, y1)263

≥ min
γ∈Π(µ0,µ1)∩GMM2d(K0K1)

∫
Rd×Rd

‖y0 − y1‖2dγ(y0, y1)264

≥ min
γ∈Π(µ0,µ1)∩GMM2d(∞)

∫
Rd×Rd

‖y0 − y1‖2dγ(y0, y1),265

because GMM2d(K0K1) ⊂ GMM2d(∞).266

Now, let γ be any element of Π(µ0, µ1) ∩ GMM2d(∞). Since γ belongs to GMM2d(∞),267

there exists an integer K such that γ =
∑K

j=1wjγj . Since P0#γ = µ0, it follows that268

K∑
j=1

wjP0#γj =

K0∑
k=1

πk0µ
k
0.269

Thanks to the identifiability property shown in the previous section, we know that these270

two Gaussian mixtures must have the same components, so for each j in {1, . . .K}, there271

is 1 ≤ k ≤ K0 such that P0#γj = µk0. In the same way, there is 1 ≤ l ≤ K1 such that272

P1#γj = µl1. It follows that γj belongs to Π(µk0, µ
l
1). We conclude that the mixture γ can273

be written as a mixture of Gaussian components γkl ∈ Π(µk0, µ
l
1), i.e γ =

∑K0
k=1

∑K1
l=1wklγkl.274

Since P0#γ = µ0 and P1#γ = µ1, we know that w ∈ Π(π0, π1). As a consequence,275 ∫
Rd×Rd

‖y0 − y1‖2dγ(y0, y1) ≥
K0∑
k=1

K1∑
l=1

wklW
2
2 (µk0, µ

l
1) ≥

K0∑
k=1

K1∑
l=1

w∗klW
2
2 (µk0, µ

l
1).276

This inequality holds for any γ in Π(µ0, µ1) ∩GMM2d(∞), which concludes the proof.277
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It happens that the discrete form (4.4), which can be seen as an aggregation of simple278

Wasserstein distances between Gaussians, has been recently proposed as an ingenious alterna-279

tive to W2 in the machine learning literature, both in [8, 9] and [6, 7]. Observe that the point280

of view followed here in our paper is quite different from these works, since MW2 is defined281

in a completely continuous setting as an optimal transport between GMMs with a restriction282

on couplings, following the same kind of approach as in [3]. The fact that this restriction283

leads to an explicit discrete formula, the same as the one proposed independently in [8, 9] and284

[6, 7], is quite striking. Observe also that thanks to the “identifiability property” of GMMs,285

this continuous formulation (4.1) is obviously non ambiguous, in the sense that the value of286

the minimium is the same whatever the parametrization of the Gaussian mixtures µ0 and µ1.287

This was not obvious from the discrete versions. We will see in the following sections how this288

continuous formulation can be extended to multi-marginal and barycenter formulations, and289

how it can be generalized or used in the case of more general distributions.290

Notice that we do not use in the definition and in the proof the fact that the ground cost291

is quadratic. Definition 2 can thus be generalized to other cost functions c : R2d 7→ R. The292

reason why we focus on the quadratic cost is that optimal transport plans between Gaussian293

measures for W2 can be computed explicitely. It follows from the equivalence between the294

continuous and discrete forms of MW2 that the solution of (4.1) is very easy to compute in295

practice. Another consequence of this equivalence is that there exists at least one optimal296

plan γ∗ for (4.1) containing less than K0 +K1 − 1 Gaussian components.297

Corollary 1. Let µ0 =
∑K0

k=1 π
k
0µ

k
0 and µ1 =

∑K1
k=1 π

k
1µ

k
1 be two Gaussian mixtures on Rd,298

then the infimum in (4.1) is attained for a given γ∗ ∈ Π(µ0, µ1) ∩GMM2d(K0 +K1 − 1).299

Proof. This follows directly from the proof that there exists at least one optimal w∗300

for (4.1) containing less than K0 +K1 − 1 Gaussian components (see [23]).301

4.3. An example in one dimension. In order to illustrate the behavior of the optimal302

maps for MW2, we focus here on a very simple example in one dimension, where µ0 and µ1303

are the following mixtures of two Gaussian components304

µ0 = 0.3N (0.2, 0.032) + 0.7N (0.4, 0.042),305
306

µ1 = 0.6N (0.6, 0.062) + 0.4N (0.8, 0.072).307

Figure 1 shows the optimal transport plans between µ0 (in blue) and µ1 (in red), both for the308

Wasserstein distance W2 and for MW2. As we can observe, the optimal transport plan for309

MW2 (a probability measure on R×R) is a mixture of three degenerate Gaussians measures310

supported by 1D lines.311

4.4. Metric properties of MW2 and displacement interpolation.312

4.4.1. Metric properties of MW2.313

Proposition 5. MW2 defines a metric on GMMd(∞) and the space GMMd(∞) equipped314

with the distance MW2 is a geodesic space.315

This proposition can be proved very easily by making use of the discrete formulation (4.4) of316

the distance (see for instance [7]). For the sake of completeness, we provide in the following317

a proof of the proposition using only the continuous formulation of MW2.318
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Figure 1: Transport plans between two mixtures of Gaussians µ0 (in blue) and µ1 (in red).
Left, optimal transport plan for W2. Right, optimal transport plan for MW2. (The values
on the x-axes have been mutiplied by 100). These examples have been computed using the
Python Optimal Transport (POT) library [15].

Proof. First, observe that MW2 is obviously symmetric and positive. It is also clear that319

for any Gaussian mixture µ, MW2(µ, µ) = 0. Conversely, assume that MW2(µ0, µ1) = 0, it320

implies that W2(µ0, µ1) = 0 and thus µ0 = µ1 since W2 is a distance.321

It remains to show that MW2 satisfies the triangle inequality. This is a classical conse-322

quence of the gluing lemma, but we must be careful to check that the constructed measure323

remains a Gaussian mixture. Let µ0, µ1, µ2 be three Gaussian mixtures on Rd. Let γ01 and324

γ12 be optimal plans respectively for (µ0, µ1) and (µ1, µ2) for the problem MW2 (which means325

that γ01 and γ12 are both GMM on R2d). The classical gluing lemma consists in disintegrating326

γ01 and γ12 into327

dγ01(y0, y1) = dγ01(y0|y1)dµ1(y1) and dγ12(y1, y2) = dγ12(y2|y1)dµ1(y1),328

and to define329

dγ012(y0, y1, y2) = dγ01(y0|y1)dµ1(y1)dγ12(y2|y1),330

which boils down to assume independence conditionnally to the value of y1. Since γ01 and γ12331

are Gaussian mixtures on R2d, the conditional distributions dγ01(y0|y1) and dγ12(y2|y1) are332

also Gaussian mixtures for all y1 in the support of µ1 (recalling that µ1 is the marginal on y1333

of both γ01 and γ12). If we define a distribution γ02 by integrating γ012 over the variable y1,334

i.e.335

dγ02(y0, y2) =

∫
y1∈Rd

dγ012(y0, y1, y2) =

∫
y1∈Supp(µ1)

dγ01(y0|y1)dµ1(y1)dγ12(y2|y1)336

then γ02 is obviously also a Gaussian mixture on R2d with marginals µ0 and µ2. The rest of337
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12 J. DELON AND A. DESOLNEUX

the proof is classical. Indeed, we can write338

MW 2
2 (µ0, µ2) ≤

∫
Rd×Rd

‖y0 − y2‖2dγ02(y0, y2) =

∫
Rd×Rd×Rd

‖y0 − y2‖2dγ012(y0, y1, y2).339
340

Writing ‖y0 − y2‖2 = ‖y0 − y1‖2 + ‖y1 − y2‖2 + 2〈y0 − y1, y1 − y2〉 (with 〈 , 〉 the Euclidean341

scalar product on Rd), and using the Cauchy-Schwarz inequality, it follows that342

MW 2
2 (µ0, µ2) ≤

(√∫
R2d

‖y0 − y1‖2dγ01(y0, y1) +

√∫
R2d

‖y1 − y2‖2dγ12(y1, y2)

)2

.343

344

The triangle inequality follows by taking for γ01 (resp. γ12) the optimal plan for MW2 between345

µ0 and µ1 (resp. µ1 and µ2).346

Now, let us show that GMMd(∞) equipped with the distance MW2 is a geodesic space.
For a path ρ = (ρt)t∈[0,1] in GMMd(∞) (meaning that each ρt is a GMM on Rd), we can
define its length for MW2 by

LenMW2(ρ) = SupN ;0=t0≤t1...≤tN=1

N∑
i=1

MW2(ρti−1 , ρti) ∈ [0,+∞].

Let µ0 =
∑

k π
k
0µ

k
0 and µ1 =

∑
l π

l
1µ

l
1 be two GMM. Since MW2 satifies the triangle inequality,347

we always have that LenMW2(ρ) ≥ MW2(µ0, µ1) for all paths ρ such that ρ0 = µ0 and348

ρ1 = µ1. To prove that (GMMd(∞),MW2) is a geodesic space we just have to exhibit a path349

ρ connecting µ0 to µ1 and such that its length is equal to MW2(µ0, µ1).350

We write γ∗ the optimal transport plan between µ0 and µ1. For t ∈ (0, 1) we can define

µt = (Pt)#γ
∗.

Let t < s ∈ [0, 1] and define γ∗t,s = (Pt,Ps)#γ
∗. Then γ∗t,s ∈ Π(µt, µs) ∩ GMM2d(∞) and351

therefore352

MW2(µt, µs)
2 = min

γ̃∈Π(µt,µs)∩GMM2d(∞)

∫∫
‖y0 − y1‖2 dγ̃(y0, y1)353

≤
∫∫
‖y0 − y1‖2 dγ∗t,s(y0, y1) =

∫∫
‖Pt(y0, y1)− Ps(y0, y1)‖2 dγ∗(y0, y1)354

=

∫∫
‖(1− t)y0 + ty1 − (1− s)y0 − sy1‖2 dγ∗(y0, y1)355

= (s− t)2MW2(µ0, µ1)2.356357

Thus we have that MW2(µt, µs) ≤ (s− t)MW2(µ0, µ1) Now, by the triangle inequality,358

MW2(µ0, µ1) ≤MW2(µ0, µt) +MW2(µt, µs) +MW2(µs, µ1)359

≤ (t+ s− t+ 1− s)MW2(µ0, µ1).360361

Therefore all inequalities are equalities, and MW2(µt, µs) = (s − t)MW2(µ0, µ1) for all362

0 ≤ t ≤ s ≤ 1. This implies that the MW2 length of the path (µt)t is equal to MW2(µ0, µ1).363

It allows us to conclude that (GMMd(∞),MW2) is a geodesic space, and we have also given364

the explicit expression of the geodesic.365
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The following Corollary is a direct consequence of the previous results.366

Corollary 2. The barycenters between µ0 =
∑

k π
k
0µ

k
0 and µ1 =

∑
l π

l
1µ

l
1 all belong to

GMMd(∞) and can be written explicitely as

∀t ∈ [0, 1], µt = Pt#γ
∗ =

∑
k,l

w∗k,lµ
k,l
t ,

where w∗ is an optimal solution of (4.4), and µk,lt is the displacement interpolation between
µk0 and µl1. When Σk

0 is non-singular, it is given by

µk,lt = ((1− t)Id + tTk,l)#µ
k
0,

with Tk,l the affine transport map between µk0 and µl1 given by Equation (2.8). These barycen-367

ters have less than K0 +K1 − 1 components.368

4.4.2. 1D and 2D barycenter examples.369

t = 0.0 t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1.0

W
2

M
W

2

Figure 2: Barycenters µt between two Gaussian mixtures µ0 (green curve) and µ1 (red curve).
Top: barycenters for the metric W2. Bottom: barycenters for the metric MW2. The barycen-
ters are computed for t = 0.2, 0.4, 0.6, 0.8.

One dimensional case. Figure 2 shows barycenters µt for t = 0.2, 0.4, 0.6, 0.8 between the370

µ0 and µ1 defined in Section 4.3, for both the metric W2 and MW2. Observe that the371

barycenters computed for MW2 are a bit more regular (we know that they are mixtures of at372

most 3 Gaussian components) than those obtained for W2.373

Two dimensional case. Figure 3 shows barycenters µt between the following two dimen-374

sional mixtures375

µ0 = 0.3N
((

0.3
0.6

)
, 0.01I2

)
+ 0.7N

((
0.7
0.7

)
, 0.01I2

)
,376

377

µ1 = 0.4N
((

0.5
0.6

)
, 0.01I2

)
+ 0.6N

((
0.4
0.25

)
, 0.01I2

)
,378

where I2 is the 2×2 identity matrix. Notice that the MW2 geodesic looks much more regular,379

each barycenter is a mixture of less than three Gaussians.380
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t = 0.0 t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1.0

W
2

M
W

2

Figure 3: Barycenters µt between two Gaussian mixtures µ0 (first column) and µ1 (last
column). Top: barycenters for the metric W2. Bottom: barycenters for the metric MW2.
The barycenters are computed for t = 0.2, 0.4, 0.6, 0.8.

4.5. Comparison between MW2 and W2.381

Proposition 6. Let µ0 ∈ GMMd(K0) and µ1 ∈ GMMd(K1) be two Gaussian mixtures,382

written as in (3.1). Then,383

W2(µ0, µ1) ≤MW2(µ0, µ1) ≤W2(µ0, µ1) +
∑
i=0,1

(
2

Ki∑
k=1

πki trace(Σk
i )

) 1
2

.384

The left-hand side inequality is attained when for instance385

• µ0 and µ1 are both composed of only one Gaussian component,386

• µ0 and µ1 are finite linear combinations of Dirac masses,387

• µ1 is obtained from µ0 by an affine transformation.388

As we already noticed it, the first inequality is obvious and follows from the definition of389

MW2. It might not be completely intuitive that MW2 can indeed be strictly larger than W2390

because of the density property of GMMd(∞) in P2(Rd). This follows from the fact that our391

optimization problem has constraints γ ∈ Π(µ0, µ1). Even if any measure γ in Π(µ0, µ1) can392

be approximated by a sequence of Gaussian mixtures, this sequence of Gaussian mixtures will393

generally not belong to Π(µ0, µ1), hence explaining the difference between MW2 and W2.394

In order to show that MW2 is always smaller than the sum of W2 plus a term depending395

on the trace of the covariance matrices of the two Gaussian mixtures, we start with a lemma396

which makes more explicit the distance MW2 between a Gaussian mixture and a mixture of397

Dirac distributions.398

Lemma 4.1. Let µ0 =
∑K0

k=1 π
k
0µ

k
0 with µk0 = N (mk

0,Σ
k
0) and µ1 =

∑K1
k=1 π

k
1δmk1

. Let399

µ̃0 =
∑K0

k=1 π
k
0δmk0

(µ̃0 only retains the means of µ0). Then,400

MW 2
2 (µ0, µ1) = W 2

2 (µ̃0, µ1) +

K0∑
k=1

πk0 trace(Σk
0).401
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Proof.

MW 2
2 (µ0, µ1) = inf

w∈Π(π0,π1)

∑
k,l

wklW
2
2 (µk0, δml1

) = inf
w∈Π(π0,π1)

∑
k,l

wkl

(
‖ml

1 −mk
0‖2 + trace(Σk

0)
)

402

= inf
w∈Π(π0,π1)

∑
k,l

wkl‖ml
1 −mk

0‖2 +
∑
k

πk0 trace(Σk
0) = W 2

2 (µ̃0, µ1) +

K0∑
k=1

πk0 trace(Σk
0).403

In other words, the squared distance MW 2
2 between µ0 and µ1 is the sum of the squared404

Wasserstein distance between µ̃0 and µ1 and a linear combination of the traces of the covari-405

ance matrices of the components of µ0. We are now in a position to show the other inequality406

between MW2 and W2.407

Proof of Proposition 6. Let (µn0 )n and (µn1 )n be two sequences of mixtures of Dirac masses408

respectively converging to µ0 and µ1 in P2(Rd). Since MW2 is a distance,409

MW2(µ0, µ1) ≤MW2(µn0 , µ
n
1 ) +MW2(µ0, µ

n
0 ) +MW2(µ1, µ

n
1 )410

= W2(µn0 , µ
n
1 ) +MW2(µ0, µ

n
0 ) +MW2(µ1, µ

n
1 ).411

We study in the following the limits of these three terms when n→ +∞.412

First, observe that MW2(µn0 , µ
n
1 ) = W2(µn0 , µ

n
1 ) −→n→∞ W2(µ0, µ1) since W2 is continuous413

on P2(Rd).414

Second, using Lemma 4.1, for i = 0, 1,

MW 2
2 (µi, µ

n
i ) = W 2

2 (µ̃i, µ
n
i ) +

Ki∑
k=1

πki trace(Σk
i ) −→n→∞ W 2

2 (µ̃i, µi) +

Ki∑
k=1

πki trace(Σk
i ).

Define the measure dγ(x, y) =
∑Ki

k=1 π
k
i δmki

(y)gmki ,Σki
(x)dx, with gmki ,Σki

the probability415

density function of the Gaussian distribution N (mk
i ,Σ

k
i ). The probability measure γ belongs416

to Π(µi, µ̃i), so417

W 2
2 (µi, µ̃i) ≤

∫
‖x− y‖2dγ(x, y) =

Ki∑
k=1

πki

∫
Rd
‖x−mk

i ‖2gmki ,Σki (x)dx418

=

Ki∑
k=1

πki trace(Σk
i ).419

We conclude that420

MW2(µ0, µ1) ≤ lim inf
n→∞

(W2(µn0 , µ
n
1 ) +MW2(µ0, µ

n
0 ) +MW2(µ1, µ

n
1 ))421

≤W2(µ0, µ1) +

(
W 2

2 (µ̃0, µ0) +

K0∑
k=1

πk0 trace(Σk
0)

) 1
2

+

(
W 2

2 (µ̃1, µ1) +

K1∑
k=1

πk1 trace(Σk
1)

) 1
2

422

≤W2(µ0, µ1) +

(
2

K0∑
k=1

πk0 trace(Σk
0)

) 1
2

+

(
2

K1∑
k=1

πk1 trace(Σk
1)

) 1
2

.423

This ends the proof of the proposition.424
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Observe that if µ is a Gaussian distribution N (m,Σ) and µn a distribution supported by
a finite number of points which converges to µ in P2(Rd), then

W 2
2 (µ, µn) −→n→∞ 0

and425

MW2(µ, µn) =
(
W 2

2 (µ̃, µn) + trace(Σ)
) 1

2 −→n→∞ (2trace(Σ))
1
2 6= 0.426

Let us also remark that if µ0 and µ1 are Gaussian mixtures such that maxk,i trace(Σk
i ) ≤ ε,427

then428

MW2(µ0, µ1) ≤W2(µ0, µ1) + 2
√

2ε.429

4.6. Generalization to other mixture models. A natural question is to know if the430

methodology we have developped here, and that restricts the set of possible coupling mea-431

sures to Gaussian mixtures, can be extended to other families of mixtures. Indeed, in the432

image processing litterature, as well as in many other fields, mixture models beyond Gauss-433

ian ones are widely used, such as Generalized Gaussian Mixture Models [11] or mixtures of434

T-distributions [29], for instance. Now, to extend our methodology to other mixtures, we435

need two main properties: (a) the identifiability property (that will ensure that there is a436

canonical way to write a distribution as a mixture); and (b) a marginal consistency property437

(we need all the marginal of an element of the family to remain in the same family). These438

two properties permit in particular to generalize the proof of Proposition 4. In order to make439

the discrete formulation convenient for numerical computations, we also need that the W2440

distance between any two elements of the family must be easy to compute.441

Starting from this last requirement, we can consider a family of elliptical distributions,
where the elements are of the form

∀x ∈ Rd, fm,Σ(x) = Ch,d,Σ h((x−m)tΣ−1(x−m)),

where m ∈ Rd, Σ is a positive definite symmetric matrix and h is a given function from [0,+∞)442

to [0,+∞). Gaussian distributions are an example, with h(t) = exp(−t/2). Generalized443

Gaussian distributions are obtained with h(t) = exp(−tβ), with β not necessarily equal to444

1. T-distributions are also in this family, with h(t) = (1 + t/ν)−(ν+d)/2, etc. Thanks to445

their elliptical contoured property, the W2 distance between two elements in such a family446

(i.e. h fixed) can be explicitely computed (see Gelbrich [18]), and yields a formula that is the447

same as the one in the Gaussian case (Equation (2.7)). In such a family, the identifiability448

property can be checked, using the asymptotic behavior in all directions of Rd. Now, if we449

want the marginal consistency property to be also satisfied (which is necessary if we want the450

coupling restriction problem to be well-defined), the choice of h is very limited. Indeed, Kano451

in [21], proved that the only elliptical distributions with the marginal consistency property452

are the ones which are a scale mixture of normal distributions with a mixing variable that453

is unrelated to the dimension d. So, generalized Gaussian distributions don’t satisfy this454

marginal consistency property, but T-distributions do.455

5. Multi-marginal formulation and barycenters.456
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5.1. Multi-marginal formulation for MW2. Let µ0, µ1 . . . , µJ−1 be J Gaussian mixtures457

on Rd, and let λ0, . . . λJ−1 be J positive weights summing to 1. The multi-marginal version458

of our optimal transport problem restricted to Gaussian mixture models can be written459

(5.1)

MMW2(µ0, . . . , µJ−1) := inf
γ∈Π(µ0,...,µJ−1)∩GMMJd(∞)

∫
RdJ

c(x0, . . . , xJ−1)dγ(x0, . . . , xJ−1),460

where461

(5.2) c(x0, . . . , xJ−1) =
J−1∑
i=0

λi‖xi −B(x)‖2 =
1

2

J−1∑
i,j=0

λiλj‖xi − xj‖2462

and where Π(µ0, µ1, . . . , µJ−1) is the set of probability measures on (Rd)J having µ0, µ1, . . . ,463

µJ−1 as marginals.464

Writing for every j, µj =
∑Kj

k=1 π
k
j µ

k
j , and using exactly the same arguments as in Propo-465

sition 4, we can easily show the following result.466

Proposition 7. The optimisation problem (5.1) can be rewritten under the discrete form467

(5.3) MMW2(µ0, . . . , µJ−1) = min
w∈Π(π0,...,πJ−1)

K0,...,KJ−1∑
k0,...,kJ−1=1

wk0...kJ−1
MW 2

2 (µk00 , . . . , µ
kJ−1

J−1 ),468

where Π(π0, π1, . . . , πJ−1) is the subset of tensors w in MK0,K1,...,KJ−1
(R+) having π0, π1,469

. . . , πJ−1 as discrete marginals, i.e. such that470

(5.4) ∀j ∈ {0, . . . , J − 1}, ∀k ∈ {1, . . . ,Kj},
∑

1≤k0≤K0
...

1≤kj−1≤Kj−1

kj=k
1≤kj+1≤Kj+1

...
1≤kJ−1≤KJ−1

wk0k1...kJ−1
= πkj .471

Moreover, the solution γ∗ of (5.1) can be written472

(5.5) γ∗ =
∑

1≤k0≤K0
...

1≤kJ−1≤KJ−1

w∗k0k1...kJ−1
γ∗k0k1...kJ−1

,473

where w∗ is solution of (5.3) and γ∗k0k1...kJ−1
is the optimal multi-marginal plan between the474

Gaussian measures µk00 , . . . , µ
kJ−1

J−1 (see Section 2.4.2).475

From Section 2.4.2, we know how to construct the optimal multi-marginal plans γ∗k0k1...kJ−1
,476

which means that computing a solution for (5.1) boils down to solve the linear program (5.3)477

in order to find w∗.478
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5.2. Link with the MW2-barycenters. We will now show the link between the previous479

multi-marginal problem and the barycenters for MW2.480

Proposition 8. The barycenter problem481

(5.6) inf
ν∈GMMd(∞)

J−1∑
j=0

λjMW 2
2 (µj , ν),482

has a solution given by ν∗ = B#γ∗, where γ∗ is an optimal plan for the multi-marginal483

problem (5.1).484

Proof. For any γ ∈ Π(µ0, . . . , µJ−1)∩GMMJd(∞), we define γj = (Pj , B)#γ, with B the485

barycenter application defined in (2.4) and Pj : (Rd)J 7→ Rd such that P (x0, . . . , xJ−1) = xj .486

Observe that γj belongs to Π(µj , ν) with ν = B#γ. The probability measure γj also belongs487

to GMM2d(∞) since (Pj , B) is a linear application. It follows that488

∫
(Rd)J

J−1∑
j=0

λj‖xj −B(x)‖2dγ(x0, . . . , xJ−1) =

J−1∑
j=0

λj

∫
(Rd)J

‖xj −B(x)‖2dγ(x0, . . . , xJ−1)489

=
J−1∑
j=0

λj

∫
Rd×Rd

‖xj − y‖2dγj(xj , y)490

≥
J−1∑
j=0

λjMW 2
2 (µj , ν).491

492

This inequality holds for any arbitrary γ ∈ Π(µ0, . . . , µJ−1) ∩GMMJd(∞), thus493

MMW2(µ0, . . . , µJ−1) ≥ inf
ν∈GMMd(∞)

J−1∑
j=0

λjMW 2
2 (µj , ν).494

Conversely, for any ν in GMMd(∞), we can write ν =
∑L

l=1 π
l
νν

l, the νl being Gaussian495

probability measures. We also write µj =
∑Kj

k=1 π
k
j µ

k
j , and we call wj the optimal discrete496

plan for MW2 between the mixtures µj and ν (see Equation (4.4)). Then,497

J−1∑
j=0

λjMW 2
2 (µj , ν) =

J−1∑
j=0

λj
∑
k,l

wjk,lW
2
2 (µkj , ν

l).498

499

Now, if we define a K0 × · · · ×KJ−1 × L tensor α and a K0 × · · · ×KJ−1 tensor α by500

αk0...kJ−1l =

∏J−1
j=0 w

j
kj ,l

(πlν)J−1
and αk0...kJ−1

=
L∑
l=1

αk0...kJ−1l,501
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clearly α ∈ Π(π0, . . . , πJ−1, πν) and α ∈ Π(π0, . . . , πJ−1). Moreover,502

J−1∑
j=0

λjMW 2
2 (µj , ν) =

J−1∑
j=0

λj

Kj∑
kj=1

L∑
l=1

wjkj ,lW
2
2 (µ

kj
j , ν

l)503

=
J−1∑
j=0

λj
∑

k1,...,kJ−1,l

αk0...kJ−1lW
2
2 (µ

kj
j , ν

l)504

=
∑

k1,...,kJ−1,l

αk0...kJ−1l

J−1∑
j=0

λjW
2
2 (µ

kj
j , ν

l)505

≥
∑

k1,...,kJ−1,l

αk0...kJ−1lMW 2
2 (µk00 , . . . , µ

kJ−1

J−1 ) (see Equation (5.6))506

=
∑

k1,...,kJ−1

αk0...kJ−1
MW 2

2 (µk00 , . . . , µ
kJ−1

J−1 ) ≥MMW 2
2 (µ0, . . . , µJ−1),507

508

the last inequality being a consequence of Proposition 7. Since this holds for any arbitrary ν509

in GMMd(∞), this ends the proof.510

The following corollary gives a more explicit formulation for the barycenters for MW2,511

and shows that the number of Gaussian components in the mixture is much smaller than512 ∏J−1
j=0 Kj .513

Corollary 3. Let µ0, . . . , µJ−1 be J Gaussian mixtures such that all the involved covariance514

matrices are positive definite, then the solution of (5.6) can be written515

(5.7) ν =
∑

k0,...,kJ−1

w∗k0...kJ−1
νk0...kJ−1

516

where νk0...kJ−1
is the Gaussian barycenter for W2 between the components µk00 , . . . , µ

kJ−1

J−1 , and517

w∗ is the optimal solution of (5.3). Moreover, this barycenter has less than K0 + · · ·+KJ−1−518

J + 1 non-zero coefficients.519

Proof. This follows directly from the proof of the previous propositions. The linear pro-520

gram (5.3) has K0 + · · · + KJ−1 − J + 1 affine constraints, and thus must have at least a521

solution with less than K0 + · · ·+KJ−1 − J + 1 components.522

To conclude this section, it is important to emphasize that the problem of barycenters for523

the distance MW2, as defined in (5.6), is completely different from524

(5.8) inf
ν∈GMMd(∞)

J−1∑
j=0

λjW
2
2 (µj , ν).525

Indeed, since GMMd(∞) is dense in P2(Rd) and the total cost on the right is continuous on526

P2(Rd), the infimum in (5.8) is exactly the same as the infimum over P2(Rd). Even if the527

barycenter for W2 is not a mixture itself, it can be approximated by a sequence of Gaussian528

mixtures with any desired precision. Of course, these mixtures might have a very high number529

of components in practice.530
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5.3. Some examples. The previous propositions give us a very simple way to compute531

barycenters between Gaussian mixtures for the metric MW2. For given mixtures µ0, . . . , µJ−1,532

we first compute all the values MW2(µk00 , . . . , µ
kJ−1

J−1 ) between their components (and these val-533

ues can be computed iteratively, see Section 2.4.2) and the corresponding Gaussian barycenters534

νk0...kJ−1
. Then we solve the linear program (5.3) to find w∗.535

Figure 4 shows the barycenters between the following simple two dimensional mixtures536

µ0 =
1

3
N
((

0.5
0.75

)
, 0.025

(
0.1 0
0 0.05

))
+

1

3
N
((

0.5
0.25

)
, 0.025

(
0.1 0
0 0.05

))
537

+
1

3
N
((

0.5
0.5

)
, 0.025

(
0.06 0
0.05 0.05

))
,538

µ1 =
1

4
N
((

0.25
0.25

)
, 0.01I2

)
+

1

4
N
((

0.75
0.75

)
, 0.01I2

)
+

1

4
N
((

0.7
0.25

)
, 0.01I2

)
539

+
1

4
N
((

0.25
0.75

)
, 0.01I2

)
,540

µ2 =
1

4
N
((

0.5
0.75

)
, 0.025

(
1 0
0 0.05

))
+

1

4
N
((

0.5
0.25

)
, 0.025

(
1 0
0 0.05

))
541

+
1

4
N
((

0.25
0.5

)
, 0.025

(
0.05 0

0 1

))
+

1

4
N
((

0.75
0.5

)
, 0.025

(
0.05 0

0 1

))
,542

µ3 =
1

3
N
((

0.8
0.7

)
, 0.01

(
2 0
1 1

))
+

1

3
N
((

0.2
0.7

)
, 0.01

(
2 0
−1 1

))
543

+
1

3
N
((

0.5
0.3

)
, 0.01

(
6 0
0 1

))
,544

545

where I2 is the 2×2 identity matrix. Each barycenter is a mixture of at most K0 +K1 +K2 +546

K3 − 4 + 1 = 11 components. By thresholding the mixtures densities, this yields barycenters547

between 2-D shapes.548

To go further, Figure 5 shows barycenters where more involved shapes have been approxi-549

mated by mixtures of 12 Gaussian components each. Observe that, even if some of the original550

shapes (the star, the cross) have symmetries, these symmetries are not necessarily respected551

by the estimated GMM, and thus not preserved in the barycenters. This could be easily solved552

by imposing some symmetry in the GMM estimation for these shapes.553

6. Using MW2 in practice.554

6.1. Extension to probability distributions that are not GMM. Most applications of555

optimal transport involve data that do not follow a Gaussian mixture model and we can556

wonder how to make use of the distance MW2 and the corresponding transport plans in this557

case. A simple solution is to approach these data by convenient Gaussian mixture models and558

to use the transport plan γ (or one of the maps defined in the previous section) to displace559

the data.560

Given two probability measures ν0 and ν1, we can define a pseudo-distance MWK,2(ν0, ν1)
as the distance MW2(µ0, µ1), where each µi (i = 0, 1) is the Gaussian mixture model with K
components which minimizes an appropriate “similarity measure” to νi. For instance, if νi is
a discrete measure νi = 1

Ji

∑Ji
j=1 δxij

in Rd , this similarity can be chosen as the opposite of

the log-likelihood of the discrete set of points {xj}j=1,...,Ji and the parameters of the Gaussian
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Figure 4: MW2-barycenters between 4 Gaussian mixtures µ0, µ1, µ2 and µ3. On the left,
some level sets of the distributions are displayed. On the right, densities thresholded at level
1 are displayed. We use bilinear weights with respect to the four corners of the square.

mixture can be infered thanks to the Expectation-Maximization algorithm. Observe that this
log-likelihood can also be written

Eνi [logµi].

If νi is absolutely continuous, we can instead choose µi which minimizes KL(νi, µi) among
GMM of order K. The discrete and continuous formulations coincide since

KL(νi, µi) = −H(νi)− Eνi [logµi],

where H(νi) is the differential entropy of νi.561

In both cases, the corresponding MWK,2 does not define a distance since two different562

distributions may have the same corresponding Gaussian mixture. However, for K large563

enough, their approximation by Gaussian mixtures will become different. The choice of K564

must be a compromise between the quality of the approximation given by Gaussian mixture565

models and the affordable computing time. In any case, the optimal transport plan γK566

involved in MW2(µ0, µ1) can be used to compute an approximate transport map between ν0567

and ν1.568

In the experimental section, we will use this approximation for different data, generally569

with K = 10.570

6.2. A similarity measure mixing MW2 and KL. In the previous paragraphs, we have571

seen how to use our Wasserstein-type distance MW2 and its associated optimal transport plan572

on probability measures ν0 and ν1 that are not GMM. Instead of a two step formulation (first573

an approximation by two GMM, and second the computation of MW2), we propose here a574

relaxed formulation combining directly MW2 with the Kullback-Leibler divergence.575
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Figure 5: Barycenters between four mixtures of 12 Gaussian components, µ0, µ1, µ2, µ3 for
the metric MW2. The weights are bilinear with respect to the four corners of the square.

Let ν0 and ν1 be two probability measures on Rd, we define576

(6.1)

EK,λ(ν0, ν1) = min
γ∈GMM2d(K)

∫
Rd×Rd

‖y0 − y1‖2dγ(y0, y1)− λEν0 [logP0#γ]− λEν1 [logP1#γ],577

where λ > 0 is a parameter.578

In the case where ν0 and ν1 are absolutely continuous with respect to the Lebesgue mea-579

sure, we can write instead580

(6.2)

ẼK,λ(ν0, ν1) = min
γ∈GMM2d(K)

∫
Rd×Rd

‖y0 − y1‖2dγ(y0, y1) + λKL(ν0, P0#γ) + λKL(ν1, P1#γ)581

and ẼK,λ(ν0, ν1) = EK,λ(ν0, ν1)−λH(ν0)−λH(ν1). Note that this formulation does not define582

a distance in general.583

This formulation is close to the unbalanced formulation of optimal transport proposed by584

Chizat et al. in [10], with two differences: a) we constrain the solution γ to be a GMM; and585

This manuscript is for review purposes only.



A WASSERSTEIN-TYPE DISTANCE IN THE SPACE OF GMM 23

b) we use KL(ν0, P0#γ) instead of KL(P0#γ, ν0). In their case, the support of Pi#γ must586

be contained in the support of νi. When νi has a bounded support, this constraint is quite587

strong and would not make sense for a GMM γ.588

For discrete measures ν0 and ν1, when λ goes to infinity, minimizing (6.1) becomes equiv-589

alent to approximate ν0 and ν1 by the EM algorithm and this only imposes the marginals of590

γ to be as close as possible to ν0 and ν1. When λ decreases, the first term favors solutions γ591

whose marginals become closer.592

Solving this problem (Equation (6.1)) leads to computations similar to those used in the
EM iterations [4]. By differentiating with respect to the weights, means and covariances of
γ, we obtain equations which are not in closed-form. For the sake of simplicity, we illustrate
here what happens in one dimension.
Let γ ∈ GMM2(K) be a Gaussian mixture in dimension 2d = 2 with K elements. We write

γ =

K∑
k=1

πkN
((

m0,k

m1,k

)
,

(
σ2

0,k ak
ak σ2

1,k

))
.

We have that the marginals are given by the 1d Gaussian mixtures

P0#γ =

K∑
k=1

πkN (m0,k, σ
2
0,k) and P1#γ =

K∑
k=1

πkN (m1,k, σ
2
1,k).

Then, to minimize, with respect to γ, the energy EK,λ(ν0, ν1) above, since the KL terms
are independent of the ak, we can directly take ak = σ0,kσ1,k, and the transport cost term
becomes ∫

Rd×Rd
‖y0 − y1‖2dγ(y0, y1) =

K∑
k=1

πk
[
(m0,k −m1,k)

2 + (σ0,k − σ1,k)
2
]
.

Therefore, we have to consider the problem of minimizing the following “energy”:593

F (γ) =

K∑
k=1

πk
[
(m0,k −m1,k)

2 + (σ0,k − σ1,k)
2
]

594

−λ
∫
R

log

(
K∑
k=1

πkgm0,k,σ
2
0,k

(x)

)
dν0(x)− λ

∫
R

log

(
K∑
k=1

πkgm1,k,σ
2
1,k

(x)

)
dν1(x).595

It can be optimized through a simple gradient descent on the parameters πk, mi,k, σi,k for
i = 0, 1 and k = 1, . . . ,K. Indeed a simple calculus shows that we can write

∂F (γ)

∂πk
=
[
(m0,k −m1,k)

2 + (σ0,k − σ1,k)
2
]
− λ

π̃0,k + π̃1,k

πk
,

∂F (γ)

∂mi,k
= 2πk(mi,k −mi,k)− λ

π̃i,k
σ2
i,k

(m̃i,k −mi,k),
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and
∂F (γ)

∂σi,k
= 2πk(σi,k − σj,k)− λ

π̃i,k
σ3
i,k

(σ̃2
i,k − σ2

i,k),

where we have introduced some auxilary empirical estimates of the variables given, for i = 0, 1
and k = 1, . . . ,K, by

γi,k(x) =
πkgmi,k,σ2

i,k
(x)∑K

l=1 πlgmi,l,σ2
i,l

(x)
and π̃i,k =

∫
γi,k(x)dνi(x);

m̃i,k =
1

π̃i,k

∫
xγi,k(x)dνi(x) and σ̃2

i,k =
1

π̃i,k

∫
(x−mi,k)

2γi,k(x)dνi(x).

Automatic differenciation of F can also be used in practice. At each iteration of the gradient596

descent, we project on the constraints πk ≥ 0, σi,k ≥ 0 and
∑

k πk = 1.597

On Figure 6, we illustrate this approach on a simple example. The distributions ν0 and598

ν1 are 1d discrete distributions, plotted as the red and blue histograms. On this example, we599

choose K = 3 and we use automatic differenciation (with the torch.autograd Python library)600

for the sake of convenience. The red and blue plain curves represent the final distributions601

P0#γ and P1#γ, for λ in the set {10, 2, 1, 0.5, 0.1, 0.01}. The behavior is as expected: when λ602

is large, the KL terms are dominating and the distribution γ tends to have its marginal fitting603

well the two distributions ν0 and ν1. Whereas, when λ is small, the Wasserstein transport604

term dominates and the two marginals of γ are almost equal.605

(a) λ = 10 (b) λ = 2 (c) λ = 1

(d) λ = 0.5 (e) λ = 0.1 (f) λ = 0.01

Figure 6: The distributions ν0 and ν1 are 1d discrete distributions, plotted as the red and blue
discrete histograms. The red and blue plain curves represent the final distributions P0#γ and
P1#γ. In this experiment, we use K = 3 Gaussian components for γ.
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6.3. From a GMM transport plan to a transport map. Usually, we need not only to
have an optimal transport plan and its corresponding cost, but also an assignment giving for
each x ∈ Rd a corresponding value T (x) ∈ Rd. Let µ0 and µ1 be two GMM. Then, the optimal
transport plan between µ0 and µ1 for MW2 is given by

γ(x, y) =
∑
k,l

w∗k,lgmk0 ,Σk0
(x)δy=Tk,l(x).

It is not of the form (Id, T )#µ0 (see also Figure 1 for an example), but we can however define
a unique assignment of each x, for instance by setting

Tmean(x) = Eγ(Y |X = x),

where here (X,Y ) is distributed according to the probability distribution γ. Then, since the
distribution of Y |X = x is given by the discrete distribution

∑
k,l

pk,l(x)δTk,l(x) with pk,l(x) =
w∗k,lgmk0 ,Σk0

(x)∑
j π

j
0gmj0,Σ

j
0
(x)

,

we get that

Tmean(x) =

∑
k,l w

∗
k,lgmk0 ,Σk0

(x)Tk,l(x)∑
k π

k
0gmk0 ,Σk0

(x)
.

Notice that the Tmean defined this way is an assignment that will not necessarily satisfy606

the properties of an optimal transport map. In particular, in dimension d = 1, the map Tmean607

may not be increasing: each Tk,l is increasing but because of the weights that depend on x,608

their weighted sum is not necessarily increasing. Another issue is that Tmean#µ0 may be “far”609

from the target distribution µ1. This happens for instance, in 1D, when µ0 = N (0, 1) and µ1610

is the mixture of N (−a, 1) and N (a, 1), each with weight 0.5. In this extreme case we even611

have that Tmean is the identity map, and thus Tmean#µ0 = µ0, that can be very far from µ1612

when a is large.613

Now, another way to define an assignment is to define it as a random assignment using
the optimal plan γ. More precisely, for a fixed value x we can define

Trand(x) = Tk,l(x) with probability pk,l(x) =
w∗k,lgmk0 ,Σk0

(x)∑
j π

j
0gmj0,Σ

j
0
(x)

.

Observe that, from a mathematical point of view, we can define a random variable Trand(x)614

for a fixed value of x, or also a finite set of independent random variables Trand(x) for a finite615

set of x. But constructing and defining Trand as a stochastic process on the whole space Rd616

would be mathematically much more difficult (see [20] for instance).617

Now, for any measurable set A of Rd and any x ∈ Rd, we can define the map κ(x,A) :=
P[Trand(x) ∈ A], and we have

κ(x,A) =
γ(x,A)∑

j π
j
0gmj0,Σ

j
0
(x)

, and thus

∫
κ(x,A)dµ0(x) = µ1(A).
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It means that if the measure Trand could be defined everywhere, then “Trand#µ0”, would be618

equal in expectation to µ1.619

Figure 7 illustrates these two possible assignments Tmean and Trand on a simple example.620

In this example, two discrete measures ν0 and ν1 are approximated by Gaussian mixtures621

µ0 and µ1 of order K, and we compute the transport maps Tmean and Trand for these two622

mixtures. These maps are used to displace the points of ν0. We show the result of these623

displacements for different values of K. We can see that depending on the configuration of624

points, the results provided by Tmean and Trand can be quite different. As expected, the625

measure Trand#ν0 (well-defined since ν0 is composed of a finite set of points) looks more626

similar to ν1 than Tmean#ν0 does. And Trand is also less regular than Tmean (two close points627

can be easily displaced to two positions far from each other). This may not be desirable in628

some applications, for instance in color transfer as we will see in Figure 9 in the experimental629

section.630

Figure 7: Assignments between two point clouds ν0 (in blue) and ν1 (in yellow) composed of
40 points, for different values of K. Green points represent T#ν0, where T = Trand on the
first line and T = Tmean on the second line. The four columns correspond respectively to
K = 1, 5, 10, 40. Observe that for K = 1, only one Gaussian is used for each set of points, and
T#ν0 is quite far from ν1 (in this case, Trand and Tmean coincide). When K increases, the
discrete distribution T#ν0 becomes closer to ν1, especially for T = Trand. When K is chosen
equal to the number of points, we obtain the result of the W2-optimal transport between ν0

and ν1.

7. Two applications in image processing. We have already illustrated the behaviour of631

the distance MW2 in small dimension. In the following, we investigate more involved examples632

in larger dimension. In the last ten years, optimal transport has been thoroughly used for633

various applications in image processing and computer vision, including color transfer, texture634

synthesis, shape matching. We focus here on two simple applications: on the one hand, color635
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transfer, that involves to transport mass in dimension d = 3 since color histograms are 3D636

histograms, and on the other hand patch-based texture synthesis, that necessitates transport637

in dimension p2 for p× p patches. These two applications require to compute transport plans638

or barycenters between potentially millions of points. We will see that the use of MW2 makes639

these computations much easier and faster than the use of classical optimal transport, while640

yielding excellent visual results. The codes of the different experiments are available through641

Jupyter notebooks on https://github.com/judelo/gmmot.642

7.1. Color transfer. We start with the problem of color transfer. A discrete color image643

can be seen as a function u : Ω→ R3 where Ω = {0, . . . nr−1}×{0, . . . nc−1} is a discrete grid.644

The image size is nr × nc and for each i ∈ Ω, u(i) ∈ R3 is a set of three values corresponding645

to the intensities of red, green and blue in the color of the pixel. Given two images u0 and u1646

on grids Ω0 and Ω1, we define the discrete color distributions ηk = 1
|Ωk|

∑
i∈Ωk

δuk(i), k = 0, 1,647

and we approximate these two distributions by Gaussian mixtures µ0 and µ1 thanks to the648

Expectation-Maximization (EM) algorithm3. Keeping the notations used previously in the649

paper, we write Kk the number of Gaussian components in the mixture µk, for k = 0, 1. We650

compute the MW2 map between these two mixtures and the corresponding Tmean. We use651

it to compute Tmean(u0), an image with the same content as u0 but with colors much closer652

to those of u1. Figure 8 illustrates this process on two paintings by Renoir and Gauguin,653

respectively Le déjeuner des canotiers and Manhana no atua. For this experiment, we choose654

K0 = K1 = 10. The corresponding transport map for MW2 is relatively fast to compute (less655

than one minute with a non-optimized Python implementation, using the POT library [15]656

for computing the map between the discrete distributions of 10 masses). We also show on the657

same figure Trand(u0), the result of the sliced optimal transport [25, 5], and the result of the658

separable optimal transport (i.e. on each color channel separately). Notice that the complete659

optimal transport on such huge discrete distributions (approximately 800000 Dirac masses for660

these 1024 × 768 images) is hardly tractable in practice. As could be expected, the image661

Trand(u0) is much noisier than the image Tmean(u0). We show on Figure 9 the discrete color662

distributions of these different images and the corresponding classes provided by EM (each663

point is assigned to its most likely class).664

The value K = 10 that we have chosen here is the result of a compromise. Indeed, when665

K is too small, the approximation by the mixtures is generally too rough to represent the666

complexity of the color data properly. At the opposite, we have observed that increasing the667

number of components does not necessarily help since the corresponding transport map will668

loose regularity. For color transfer experiments, we found in practice that using around 10669

components yields the best results. We also illustrate this on Figure 10, where we show the670

results of the color transfer with MW2 for different values of K. On the different images, one671

can appreciate how the color distribution gets closer and closer to the one of the target image672

as K increases.673

We end this section with a color manipulation experiment, shown on Figure 11. Four674

different images being given, we create barycenters for MW2 between their four color palettes675

(represented again by mixtures of 10 Gaussian components), and we modify the first of the676

four images so that its color palette spans this space of barycenters. For this experiment (and677

3In practice, we use the scikit-learn implementation of EM with the kmeans initialization.
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Figure 8: First line, images u0 and u1 (two paintings by Renoir and Gauguin). Second line,
Tmean(u0) and Trand(u0). Third line, color transfer with the sliced optimal transport [25, 5],
that we denote by SOT (u0) and result of the separable optimal transport (color transfer is
applied separately on the three dimensions - channels - of the color distributions).

this experiment only), a spatial regularization step is applied in post-processing [24] to remove678

some artifacts created by these color transformations between highly different images.679

7.2. Texture synthesis. Given an exemplar texture image u : Ω→ R3, the goal of texture680

synthesis is to synthetize images with the same perceptual characteristics as u, while keeping681

some innovative content. The literature on texture synthesis is rich, and we will only focus here682

on a bilevel approach proposed recently in [16]. The method relies on the optimal transport683

between a continuous (Gaussian or Gaussian mixtures) distribution and a discrete distribution684
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Figure 9: The images u0 and u1 are the ones of Figure 8. First line: color distribution of
the image u0, the 10 classes found by the EM algorithm, and color distribution of Tmean(u0).
Second line: color distribution of the image u1, the 10 classes found by the EM algorithm,
and color distribution of Trand(u0).

K = 1 K = 3 K = 10

Figure 10: The left-most image is the “red mountain” image, and its color distribution is
modified to match the one of the right-most image (the “white mountain” image) with MW2

using respectively K = 1, K = 3 and K = 10 components in the Gaussian mixtures.

(distribution of the patches of the exemplar texture image). The first step of the method can685

be described as follows. For a given exemplar image u : Ω → R3, the authors compute the686

asymptotic discrete spot noise (ADSN) associated with u, which is the stationary Gaussian687

This manuscript is for review purposes only.



30 J. DELON AND A. DESOLNEUX

Figure 11: In this experiment, the top left image is modified in such a way that its color palette
goes through the MW2-barycenters between the color palettes of the four corner images. Each
color palette is represented as a mixture of 10 Gaussian components. The weights used for
the barycenters are bilinear with respect to the four corners of the rectangle.

random field U : Z2 → R3 with same mean and covariance as u, i.e.688

∀x ∈ Z2, U(x) = ū+
∑
y∈Z2

tu(y)W (x− y), where

ū = 1
|Ω|
∑

x∈Ω u(x)

tu = 1√
|Ω|

(u− ū)1Ω,
689

with W a standard normal Gaussian white noise on Z2. Once the ADSN U is computed,690

they extract a set S of p × p sub-images (also called patches) of u. In our experiments, we691

extract one patch for each pixel of u (excluding the borders), so patches are overlapping and692

the number of patches is approximately equal to the image size. The authors of [16] then693

define η1 the empirical distribution of this set of patches (thus η1 is in dimension 3×p×p, i.e.694

27 for p = 3) and η0 the Gaussian distribution of patches of U , and compute the semi-discrete695

optimal transport map TSD from η0 to η1. This map TSD is then applied to each patch of a696

realization of U , and an ouput synthetized image v is obtained by averaging the transported697

patches at each pixel. Since the semi-discrete optimal transport step is numerically very698

expensive in such high dimension, we propose to make use of the MW2 distance instead. For699

that, we approximate the two discrete patch distributions of u and U by Gaussian Mixture700
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models µ0 and µ1, and we compute the optimal map Tmean for MW2 between them. The701

rest of the algorithm is similar to the one described in [16]. Figure 12 shows the results for702

different choices of exemplar images u. In practice, we use K0 = K1 = 10, as in color transfer,703

and 3× 3 color patches. The results obtained with our approach are visually very similar to704

the ones obtained with [16], for a computational time approximately 10 times smaller. More705

precisely, for instance for an image of size 256 × 256, the proposed approach takes about 35706

seconds, whereas the semi-discrete approach of [16] takes about 400 seconds. We are currently707

exploring a multiscale version of this approach, inspired by the recent [22].708

Figure 12: Left, original texture u. Middle, ADSN U . Right, synthetized version.

8. Discussion and conclusion. In this paper, we have defined a Wasserstein-type distance709

on the set of Gaussian mixture models, by restricting the set of possible coupling measures to710

Gaussian mixtures. We have shown that this distance, with an explicit discrete formulation, is711

easy to compute and suitable to compute transport plans or barycenters in high dimensional712

problems where the classical Wasserstein distance remains difficult to handle. We have also713

discussed the fact that the distance MW2 could be extended to other types of mixtures, as714

soon as we have a marginal consistency property and an identifiability property similar to the715
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one used in the proof of Proposition 4. In practice, Gaussian mixture models are versatile716

enough to represent large classes of concrete and applied problems. One important question717

raised by the introduced framework and its generalization in Section 6.2 is how to estimate the718

mixtures for discrete data, since the obtained result will depend on the number K of Gaussian719

components in the mixtures and on the parameter λ that weights the data-fidelity terms. If720

the number of Gaussian components is chosen large enough, and covariances small enough,721

the transport plan for MW2 will look very similar to the one of W2, but at the price of a high722

computational cost. If, on the contrary, we choose a very small number of components (like723

in the color transfer experiments of Section 7.1), the resulting optimal transport map will be724

much simpler, which seems to be desirable for some applications.725

Acknowledgments. We would like to thank Arthur Leclaire for his valuable assistance for726

the texture synthesis experiments.727

Appendix: proofs.728

Density of GMMd(∞) in Pp(Rd).729

Lemma 3.1. The set730 {
N∑
k=1

πkδyk ; N ∈ N, (yk)k ∈ (Rd)N , (πk)k ∈ ΓN

}
731

is dense in Pp(Rd) for the metric Wp, for any p ≥ 1.732

Proof. The proof is adapted from the proof of Theorem 6.18 in [31] and given here for the733

sake of completeness.734

Let µ ∈ Pp(Rd). For each ε > 0, we can find r such that
∫
B(0,r)c ‖y‖

pdµ(x) ≤ εp, where735

B(0, r) ⊂ Rd is the ball of center 0 and radius r, and B(0, r)c denotes its complementary set736

in Rd. The ball B(0, r) can be covered by a finite number of balls B(yk, ε), 1 ≤ k ≤ N . Now,737

define Bk = B(yk, ε) \ ∪1≤j<kB(yj , ε), all these sets are disjoint and still cover B(0, r).738

Define φ : Rd → Rd on Rd such that739

∀k, ∀y ∈ Bk ∩B(0, r), φ(y) = yk and ∀y ∈ B(0, r)c, φ(y) = 0.740

Then,741

φ#µ =

N∑
k=1

µ(Bk ∩B(0, r))δyk + µ(B(0, r)c)δ0742

and743

W p
p (φ#µ, µ) ≤

∫
Rd
‖y − φ(y)‖pdµ(y)744

≤ εp
∫
B(0,r)

dµ(y) +

∫
B(0,r)c

‖y‖pdµ(y) ≤ εp + εp = 2εp,745

which finishes the proof.746
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Identifiability properties of Gaussian mixture models.747

Proposition 2. The set of finite Gaussian mixtures is identifiable, in the sense that two748

mixtures µ0 =
∑K0

k=1 π
k
0µ

k
0 and µ1 =

∑K1
k=1 π

k
1µ

k
1, written such that all {µk0}k (resp. all {µj1}j)749

are pairwise distinct, are equal if and only if K0 = K1 and we can reorder the indexes such750

that for all k, πk0 = πk1 , mk
0 = mk

1 and Σk
0 = Σk

1.751

This result is classical and the proof is also given here in the Appendix for the sake of com-752

pleteness.753

Proof. This proof is an adaptation and simplification of the proof of Proposition 2 in [34].754

First, assume that d = 1 and that two Gaussian mixtures are equal:755

(8.1)

K0∑
k=1

πk0µ
k
0 =

K1∑
j=1

πj1µ
j
1.756

We start by identifying the Dirac masses from both sums, so only non-degenerate Gaussian757

components remain. Writing µki = N (mk
i , (σ

k
i )2), it follows that758

K0∑
k=1

πk0
σk0
e
− (x−mk0)2

2(σk0 )2 =

K1∑
j=1

πj1
σj1
e
−

(x−mj1)
2

2(σ
j
1)

2
, ∀x ∈ R.759

Now, define k0 = argmaxkσ
k
0 and j0 = argmaxjσ

j
1. If the maximum is attained for several760

values of k (resp. j), we keep the one with the largest mean mk
0 (resp. mj

1). Then, when761

x→ +∞, we have the equivalences762

K0∑
k=1

πk0
σk0
e
− (x−mk0)2

2(σk0 )2 ∼
x→+∞

πk00

σk00

e
−

(x−mk00 )2

2(σ
k0
0 )2 and

K1∑
j=1

πj1
σj1
e
−

(x−mj1)
2

2(σ
j
1)

2 ∼
x→+∞

πj01

σj01

e
−

(x−mj01 )2

2(σ
j0
1 )2 .763

Since the two sums are equal, these two terms must also be equivalent when x→ +∞, which764

implies necessarily that σk00 = σj01 , mk0
0 = mj0

1 and πk00 = πj01 . Now, we can remove these two765

components from the two sums and we obtain766

∑
k=1...K0, k 6=k0

πk0
σk0
e
− (x−mk0)2

2(σk0 )2 =
∑

j=1...K1, j 6=j0

πj1
σj1
e
−

(x−mj1)
2

2(σ
j
1)

2
, ∀x ∈ R.767

We can start over and show recursively that all components are equal.768

For d > 1, assume once again that two Gaussian mixtures µ0 and µ1 are equal, written as769

in Equation (8.1). The projection of this equality yields770

(8.2)

K0∑
k=1

πk0N (〈mk
0, ξ〉, ξtΣk

0ξ) =

K1∑
j=1

πj1N (〈mj
1, ξ〉, ξ

tΣj
1ξ), ∀ξ ∈ Rd.771

At this point, observe that for some values of ξ, some of these projected components may772

not be pairwise distinct anymore, so we cannot directly apply the result for d = 1 to such773
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mixtures. However, since the pairs (mk
0,Σ

k
0) (resp. (mj

1,Σ
j
1)) are all distinct, then for i = 0, 1,774

the set775

Θi =
⋃

1≤k,k′≤Ki

{
ξ s.t. 〈mk

i −mk′
i , ξ〉 = 0 and ξt

(
Σk
i − Σk′

i

)
ξ = 0

}
776

is of Lebesgue measure 0 in Rd. For any ξ in Rd \Θ0∪Θ1, the pairs {(〈mk
0, ξ〉, ξtΣk

0ξ)}k (resp.777

{(〈mj
1, ξ〉, ξtΣ

j
1ξ)}j) are pairwise distinct. Consequently, using the first part of the proof (for778

d = 1), we can deduce that K0 = K1 and that779

(8.3) Rd \Θ0 ∪Θ1 ⊂
⋂
k

⋃
j

Ξk,j780

where781

Ξk,j =
{
ξ, s.t. πk0 = πj1, 〈m

k
0 −m

j
1, ξ〉 = 0 and ξt

(
Σk

0 − Σj
1

)
ξ = 0

}
.782

Now, assume that the two sets {(πk0 ,mk
0,Σ

k
0)}k and {(πj1,m

j
1,Σ

j
1)}j are different. Since each783

of these sets is composed of different triplets, it is equivalent to assume that there exists k in784

{1, . . .K0} such that (πk0 ,m
k
0,Σ

k
0) is different from all triplets (πj1,m

j
1,Σ

j
1). In this case, the785

sets Ξk,j for j = 1, . . .K0 are all of Lebesgue measure 0 in Rd, which contradicts (8.3). We786

conclude that the sets {(πk0 ,mk
0,Σ

k
0)}k and {(πj1,m

j
1,Σ

j
1)}j are equal.787
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[17] W. Gangbo and A. Świkech, Optimal maps for the multidimensional Monge-Kantorovich problem,823
Communications on Pure and Applied Mathematics: A Journal Issued by the Courant Institute of824
Mathematical Sciences, 51 (1998), pp. 23–45.825

[18] M. Gelbrich, On a formula for the l2 wasserstein metric between measures on euclidean and hilbert826
spaces, Mathematische Nachrichten, 147 (1990), pp. 185–203.827

[19] A. Houdard, C. Bouveyron, and J. Delon, High-dimensional mixture models for unsupervised image828
denoising (HDMI), SIAM Journal on Imaging Sciences, 11 (2018), pp. 2815–2846.829

[20] O. Kallenberg, Foundations of modern probability, Probability and its Applications (New York),830
Springer-Verlag, New York, second ed., 2002.831

[21] Y. Kanoh, Consistency property of elliptical probability density functions, Journal of Multivariate Analy-832
sis, 51 (1994), pp. 139–147.833

[22] A. Leclaire and J. Rabin, A multi-layer approach to semi-discrete optimal transport with applications834
to texture synthesis and style transfer, preprint hal-02331068, (2019).835
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