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A Wasserstein-type distance in the space of Gaussian Mixture Models*

Julie Delon® and Agnés Desolneux!

Abstract. In this paper we introduce a Wasserstein-type distance on the set of Gaussian mixture models. This
distance is defined by restricting the set of possible coupling measures in the optimal transport
problem to Gaussian mixture models. We derive a very simple discrete formulation for this distance,
which makes it suitable for high dimensional problems. We also study the corresponding multi-
marginal and barycenter formulations. We show some properties of this Wasserstein-type distance,
and we illustrate its practical use with some examples in image processing.

Key words. optimal transport, Wasserstein distance, Gaussian mixture model, multi-marginal optimal trans-
port, barycenter, image processing applications

AMS subject classifications. 65K10, 65K05, 90C05, 62-07, 68Q25, 68U10, 63U05, 68R10

1. Introduction. Nowadays, Gaussian Mixture Models (GMM) have become ubiquitous
in statistics and machine learning. These models are especially useful in applied fields to rep-
resent probability distributions of real datasets. Indeed, as linear combinations of Gaussian
distributions, they are perfect to model complex multimodal densities and can approximate
any continuous density when the numbers of components is chosen large enough. Their pa-
rameters are also easy to infer with algorithms such as the Expectation-Maximization (EM)
algorithm [13]. For instance, in image processing, a large body of works use GMM to represent
patch distributions in images', and use these distributions for various applications, such as
image restoration [36, 28, 35, 32, 19, 12] or texture synthesis [16].

The optimal transport theory provides mathematical tools to compare or interpolate be-
tween probability distributions. For two probability distributions po and p; on R¢ and a
positive cost function ¢ on R? x R?, the goal is to solve the optimization problem

1.1 inf E (¢(Yy, Y1)),
( ) Yo~po;Y1~p1 ((0 1))

where the notation Y ~ p means that Y is a random variable with probability distribution pu.
When ¢(z,y) = ||z —y||P for p > 1, Equation (1.1) (to a power 1/p) defines a distance between
probability distributions that have a moment of order p, called the Wasserstein distance W),

While this subject has gathered a lot of theoretical work (see [30, 31, 27] for three refer-
ence monographies on the topic), its success in applied fields was slowed down for many years
by the computational complexity of numerical algorithms which were not always compatible
with large amount of data. In recent years, the development of efficient numerical approaches
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2 J. DELON AND A. DESOLNEUX

has been a game changer, widening the use of optimal transport to various applications no-
tably in image processing, computer graphics and machine learning [23]. However, computing
Wasserstein distances or optimal transport plans remains intractable when the dimension of
the problem is too high.

Optimal transport can be used to compute distances or geodesics between Gaussian mix-
ture models, but optimal transport plans between GMM, seen as probability distributions
on a higher dimensional space, are usually not Gaussian mixture models themselves, and the
corresponding Wasserstein geodesics between GMM do not preserve the property of being a
GMM. In order to keep the good properties of these models, we define in this paper a variant
of the Wasserstein distance by restricting the set of possible coupling measures to Gaussian
mixture models. The idea of restricting the set of possible coupling measures has already
been explored for instance in [3], where the distance is defined on the set of the probability
distributions of strong solutions to stochastic differential equations. The goal of the authors is
to define a distance which keeps the good properties of W5 while being numerically tractable.

In this paper, we show that restricting the set of possible coupling measures to Gaussian
mixture models transforms the original infinitely dimensional optimization problem into a
finite dimensional problem with a simple discrete formulation, depending only on the param-
eters of the different Gaussian distributions in the mixture. When the ground cost is simply
c(z,y) = ||z —y]|?, this yields a geodesic distance, that we call MW, (for Mixture Wasserstein),
which is obviously larger than W5, and is always upper bounded by W5 plus a term depending
only on the trace of the covariance matrices of the Gaussian components in the mixture. The
complexity of the corresponding discrete optimization problem does not depend on the space
dimension, but only on the number of components in the different mixtures, which makes it
particularly suitable in practice for high dimensional problems. Observe that this equivalent
discrete formulation has been proposed twice recently in the machine learning literature, but
with a very different point of view, by two independent teams [8, 9] and [6, 7].

Our original contributions in this paper are the following:

1. We derive an explicit formula for the optimal transport between two GMM restricted to
GMM couplings, and we show several properties of the resulting distance, in particular
how it compares to the classical Wasserstein distance.

2. We study the multi-marginal and barycenter formulations of the problem, and show
the link between these formulations.

3. We propose a generalized formulation to be used on distributions that are not GMM.

4. We provide two applications in image processing, respectively to color transfer and
texture synthesis.

The paper is organized as follows. Section 2 is a reminder on Wasserstein distances and
barycenters between probability measures on R?. We also recall the explicit formulation of Wa
between Gaussian distributions. In Section 3, we recall some properties of Gaussian mixture
models, focusing on an identifiabiliy property that will be necessary for the rest of the paper.
We also show that optimal transport plans for Ws between GMM are generally not GMM
themselves. Then, Section 4 introduces the MWy distance and derives the corresponding
discrete formulation. Section 4.5 compares MWy with Ws. Section 5 focuses on the corre-
sponding multi-marginal and barycenter formulations. In Section 6, we explain how to use
MWs5 in practice on distributions that are not necessarily GMM. We conclude in Section 7
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A WASSERSTEIN-TYPE DISTANCE IN THE SPACE OF GMM 3

with two applications of the distance M W5 to image processing. To help the reproducibility of
the results we present in this paper, we have made our Python codes available on the Github
website https://github.com/judelo/gmmot.

Notations. We define in the following some of the notations that will be used in the paper.

e The notation Y ~ p means that Y is a random variable with probability distribution

1.

e If 1 is a positive measure on a space X and T : X — ) is an application, T#u stands
for the push-forward measure of y by 7', i.e. the measure on ) such that VA C ),
(T#)(A) = (T~ 1(A)).

The notation tr(M) denotes the trace of the matrix M.

The notation Id is the identity application.

(€,€') denotes the Euclidean scalar product between ¢ and ¢ in RY

M.m(R) is the set of real matrices with n lines and m columns, and we denote by

Moomi,.m,_, (R) the set of J dimensional tensors of size nj in dimension k.

1, = (1,1,...,1)" denotes a column vector of ones of length n.

e For a given vector m in R? and a d x d covariance matrix X, gm,x denotes the density
of the Gaussian (multivariate normal) distribution N (m, X).

e When q; is a finite sequence of K elements (real numbers, vectors or matrices), we

denote its elements as a?, el aiK_l.

2. Reminders: Wasserstein distances and barycenters between probability measures
on R% Let d > 1 be an integer. We recall in this section the definition and some basic
properties of the Wasserstein distances between probability measures on R%. We write P(R%)
the set probability measures on R?. For p > 1, the Wasserstein space Pp(Rd) is defined as the
set of probability measures p with a finite moment of order p, i.e. such that

[ lalPdu(o) < -+,

with |.|| the Euclidean norm on R
For t € [0, 1], we define P; : R? x RY — R by

Vo,y e R Pi(z,y) = (1—t)z +ty € RY.

Observe that Py and Py are the projections from R% x R? onto R? such that Py(z,y) = = and
Pl(m7 y) =Y.

2.1. Wasserstein distances. Let p > 1, and let ug, ;1 be two probability measures in
Pp(R?). Define (g, p11) C Pp(R? x R?) as being the subset of probability distributions v on
R? x R% with marginal distributions po and 1, i.e. such that Po#y = uo and P1#y = 1.
The p-Wasserstein distance W), between po and g is defined as

21 Wpo,pm):=_  inf E(|Yo-Y?)= _ inf / lyo = w1l[Pdy(yo, y1)-
Yorpo; Y1~ vE(po,p1) JRAxRE
This formulation is a special case of (1.1) when ¢(z,y) = ||z — y||P. It can be shown (see

for instance [31]) that there is always a couple (Yp, Y1) of random variables which attains the
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4 J. DELON AND A. DESOLNEUX

infimum (hence a minimum) in the previous energy. Such a couple is called an optimal coupling.
The probability distribution + of this couple is called an optimal transport plan between pg
and pp. This plan distributes all the mass of the distribution po onto the distribution p; with
a minimal cost, and the quantity W} (uo, u1) is the corresponding total cost.

As suggested by its name (p-Wasserstein distance), W, defines a metric on P,(R%). Tt
also metrizes the weak convergence’ in P,(RY) (see [31], chapter 6). It follows that W, is
continuous on P,(R%) for the topology of weak convergence.

From now on, we will mainly focus on the case p = 2, since W5 has an explicit formulation
if o and p; are Gaussian measures.

2.2. Transport map, transport plan and displacement interpolation. Assume that p = 2.
When 9 and gy are two probability distributions on R? and assuming that g is absolutely
continuous, then it can be shown that the optimal transport plan + for the problem (2.1) is
unique and has the form

(2.2) v = (Id, T)#po,

where T : R? — R is an application called optimal transport map and satisfying T#puo = 1
(see [31]).
If v is an optimal transport plan for Wy between two probability distributions pg and pq,
the path (u¢)sefo,1) given by
vt € [0,1], =Pty
defines a constant speed geodesic in Py(R?) (see for instance [27] Ch.5, Section 5.4). The path
(Mt)te[o,l} is called the displacement interpolation between ug and @1 and it satisifes

(2.3) pe € argmin, (1 — tYWa (1o, p)* + tWa(p, p)*.

This interpolation, often called Wasserstein barycenter in the literature, can be easily
extended to more than two probability distributions, as recalled in the next paragraphs.

2.3. Multi-marginal formulation and barycenters. For J > 2, for a set of weights A =
(Xos -+, As-1) € (Ry)7? such that A1y = Ao+ ... +A;_1 = 1 and for z = (x,...,25_1) €
(R, we write

J—1 J-1
(2.4) B(z) = Z Aiz; = argming cga Z Nl — y|)?
i=0 =0

the barycenter of the x; with weights A;.
For J probability distributions pg, g1 - . ., y—1 on R we say that v* is the barycenter of
the p; with weights A; if v* is solution of

J—1
2.5 inf NW2 (i, v).
(2.5) uePg(Rd)jz:;) J 2(MJ )

2A sequence (g )r converges weakly to p in P,(R?) if it converges to u in the sense of distributions and if
S IlylIPdue(y) converges to [ [ly[|"du(y).

This manuscript is for review purposes only.
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A WASSERSTEIN-TYPE DISTANCE IN THE SPACE OF GMM 5

Existence and unicity of barycenters for W5 has been studied in depth by Agueh and
Carlier in [1]. They show in particular that if one of the p; has a density, this barycenter
is unique. They also show that the solutions of the barycenter problem are related to the

solutions of the multi-marginal transport problem (studied by Gangbo and Swiéch in [17])
J-1

. 1
(2.6)MW2(M07"'7N=171) = inf /]Rd Z AZ}‘]Hy’L _yj||2d7(y07y17‘"7nyl)7
"X

YE (0,15 T —1) . xRd 2 4720

where TI(po, fi1, - . ., pt7—1) is the set of probability measures on (R%)” having po, i1, .. ., pty—1

as marginals. More precisely, they show that if (2.6) has a solution 7*, then v* = B#~* is a
solution of (2.5), and the infimum of (2.6) and (2.5) are equal.

2.4. Optimal transport between Gaussian distributions. Computing optimal transport
plans between probability distributions is usually difficult. In some specific cases, an explicit
solution is known. For instance, in the one dimensional (d = 1) case, when the cost ¢ is a
convex function of the Euclidean distance on the line, the optimal plan consists in a mono-
tone rearrangement of the distribution g into the distribution p; (the mass is transported
monotonically from left to right, see for instance Ch.2, Section 2.2 of [30] for all the details).
Another case where the solution is known for a quadratic cost is the Gaussian case in any
dimension d > 1.

2.4.1. Distance W, between Gaussian distributions. If y; = N(m;,%;), i € {0,1} are
two Gaussian distributions on R¢, the 2-Wasserstein distance Wy between po and p; has a
closed-form expression, which can be written

1 1\ 2
(2.7) W5 (po, 1) = [lmo — ma || + tr (Eo + X1 -2 <232123) ) :

where, for every symmetric semi-definite positive matrix M, the matrix M 7 is its unique
semi-definite positive square root.

If 3¢ is non-singular, then the optimal map T between pg and pq turns out to be affine
and is given by

1

_1 1 1\2 _1
(2.8) Vx € RY,  T(x) =mq+%,> (252@5) Sy 2 (2 —mo) = my + 55 1 (S051)2 (z —my),

and the optimal plan v is then a Gaussian distribution on R? x R% = R?? that is degenerate
since it is supported by the affine line y = T'(x). These results have been known since [14].

Moreover, if ¥y and X1 are non-degenerate, the geodesic path (i), t € (0,1), between pq
and p1 is given by puy = N (my, ¥¢) with my = (1 — t)mg + tmy and

5 =((1 =)z +tC)So((1 — )1z + tC),
1 1 1\ "z 1
with Iz the d x d identity matrix and C' = ¥} <21220212) X1
This property still holds if the covariance matrices are not invertible, by replacing the
inverse by the Moore-Penrose pseudo-inverse matrix, see Proposition 6.1 in [33]. The optimal
map 7' is not generalized in this case since the optimal plan is usually not supported by the
graph of a function.

This manuscript is for review purposes only.
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6 J. DELON AND A. DESOLNEUX

2.4.2. W,-Barycenters in the Gaussian case. For J > 2, let A = (A\g,...,A\j_1) € (Ry)”’
be a set of positive weights summing to 1 and let pg, g1 ..., pj—1 be J Gaussian probability
distributions on R?. For j = 0....J — 1, we denote by m; and X; the expectation and the
covariance matrix of pj. Theorem 2.2 in [26] tells us that if the covariances X; are all positive
definite, then the solution of the multi-marginal problem (2.6) for the Gaussian distributions
o, 41 - - -, fbj—1 can be written

(2.9) Y (20, ., Z-1) = Gmg,50 (Z0) 5(11,.--,ZJf1)=(S1Soflxop--,SJqSleo)

—1/2
where §; = E;/ 2 (Ejl-/ QE*Z;/ 2) Z;/ 2 with Y.« a solution of the fixed-point problem

J—1
(2.10) > (Zmm)

=0

1/2
=X..

The barycenter v* of all the p; with weights A; is the distribution N(my, i), with m, =
Z}];()l Ajm;. Equation (2.10) provides a natural iterative algorithm (see [2]) to compute the
fixed point X, from the set of covariances ¥;, j € {0,...,J —1}.

3. Some properties of Gaussian Mixtures Models. The goal of this paper is to investigate
how the optimisation problem (2.1) is transformed when the probability distributions pg, p1
are finite Gaussian mixture models and the transport plan - is forced to be a Gaussian mixture
model. This will be the aim of Section 4. Before, we first need to recall a few basic properties
on these mixture models, and especially a density property and an identifiability property.

In the following, for N > 1 integer, we define the simplex

N

FN:{TFERf; WlN:Zﬂ'kzl}'
k=1

Definition 1. Let K > 1 be an integer. A (finite) Gaussian mizture model of size K on R?
is a probability distribution p on R that can be written

K
(3.1) W= Zﬂk,uk where pur =N (my,Xk) and m € Tk.
k=1

We write GM My(K) the subset of P(R%) made of probability measures on R? which can
be written as Gaussian mixtures with less than K components (such mixtures are obviously
also in P,(RY) for any p > 1). For K < K', GMMy(K) C GMM4(K'). The set of all finite
Gaussian mixture distributions is written

GMMd<OO) = UKZ()GMMd(K).

3.1. Two properties of GMM. The following lemma states that any measure in P,(R¢)
can be approximated with any precision for the distance W), by a finite convex combination
of Dirac masses. This classical result will be useful in the rest of the paper.

This manuscript is for review purposes only.
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A WASSERSTEIN-TYPE DISTANCE IN THE SPACE OF GMM 7

Lemma 3.1. The set

N
{Zﬂk‘gyk s NeN, (ye)r € RYHY, (mp)x € FN}

k=1

is dense in Py(RY) for the metric W, for any p > 1.

For the sake of completeness, we provide a proof in Appendix, adapted from the proof of
Theorem 6.18 in [31]. Since Dirac masses can be seen as degenerate Gaussian distributions, a
direct consequence of Lemma 3.1 is the following proposition.

Proposition 1. GM My(c0) is dense in Py(R?) for the metric W,.

Another important property will be necessary, related to the identifiability of Gaussian
mixture models. It is clear such models are not stricto sensu identifiable, since reordering
the indexes of a mixture changes its parametrization without changing the underlying proba-
bility distribution, or also because a component with mass 1 can be divided in two identical
components with masses %, for example. However, if we write mixtures in a “compact” way
(forbidding two components of the same mixture to be identical), identifiability holds, up to
a reordering of the indexes. This property is reminded below.

Proposition 2. The set of finite Gaussian mixtures is identifiable, in the sense that two
miztures j1o = sz:01 Thuk and py = Zszll ik, written such that all {uf}x (resp. all {pl};)
are pairwise distinct, are equal if and only if Ko = K1 and we can reorder the indexes such
that for all k, 7k = 7, m§ = m¥ and 2f = ¥F.

This result is also classical and the proof is provided in Appendix.

3.2. Optimal transport and Wasserstein barycenters between Gaussian Mixture Mod-
els. We are now in a position to investigate optimal transport between Gaussian mixture
models (GMM). A first important remark is that given two Gaussian mixtures po and py on
R?, optimal transport plans v between s and p1 are usually not GMM.

Proposition 3. Let po € GM My(Ko) and p1 € GM Mg(K7) be two Gaussian miztures such
that py cannot be written TH#uo with T affine. Assume also that pg is absolutely continuous
with respect to the Lebesgue measure. Let vy € (ug, 1) be an optimal transport plan between
to and pi. Then vy does not belongs to GM Mag(00).

Proof. Since pg is absolutely continuous with respect to the Lebesgue measure, we know
that the optimal transport plan is unique and is of the form v = (Id, T')#puo for a measurable
map T : RY — R? that satisfies T#po = p1. Thus, if v belongs to GM May(00), all of its
components must be degenerate Gaussian distributions N (myg, Xy) such that

Uk (my + Span(Xy)) = graph(T).

It follows that 7" must be affine on R?, which contradicts the hypotheses of the proposition.m

When p is not absolutely continuous with respect to the Lebesgue measure (which means
that one of its components is degenerate), we cannot write v under the form (2.2), but we
conjecture that the previous result usually still holds. A notable exception is the case where
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8 J. DELON AND A. DESOLNEUX

all Gaussian components of iy and p; are Dirac masses on R, in which case v is also a GMM
composed of Dirac masses on R?¢.

We conjecture that since optimal plans v between two GMM are usually not GMM, the
barycenters (Py)#~ between ug and pq are also usually not GMM either (with the exception
of t = 0,1). Take the one dimensional example of g = N (0,1) and pg = £(6_1 +61). Clearly,
an optimal transport map between po and p is defined as T'(z) = sign(z). For ¢t € (0,1), if
we denote by pu; the barycenter between g with weight 1 —¢ and p; with weight ¢, then it is
easy to show that u; has a density

ft(x) = 1115 <g (ffz) L.« ++g <T__j§> 1z>t> )

where ¢ is the density of A'(0,1). The density f; is equal to 0 on the interval (—¢,¢) and
therefore cannot be the density of a GMM.

4. MWs: a distance between Gaussian Mixture Models. In this section, we define
a Wasserstein-type distance between Gaussian mixtures ensuring that barycenters between
Gaussian mixtures remain Gaussian mixtures. To this aim, we restrict the set of admissible
transport plans to Gaussian mixtures and show that the problem is well defined. Thanks to
the identifiability results proved in the previous section, we will show that the corresponding
optimization problem boils down to a very simple discrete formulation.

4.1. Definition of M;.

Definition 2. Let pg and py be two Gaussian mixtures. We define

4.1 MW2(po, p11) := inf £/1 — 1 ||Pdy(yo, y1).
(4.1) 5 (1o, 1) e o0 RdedHyO y1ll*dy(yo, y1)

First, observe that the problem is well defined since II(uo, 1) N GM Maog(oo) contains at least
the product measure pg ® 1. Notice also that from the definition we directly have that

MWy (po, 1) > Wal(po, ).

4.2. An equivalent discrete formulation. Now, we can show that this optimisation prob-
lem has a very simple discrete formulation. For my € I',, and m € I'k,, we denote by
II(mp, 1) the subset of the simplex I'k,xx, with marginals my and 7y, i.e.

(4.2) I(mg, m) = {w € Mg, Kk, (R1); wlg, = 7o; wthO =m}
(4.3) = {w € My i,(R); Yk, ) wyj = and Vj, Y wyj =] }.
J k

Proposition 4. Let ug = ZkK:O1 7T(l)€,u(]§ and @ = ZkK:ll 7Fuk be two Gaussian miztures, then

well(mg,m1

(4.4) MW3 (19, 1) = MWZWW%M)
k,l

This manuscript is for review purposes only.
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A WASSERSTEIN-TYPE DISTANCE IN THE SPACE OF GMM 9

Moreover, if w* is a minimizer of (4.4), and if Ty is the Wa-optimal map between ulg and
iy, then v* defined as

’Y* (IL’, y) = Z w;z,l gm’g,zg (.7?) 5y=Tk,z(l")
k1l

is a minimizer of (4.1).

Proof. First, let w* be a solution of the discrete linear program

(4.5) inf : > waW3 (g, ).
ol

well(mg,m1

For each pair (k,1), let

e = axgmin ey [ o=l (0.m)

and
V=) wimke
k,l

Clearly, v* € II(po, 1) N GM Maog(KoK7). It follows that

S wiWE ) = [

. lyo — y1l12dv* (yo, 1)
k,l X

- o vo — y1l*dy(yo, v
'YEH(MO,ul)ﬂGMMQd(KOKl)/Rded I 1*dy (5o, y1)

- i yo — y1l*dy(yo, y1
Y€ (pa0,11) NG M Mg (00) /Rded | I*d~y (o, y1).

because GM Msy(KoK1) C GM May(00).
Now, let v be any element of II(ug, 1) N GM Myy(o0). Since 7 belongs to GM Myy(o0),
there exists an integer K such that v = E]K:l w;yj. Since Po#y = o, it follows that

K Ko
> wiPo# = 3w
=1 k=1

Thanks to the identifiability property shown in the previous section, we know that these
two Gaussian mixtures must have the same components, so for each j in {1,... K}, there
is 1 < k < Kq such that Po#vy; = ,ué”. In the same way, there is 1 < [ < K; such that
Pi#y,; = ,ull. It follows that 7, belongs to H(,ulg, ,ull) We conclude that the mixture v can
be written as a mixture of Gaussian components g € H(ulg, ull), ey = ZkK:01 {ill Wil Ykl -
Since Po#y = po and P1#vy = u1, we know that w € II(mg, m1). As a consequence,

KO K KO K;
/Rd Ll = yilPdy(yo, y1) = DD waW3(ug, ph) =D > wigW3 (g, ph).-
x k=1 l=1 k=11=1

This inequality holds for any ~ in II(ug, 1) N GM Msg(o0), which concludes the proof. [ |
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It happens that the discrete form (4.4), which can be seen as an aggregation of simple
Wasserstein distances between Gaussians, has been recently proposed as an ingenious alterna-
tive to W5 in the machine learning literature, both in [8, 9] and [6, 7]. Observe that the point
of view followed here in our paper is quite different from these works, since MW, is defined
in a completely continuous setting as an optimal transport between GMMs with a restriction
on couplings, following the same kind of approach as in [3]. The fact that this restriction
leads to an explicit discrete formula, the same as the one proposed independently in [8, 9] and
[6, 7], is quite striking. Observe also that thanks to the “identifiability property” of GMMs,
this continuous formulation (4.1) is obviously non ambiguous, in the sense that the value of
the minimium is the same whatever the parametrization of the Gaussian mixtures pg and p;.
This was not obvious from the discrete versions. We will see in the following sections how this
continuous formulation can be extended to multi-marginal and barycenter formulations, and
how it can be generalized or used in the case of more general distributions.

Notice that we do not use in the definition and in the proof the fact that the ground cost
is quadratic. Definition 2 can thus be generalized to other cost functions ¢ : R?*¢ — R. The
reason why we focus on the quadratic cost is that optimal transport plans between Gaussian
measures for Wy can be computed explicitely. It follows from the equivalence between the
continuous and discrete forms of MWy that the solution of (4.1) is very easy to compute in
practice. Another consequence of this equivalence is that there exists at least one optimal
plan v* for (4.1) containing less than Ky + K; — 1 Gaussian components.

Corollary 1. Let pg = szol mEuk and py = kK:ll 7k be two Gaussian miztures on RY,
then the infimum in (4.1) is attained for a given v* € (uo, 1) N GM Maq(Ko + K1 — 1).

Proof. This follows directly from the proof that there exists at least one optimal w*
for (4.1) containing less than Ky + K; — 1 Gaussian components (see [23]). |

4.3. An example in one dimension. In order to illustrate the behavior of the optimal
maps for M W5, we focus here on a very simple example in one dimension, where pg and g
are the following mixtures of two Gaussian components

pto = 0.3N(0.2,0.03%) + 0.7A(0.4,0.04?),

11 = 0.6N(0.6,0.06%) + 0.4N(0.8,0.072).

Figure 1 shows the optimal transport plans between pg (in blue) and p; (in red), both for the
Wasserstein distance Wy and for MWs. As we can observe, the optimal transport plan for
MW (a probability measure on R x R) is a mixture of three degenerate Gaussians measures
supported by 1D lines.

4.4. Metric properties of M W5 and displacement interpolation.
4.4.1. Metric properties of M Ws.

Proposition 5. MW, defines a metric on GM My(oo) and the space GM My(o0) equipped
with the distance MWs is a geodesic space.

This proposition can be proved very easily by making use of the discrete formulation (4.4) of
the distance (see for instance [7]). For the sake of completeness, we provide in the following
a proof of the proposition using only the continuous formulation of M W5.

This manuscript is for review purposes only.
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OT matrix GO GMMTO

Figure 1: Transport plans between two mixtures of Gaussians g (in blue) and p; (in red).
Left, optimal transport plan for Wy. Right, optimal transport plan for MWs. (The values
on the x-axes have been mutiplied by 100). These examples have been computed using the
Python Optimal Transport (POT) library [15].

Proof. First, observe that MW is obviously symmetric and positive. It is also clear that
for any Gaussian mixture p, MWa(u, ) = 0. Conversely, assume that MWa(pg, p1) = 0, it
implies that Wa(ug, 1) = 0 and thus po = p; since Ws is a distance.

It remains to show that M W5 satisfies the triangle inequality. This is a classical conse-
quence of the gluing lemma, but we must be careful to check that the constructed measure
remains a Gaussian mixture. Let fiq, 11, o be three Gaussian mixtures on R?. Let vy, and
~v12 be optimal plans respectively for (1o, p1) and (p1, p2) for the problem MWy (which means
that o1 and 712 are both GMM on R??). The classical gluing lemma consists in disintegrating
Y01 and 12 into

dyo1(Yo, y1) = dyo1(oly1)dp1(y1) and  dyiz(yi, y2) = dyiz(ye|y1)dp (1),

and to define
dv012(Y0, y1, y2) = dryor(yoly1)dps (y1)dyi2(y2|y1),

which boils down to assume independence conditionnally to the value of y;. Since g1 and 712
are Gaussian mixtures on R??, the conditional distributions dyo1(yo|y1) and dyi2(ya|y1) are
also Gaussian mixtures for all y; in the support of p; (recalling that p; is the marginal on 1
of both 791 and 712). If we define a distribution g2 by integrating ypi2 over the variable yi,
i.e.

dyo2(yo, y2) = /

y dyo12(Yo, Y1, y2) = / dyo1(yoly1)du (y1)dyiz(y2|y1)
y1€

y1€Supp(11)

then g2 is obviously also a Gaussian mixture on R?¢ with marginals pg and pp. The rest of
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338 the proof is classical. Indeed, we can write

339 MW3 (19, p2) < / o — y2ll*dYo2 (vo, y2) = / o — v2ll*dYo012(vo, Y1, y2)-
340 RIxR4 R4 xR4 x R4

341 Writing [lyo — v2ll* = llvo — v1ll” + llyr — w2l + 2(yo — 91,41 — y2) (with (, ) the Euclidean
3142 scalar product on R?), and using the Cauchy-Schwarz inequality, it follows that

2
343 MW (uo, p2) < (\//2d lyo — y1ll?dvo1(yo, y1) + \//2d lyr — y2||2d712(y1792)>
' R R

344

345 The triangle inequality follows by taking for 701 (resp. 712) the optimal plan for MWy between
346 po and gy (resp. py and pg).

Now, let us show that GM My(oo) equipped with the distance MW, is a geodesic space.

For a path p = (pt)icpp,1) in GM My(co) (meaning that each p; is a GMM on R9), we can
define its length for MW by

N
LenMWQ (p) = SupN;O:togtl...gthl Z MWQ(pti—l ) pti) € [0’ +OO]'
i=1
347 Let po = > W’gu’g and 1 =) 771,u1 be two GMM. Since M W5 satifies the triangle inequality,
348 we always have that Lenpmwy,(p) > MWay(uo, p1) for all paths p such that pg = po and
349 p1 = p1. To prove that (GM My(oo), MWs) is a geodesic space we just have to exhibit a path
350 p connecting o to py and such that its length is equal to MWa(uo, p1)-
We write v* the optimal transport plan between pg and pi. For ¢ € (0,1) we can define

pe = (P)#".

351 Let t < s € [0,1] and define v/ = (P, Pg)#~*. Then ;' € (g, ps) N GM Mjg(co) and
352 therefore

353 MWa(pe, ps)* = lyo — y1lI* d3(yo, y1)

_ min /
FYE(put 15 )NG M Mo g(o0)

354 / g0 — w1ll* dv 5 (w0, 1) / IP+(yo, y1) — Ps(yo, 1) I dv* (wo, v1)
355 = / (1= t)yo + tyr — (1 — 8)yo — syill® dv* (o, y1)

436 = (s = 1)?MWs(po, p12)*.

358 Thus we have that MWa(u, us) < (s — t) MWa(uo, 1) Now, by the triangle inequality,
359 MWa(po, 1) < MWa(po, pue) + MWa (e, ps) + MWa(ps, pa)

369 S (t+s—t+1—5)MWa(uo, p).

362 Therefore all inequalities are equalities, and MWa(uy, us) = (s — t) MWa(po, p1) for all

363 0 <t <s<1. This implies that the MW, length of the path (u): is equal to MWa(ug, p1).
364 It allows us to conclude that (GM My(oco), MW5) is a geodesic space, and we have also given
365 the explicit expression of the geodesic. |

This manuscript is for review purposes only.



366

367
368

369

A WASSERSTEIN-TYPE DISTANCE IN THE SPACE OF GMM 13

The following Corollary is a direct consequence of the previous results.

Corollary 2. The barycenters between py = > Wgulg and p = >, wtul all belong to
GM My(c0) and can be written explicitely as

* k,l
Vte[0,1], e =Pi#y =) wiu,
k,l

where w* is an optimal solution of (4.4), and uf’l is the displacement interpolation between
ulg and ull. When E’g is non-singular, it is given by

et = (1 — )1 + tTp ) #4k,

with Ty the affine transport map between MIS and Ml1 given by Equation (2.8). These barycen-
ters have less than Ko+ K1 — 1 components.

4.4.2. 1D and 2D barycenter examples.

t=0.0 t=0.2 t=04 t=0.6 t=0.8 t=1.0
o /\ —ow ar — awr — awr = w = w =
a |
'\ N ~
E r”,\\ ’ \\ J"A\ //’ r‘/A\“J”A\\ ,//\f/\ﬁ\ /'/V\/\\ / \
v VA J -~ - 5 - =
N 4N o ) - ) -
Zfi I M\ /
o \ Ny VA Y N \

Figure 2: Barycenters p; between two Gaussian mixtures 1o (green curve) and p; (red curve).
Top: barycenters for the metric W5. Bottom: barycenters for the metric M W5. The barycen-
ters are computed for ¢ = 0.2,0.4,0.6,0.8.

One dimensional case. Figure 2 shows barycenters p; for ¢ = 0.2,0.4,0.6,0.8 between the
o and pq defined in Section 4.3, for both the metric Wy and MW,. Observe that the
barycenters computed for M W5 are a bit more regular (we know that they are mixtures of at
most 3 Gaussian components) than those obtained for Ws.

Two dimensional case. Figure 3 shows barycenters u; between the following two dimen-

sional mixtures
0.3 0.7
=0 ((09) o) o2 ((27) ooz

0.5 0.4
p1 = 0.4N <(0.6) ,0.01[2) + 0.6\ ((0‘25) ,0.01[2) )

where I5 is the 2 x 2 identity matrix. Notice that the M W5 geodesic looks much more regular,
each barycenter is a mixture of less than three Gaussians.
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~
I

e

o

t=0.8

Wa
©

MW,

Figure 3: Barycenters p; between two Gaussian mixtures po (first column) and p; (last
column). Top: barycenters for the metric Ws. Bottom: barycenters for the metric MWs.
The barycenters are computed for t = 0.2,0.4,0.6,0.8.

4.5. Comparison between MW, and W,.

Proposition 6. Let py € GMMy(Ko) and py € GMMy(Ky) be two Gaussian mixtures,
written as in (3.1). Then,

K; 3
Wa(po, p1) < MWa(po, 1) < Wapo, p1) + (2 wftrace(E,’f)) :
i=0,1 \ k=1
The left-hand side inequality is attained when for instance
o and py are both composed of only one Gaussian component,
o and py are finite linear combinations of Dirac masses,
w1 is obtained from ug by an affine transformation.

As we already noticed it, the first inequality is obvious and follows from the definition of
MWs. It might not be completely intuitive that M W5 can indeed be strictly larger than Wy
because of the density property of GM My(oo) in Py(R%). This follows from the fact that our
optimization problem has constraints v € II(ug, p11). Even if any measure v in II(ug, 1) can
be approximated by a sequence of Gaussian mixtures, this sequence of Gaussian mixtures will
generally not belong to II(ug, it1), hence explaining the difference between MWy and W.

In order to show that MW, is always smaller than the sum of W5 plus a term depending
on the trace of the covariance matrices of the two Gaussian mixtures, we start with a lemma
which makes more explicit the distance MW, between a Gaussian mixture and a mixture of
Dirac distributions.

Lemma 4.1. Let py = Zfzol Thuk with pf = N(mb, 2k) and 1y = Z,i(:ll W’fém;f. Let
fo = 25:01 ﬁgéng (fip only retains the means of py). Then,

Ko

MW3 (1o, 1) = W3 (o, 1) + Y mgtrace(S5).
k=1

This manuscript is for review purposes only.
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Proof.
102 MW2(po, = inf w W ) = inf w < mt — mk||? + trace(ZE )
5 (Ko p1) weTllrom) Z W3 (1o mb ) weTl(ro 1) zl: k| llma oll (X0)
Ko
103 = inf Z wy||mY — mf||? + Z mhtrace(S8) = W (jio, 1) + Z Thtrace(XE).
well(mo,m1) . 1
404 In other words, the squared distance M W3 between pg and 1 is the sum of the squared

405 Wasserstein distance between iy and p; and a linear combination of the traces of the covari-
406 ance matrices of the components of pp. We are now in a position to show the other inequality
407 between MWy and Ws.

408 Proof of Proposition 6. Let (ug)n and (p}'),, be two sequences of mixtures of Dirac masses
109 respectively converging to pg and u1 in Po(RY). Since MW, is a distance,

410 MWa(po, pa) < MWa(pg, pt) + MWa(po, pg) + MWa(p, i)

411 = Wa(ug, 11) + MWa(po, ng) + MWa(pa, u).

412 We study in the following the limits of these three terms when n — +oo.

113 First, observe that MWa(ug, pi) = Wa(ug, 1) —n—oo Waltto, pt1) since Wy is continuous

414 on Po(RY).
Second, using Lemma 4.1, for ¢ =0, 1,

Ki Ki
MW ) = W )+ 5 mbtsce(S5) s Wi ) + 3 nbtrace(Sh).
k=1 k=1
415 Define the measure dvy(x,y) = Zfilwk mk (y)gm k(x)dz, with g,.r s the probability

Sk
116 density function of the Gaussian distribution N (mkF, E +). The probability measure v belongs
417 to H(,ul: Ml)a

Ki
s W) < [ o= slPdrie,n) = wt [ Lo = mb g, sp(0)do
k=1
K;
419 = " rFtrace(2F).
k=1
120 We conclude that

21 MWa(po, ) < lim inf (Wa(ug, 1) + MWa(po, pg) + MWa(pa, 7))

Ko 3 K, 2
< Wt + (g )+ Y (s ) (3o + 3 )
k=1 k=1
1 1
Ko 2 K 2
423 < Wa(po, p1) + (2 Z 7r§trace(2’5)> + (2 Z W]ftrace(E’f)> :
k=1 k=1
424 This ends the proof of the proposition.
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16 J. DELON AND A. DESOLNEUX

Observe that if p is a Gaussian distribution N (m,Y) and p™ a distribution supported by
a finite number of points which converges to u in P2(R%), then

and
1
MWo(p, 1) = (W3 (fi, p™) + trace(2)) 2 —po0 (2trace(2))% # 0.

Let us also remark that if yo and p; are Gaussian mixtures such that max;, ; trace(Ef ) <e,
then

MWa(po, p1) < Walpo, pn) + 2v/2¢.

4.6. Generalization to other mixture models. A natural question is to know if the
methodology we have developped here, and that restricts the set of possible coupling mea-
sures to Gaussian mixtures, can be extended to other families of mixtures. Indeed, in the
image processing litterature, as well as in many other fields, mixture models beyond Gauss-
ian ones are widely used, such as Generalized Gaussian Mixture Models [11] or mixtures of
T-distributions [29], for instance. Now, to extend our methodology to other mixtures, we
need two main properties: (a) the identifiability property (that will ensure that there is a
canonical way to write a distribution as a mixture); and (b) a marginal consistency property
(we need all the marginal of an element of the family to remain in the same family). These
two properties permit in particular to generalize the proof of Proposition 4. In order to make
the discrete formulation convenient for numerical computations, we also need that the Ws
distance between any two elements of the family must be easy to compute.

Starting from this last requirement, we can consider a family of elliptical distributions,
where the elements are of the form

Ve € RY, frus(x) = Chas h((x —m)'S™ (2 — m)),

where m € R%, ¥ is a positive definite symmetric matrix and h is a given function from [0, 4+00)
to [0,400). Gaussian distributions are an example, with h(t) = exp(—t/2). Generalized
Gaussian distributions are obtained with h(t) = exp(—t”), with 3 not necessarily equal to
1. T-distributions are also in this family, with h(t) = (1 + t/v)~#*+9/2 etc. Thanks to
their elliptical contoured property, the W5 distance between two elements in such a family
(i.e. h fixed) can be explicitely computed (see Gelbrich [18]), and yields a formula that is the
same as the one in the Gaussian case (Equation (2.7)). In such a family, the identifiability
property can be checked, using the asymptotic behavior in all directions of R?. Now, if we
want the marginal consistency property to be also satisfied (which is necessary if we want the
coupling restriction problem to be well-defined), the choice of h is very limited. Indeed, Kano
in [21], proved that the only elliptical distributions with the marginal consistency property
are the ones which are a scale mixture of normal distributions with a mixing variable that
is unrelated to the dimension d. So, generalized Gaussian distributions don’t satisfy this
marginal consistency property, but T-distributions do.

5. Multi-marginal formulation and barycenters.

This manuscript is for review purposes only.
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5.1. Multi-marginal formulation for MWs. Let pg, pt1 ..., pj—1 be J Gaussian mixtures
on R? and let \g,...\j_1 be J positive weights summing to 1. The multi-marginal version
of our optimal transport problem restricted to Gaussian mixture models can be written

(5.1)
MMW: ey hg—1) 1= inf / c(xgy ..., xg_1)dy(zo,..., Tj-1),
Q(MO MJ 1> ’YGH(Mo,...,/LJ_l)ﬂGMMJd(OO) RAJ ( 0 4 1) 7( 0 d 1)
where
J—1
(5.2) c(xo, ... xy1) = Aillzi — B(z)|* = Z ikl — 242
i=0 1,j=0

and where TI(pg, fi1, - . ., pty—1) is the set of probability measures on (R%)’ having po, p1, - ..,
[j—1 as marginals.

Writing for every j, p; = Zk 1 7rj uj, and using exactly the same arguments as in Propo-
sition 4, we can easily show the following result.

Proposition 7. The optimisation problem (5.1) can be rewritten under the discrete form

Ko,...,Kj_1
(5.3) MMWs(ug, ... pig—1) = min Z wkomk‘,flMWQQ(ugo,...,,u{c,J 7
well(mo,...,m7-1) Koy =1
where I(mp, m1,...,mj_1) is the subset of tensors w in Mk, k,...k,_,(RT) having 7o, m1,
.., Wj—_1 as discrete marginals, i.e. such that
. k
(5.4) Vi€{0,.. J-1}, VR e{l,.. ., K}, D Whokyky, =T
1<ko<Ko

1<k 1<K;_1

=
1<kj11<Kj41

1<ky 1<Kj_q

Moreover, the solution v* of (5.1) can be written

* * *
(5.5) 7= Z Wioky..ky_1 Vhoki...ky_17
1<ko<Kp

1<k;_1<K;_4
where w* is solution of (5.3) and ’YZoku.kal is the optimal multi-marginal plan between the

. kj— .
Gaussian measures ,ulgo, oot (see Section 2.4.2).

From Section 2.4.2, we know how to construct the optimal multi-marginal plans v, ;. Ky
which means that computing a solution for (5.1) boils down to solve the linear program (5.3)

in order to find w*.

This manuscript is for review purposes only.



479
480

481

483
184

485
486
487

188

489

490

491

492

193

494

495
496
497

498
499

500

18 J. DELON AND A. DESOLNEUX

5.2. Link with the MWs-barycenters. We will now show the link between the previous
multi-marginal problem and the barycenters for MWj.

Proposition 8. The barycenter problem

J—1
5.6 f AjMW. V),
( ) VEGJ\I/[nMd Z Q(M] )
has a solution given by v* = B#~*, where v* is an optimal plan for the multi-marginal

problem (5.1).

Proof. For any v € H(uo, ..., pyj—1) NGMM j4(c0), we define v; = (P}, B)#~, with B the
barycenter application defined in (2.4) and P; : (R%)7 — R? such that P(zo, ...,z _1) = ;.
Observe that ~; belongs to II(u;, ) with v = B#~y. The probability measure v; also belongs
to GM Msq(o0) since (P, B) is a linear application. It follows that

J—1
/ ZA e, — B@)|2dy (a0, . 2y1) = SN, / l2; — B(2)|dy (0., s-1)
=0 (Rd)J
J—1
=3 / le; — ylPdv; (. )
7=0
J—1

> 3" M (y.0).

<.
Il
o

This inequality holds for any arbitrary v € (uo, ..., pus—1) N GM M j4(c0), thus

J-1

MMWa(ji, - ., jiy—1) > f A MW,
ko, py-) 2 inf Z 5 (1 v).

Conversely, for any v in GM M (o0), we can write v = Zlel 7l vl the vl being Gaussian

probability measures. We also write u; = Zk 1 7r] M], and we call w/ the optimal discrete
plan for MW5 between the mixtures p; and v (see Equation (4.4)). Then,

J—1
Z)‘ MW2 Mg,V Z)\ ZwleQ /’L]7 )
7=0
Now, if we define a Ko X --- x Kj_1 X L tensor o and a Ky x --- X Kj_1 tensor & by

Jl‘
H kl

kg ky 1l = W and  Qgyop, , = Zako.,.kJ_ll,
V

This manuscript is for review purposes only.



=)

N DD

-3

)
Co

V]
S

(G2 SN, SENG) B, BN

w
=
(@)

A WASSERSTEIN-TYPE DISTANCE IN THE SPACE OF GMM 19

clearly a € (7, ..., my-1,m,) and @ € (my,...,7j_1). Moreover,
J-1 - K; L N
j 2 il
S AN = S0 35 Sl
7=0 7=0 i=11=1
J—1 .
= )‘j ak0~~~kJ71lW22(:U’j]7Vl)
J=0  ki,...kj-1l
J—1 .
2/, ki 1
= Z Okg..ky_ql Z AjWZ (:U*jjvl/ )
k1,....kj_1,l 7=0
kj-1 . .
> Z ko ey 1 MW3 (No ooty )  (see Equation (5.6))
Kiyky_1,l
_ k k
= S Gk, MWRGEY, ) > MMWE (o, - 1),
k1ynkg—1

the last inequality being a consequence of Proposition 7. Since this holds for any arbitrary v
in GM M (o0), this ends the proof. [ ]

The following corollary gives a more explicit formulation for the barycenters for MW,
and shows that the number of Gaussian components in the mixture is much smaller than

HJlK

Corollary 3. Let po, ..., uj—1 be J Gaussian miztures such that all the involved covariance
matrices are positive definite, then the solution of (5.6) can be written
(57) V= Z w;:o‘..kjflyko'“kJ—l
ko, k-1
where Vi, i, , 15 the Gaussian barycenter for Wy between the components ugo, ey ,uJ" 1. and

*

w* is the optimal solution of (5.3). Moreover, this barycenter has less than Ko+ -+ Kj_1 —
J + 1 non-zero coefficients.

Proof. This follows directly from the proof of the previous propositions. The linear pro-
gram (5.3) has Ko + -+ + Kj_1 — J + 1 affine constraints, and thus must have at least a
solution with less than Ko+ ---+ Kj_1 — J + 1 components. [ |

To conclude this section, it is important to emphasize that the problem of barycenters for
the distance MWs, as defined in (5.6), is completely different from

5.8 f Aj W2 (
( ) VEG]\14I}\/Id oo) Z 2 MJ’

Indeed, since GM My(oc) is dense in P2(R?) and the total cost on the right is continuous on
Po(RY), the infimum in (5.8) is exactly the same as the infimum over Py(RY). Even if the
barycenter for W5 is not a mixture itself, it can be approximated by a sequence of Gaussian
mixtures with any desired precision. Of course, these mixtures might have a very high number
of components in practice.
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20 J. DELON AND A. DESOLNEUX

5.3. Some examples. The previous propositions give us a very simple way to compute

barycenters between Gaussian mixtures for the metric M Was. For given mixtures po, ..., tj—1,
we first compute all the values MWa(uf?, . . ., Mﬁ"_ 7') between their components (and these val-

ues can be computed iteratively, see Section 2.4.2) and the corresponding Gaussian barycenters

Vko..ky_,- Then we solve the linear program (5.3) to find w*.
Figure 4 shows the barycenters between the following simple two dimensional mixtures

e ((02) om0 ) () (2 )
() (08 1))

i =N ( (8;2) ,0.0112> FIN ((g;ﬁ) ,0.0112> +IN ((00275> ,0.0112>
+ i/\/ ((g?g) ,0.0112> )

Ha :%N ((og%) ,0.025 ((1) o.%5)> + %N ((o().é55> ,0.025 (é 0.%5))
+ i/\/ <(Od?55> ,0.025 (0'85 ?)) + %N <<00'_755) ,0.025 (0'85 ?)) ,

(e )2 (E)om (3 2)
() )

where I is the 2 x 2 identity matrix. Each barycenter is a mixture of at most Ko+ K1+ Ko+
K3 —4+41 =11 components. By thresholding the mixtures densities, this yields barycenters
between 2-D shapes.

To go further, Figure 5 shows barycenters where more involved shapes have been approxi-
mated by mixtures of 12 Gaussian components each. Observe that, even if some of the original
shapes (the star, the cross) have symmetries, these symmetries are not necessarily respected
by the estimated GMM, and thus not preserved in the barycenters. This could be easily solved
by imposing some symmetry in the GMM estimation for these shapes.

6. Using M W5 in practice.

6.1. Extension to probability distributions that are not GMM. Most applications of
optimal transport involve data that do not follow a Gaussian mixture model and we can
wonder how to make use of the distance MW and the corresponding transport plans in this
case. A simple solution is to approach these data by convenient Gaussian mixture models and
to use the transport plan 7 (or one of the maps defined in the previous section) to displace
the data.

Given two probability measures vy and vy, we can define a pseudo-distance MW (v, v1)
as the distance MWy (o, 1), where each p; (i = 0,1) is the Gaussian mixture model with K
components which minimizes an appropriate “similarity measure” to v;. For instance, if v; is
a discrete measure v; = J% Z}];l (596;_ in R¢ , this similarity can be chosen as the opposite of

the log-likelihood of the discrete set of points {x;};=; s, and the parameters of the Gaussian
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SN MMNMNN

Figure 4: MWjs-barycenters between 4 Gaussian mixtures pg, g1, g2 and pg. On the left,
some level sets of the distributions are displayed. On the right, densities thresholded at level
1 are displayed. We use bilinear weights with respect to the four corners of the square.

mixture can be infered thanks to the Expectation-Maximization algorithm. Observe that this
log-likelihood can also be written

]El/i [lOg Nz] :

If v; is absolutely continuous, we can instead choose p; which minimizes KL(v;, p;) among
GMM of order K. The discrete and continuous formulations coincide since

KL(v;, i) = —H(v;) — Ey, [log ],

where H(v;) is the differential entropy of v;.

In both cases, the corresponding MWy o does not define a distance since two different
distributions may have the same corresponding Gaussian mixture. However, for K large
enough, their approximation by Gaussian mixtures will become different. The choice of K
must be a compromise between the quality of the approximation given by Gaussian mixture
models and the affordable computing time. In any case, the optimal transport plan ~g
involved in MWs(po, 1) can be used to compute an approximate transport map between 1y
and vy.

In the experimental section, we will use this approximation for different data, generally
with K = 10.

6.2. A similarity measure mixing MW, and K L. In the previous paragraphs, we have
seen how to use our Wasserstein-type distance M W5 and its associated optimal transport plan
on probability measures vy and v; that are not GMM. Instead of a two step formulation (first
an approximation by two GMM, and second the computation of MW5), we propose here a
relaxed formulation combining directly MWy with the Kullback-Leibler divergence.
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Figure 5: Barycenters between four mixtures of 12 Gaussian components, ug, p1, p2, s for
the metric MW,. The weights are bilinear with respect to the four corners of the square.

576 Let vy and v be two probability measures on R?, we define
(6.1)
577 EK)\(VO: Vl) = min / Hyo - y1H2d')’(y0, yl) - )\]EI/O [lOg PO#’Y] - )‘Em [log P1#7]>
YEGMM24(K) JRdxRE
578 where A > 0 is a parameter.
579 In the case where 1y and vy are absolutely continuous with respect to the Lebesgue mea-
580 sure, we can write instead
(6.2)
581 Exa(vo,v1) =  min / lyo — w1lIdy(yo, y1) + AKL(vo, Po#ty) + AKL(v1, Pi#y)
YEGM M3q(K) JrdxRE

582 and E_[;/)\(Vo, 1) = Ex (v, v1) —AH (v9) — AH (v1). Note that this formulation does not define
583 a distance in general.

584 This formulation is close to the unbalanced formulation of optimal transport proposed by
585 Chizat et al. in [10], with two differences: a) we constrain the solution v to be a GMM; and
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586 b) we use KL(vy, Po#7) instead of KL(Py#v,1p). In their case, the support of P;#~y must
587 be contained in the support of ;. When v; has a bounded support, this constraint is quite
588 strong and would not make sense for a GMM ~.
589 For discrete measures vy and v1, when A goes to infinity, minimizing (6.1) becomes equiv-
590 alent to approximate vy and v; by the EM algorithm and this only imposes the marginals of
591 v to be as close as possible to vy and v;. When A decreases, the first term favors solutions ~
592  whose marginals become closer.
Solving this problem (Equation (6.1)) leads to computations similar to those used in the
EM iterations [4]. By differentiating with respect to the weights, means and covariances of
v, we obtain equations which are not in closed-form. For the sake of simplicity, we illustrate
here what happens in one dimension.
Let v € GM M3(K) be a Gaussian mixture in dimension 2d = 2 with K elements. We write

K o2 a
mo,k 0.k k
7= mN Aol g2 )
1 mik Ak 01

We have that the marginals are given by the 1d Gaussian mixtures

K K
Po#ty = Zﬁk/\/(mo,k,gg,k) and  Pi#y = ZW’“N(mL’“’ oL

k=1 k=1

Then, to minimize, with respect to v, the energy Eg x(v,v1) above, since the KL terms
are independent of the ay, we can directly take ay = 0g 101, and the transport cost term
becomes

K

/Rd i lyo — pllPdy(yo, 31) = > mk [(moe — m1e)® + (o0 — o16)?] -
x k=1

593 Therefore, we have to consider the problem of minimizing the following “energy”:

K
594 F(y) = Z Th [(mo,k — ml,k)2 + (o0k — Ul,k)2]
k=1
K K
595 —)\/log Zﬂkgm()kpgk(az) dvp(x) —)\/log Zﬂ"fgmmﬁfk(m) dvy ().
R k=1 S R k=1 S
It can be optimized through a simple gradient descent on the parameters m, m;, o; ) for
i=0,1and k =1,..., K. Indeed a simple calculus shows that we can write
8F Y 77'0’]4 + ﬁl,k
3 1) _ [(mok — mak)? + (00k — 018)°] — A,
Tk Tk
OF (v Tik | -
O _ 27 (M e — M) — A =g~ (1 e — M),
om; Oik
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OF ()

Tik o 2
and = 2mp(0i — o) — A—2E (52, — o
an,k ﬂ—k(a—lzk Uj,k) O—?’k (Uz,k Jz,k)?

where we have introduced some auxilary empirical estimates of the variables given, for ¢ = 0, 1
and k=1,...,K, by

ﬂ-k‘gmi,kvo-iz (x) ~
Yik(T) = =x - and T = /%,k(ﬂ?)d%(@;
Zl:l ngmi,l,oil (.’L‘)
_ 1 9 1 2
Mik = = v p(T)dvi(r)  and Gy = = (& —my ) “vi k(x)dvi(x).
5 k Tk

Automatic differenciation of F' can also be used in practice. At each iteration of the gradient
descent, we project on the constraints 7 > 0, 0, > 0 and ), 7, = 1.

On Figure 6, we illustrate this approach on a simple example. The distributions 1y and
v are 1d discrete distributions, plotted as the red and blue histograms. On this example, we
choose K = 3 and we use automatic differenciation (with the torch.autograd Python library)
for the sake of convenience. The red and blue plain curves represent the final distributions
Py#~y and Py#+, for A in the set {10,2,1,0.5,0.1,0.01}. The behavior is as expected: when A
is large, the KL terms are dominating and the distribution « tends to have its marginal fitting
well the two distributions 1y and ;. Whereas, when A is small, the Wasserstein transport
term dominates and the two marginals of v are almost equal.

(A A=05 (e) A=0.1 (f) A =0.01

Figure 6: The distributions vy and v are 1d discrete distributions, plotted as the red and blue
discrete histograms. The red and blue plain curves represent the final distributions Py#~ and
Py#~. In this experiment, we use K = 3 Gaussian components for ~.
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6.3. From a GMM transport plan to a transport map. Usually, we need not only to
have an optimal transport plan and its corresponding cost, but also an assignment giving for
each z € R? a corresponding value T'(z) € R%. Let o and p1 be two GMM. Then, the optimal
transport plan between ug and py for MWy is given by

Y@, y) =D Wit sk (T)8y=1 (2)-
k,l
It is not of the form (Id, T)#wuo (see also Figure 1 for an example), but we can however define
a unique assignment of each z, for instance by setting
Tmean(l') = E’y(Y|X = 1?),

where here (X,Y) is distributed according to the probability distribution . Then, since the
distribution of Y| X = x is given by the discrete distribution

Wi 19mk sk (x)

Jo o
Zj ﬂ'ogmgpgé (HT)

)

Zpk,l(x)(sTk,l(x) with  pg(z) =
kel

we get that
Zk,l U’Zﬂm’g,zg ()T (z)

>k TGt i (%)

Notice that the Ti,eqn defined this way is an assignment that will not necessarily satisfy
the properties of an optimal transport map. In particular, in dimension d = 1, the map Ti,ean
may not be increasing: each T} ; is increasing but because of the weights that depend on z,
their weighted sum is not necessarily increasing. Another issue is that Ti,eqan# o may be “far”
from the target distribution p1. This happens for instance, in 1D, when po = N(0,1) and py
is the mixture of M(—a,1) and N (a,1), each with weight 0.5. In this extreme case we even
have that Tyneqn is the identity map, and thus ThneanF o = po, that can be very far from puq
when a is large.

Now, another way to define an assignment is to define it as a random assignment using
the optimal plan . More precisely, for a fixed value x we can define

Trnean (l‘) =

w}i,lgmg,zg (z)

o )
Zj ﬂ-ogm%’gﬁo (x)

Trana(x) = Tg(xz)  with probability py(x) =

Observe that, from a mathematical point of view, we can define a random variable T4nq()
for a fixed value of z, or also a finite set of independent random variables T}.4,q(x) for a finite
set of z. But constructing and defining T;.,,4 as a stochastic process on the whole space R¢
would be mathematically much more difficult (see [20] for instance).

Now, for any measurable set A of R and any z € R?, we can define the map x(z, A) :=
P[T;ana(z) € A], and we have

v(z, A)

J. .
Zj Wogm%,gé (z)

k(z, A) = , and thus /f@(:c, A)dpuo(z) = p1(A).
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It means that if the measure 7,44 could be defined everywhere, then “T,..,q# 0", would be
equal in expectation to .

Figure 7 illustrates these two possible assignments Ti,cqn and Tpqnqg o0 a simple example.
In this example, two discrete measures vy and vy are approximated by Gaussian mixtures
o and p; of order K, and we compute the transport maps Tieqn and Tpqnq for these two
mixtures. These maps are used to displace the points of vyg. We show the result of these
displacements for different values of K. We can see that depending on the configuration of
points, the results provided by Ti,eqn and Trq.nq can be quite different. As expected, the
measure Tyqnqa#1o (well-defined since vy is composed of a finite set of points) looks more
similar to vy than T),eqn#1vo does. And T)qpg is also less regular than T)eqy, (two close points
can be easily displaced to two positions far from each other). This may not be desirable in
some applications, for instance in color transfer as we will see in Figure 9 in the experimental
section.

Figure 7: Assignments between two point clouds vy (in blue) and v; (in yellow) composed of
40 points, for different values of K. Green points represent T#vgy, where T = T,4,q On the
first line and T = Tyueqn on the second line. The four columns correspond respectively to
K =1,5,10,40. Observe that for K = 1, only one Gaussian is used for each set of points, and
TH#uvy is quite far from vy (in this case, Tyqng and Tiean coincide). When K increases, the
discrete distribution T#1uvy becomes closer to vy, especially for T' = T,4nq. When K is chosen
equal to the number of points, we obtain the result of the Wh-optimal transport between vy
and vy.

7. Two applications in image processing. We have already illustrated the behaviour of
the distance M W3 in small dimension. In the following, we investigate more involved examples
in larger dimension. In the last ten years, optimal transport has been thoroughly used for
various applications in image processing and computer vision, including color transfer, texture
synthesis, shape matching. We focus here on two simple applications: on the one hand, color
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transfer, that involves to transport mass in dimension d = 3 since color histograms are 3D
histograms, and on the other hand patch-based texture synthesis, that necessitates transport
in dimension p? for p x p patches. These two applications require to compute transport plans
or barycenters between potentially millions of points. We will see that the use of M W5 makes
these computations much easier and faster than the use of classical optimal transport, while
yielding excellent visual results. The codes of the different experiments are available through
Jupyter notebooks on https://github.com/judelo/gmmot.

7.1. Color transfer. We start with the problem of color transfer. A discrete color image
can be seen as a function u : Q — R3 where Q = {0,...n,—1} x{0,...n.—1} is a discrete grid.
The image size is n, x n. and for each i € Q, u(i) € R? is a set of three values corresponding
to the intensities of red, green and blue in the color of the pixel. Given two images ug and u;
on grids Qg and €21, we define the discrete color distributions n, = @ Zieﬂk duy(i), kK =0,1,
and we approximate these two distributions by Gaussian mixtures po and p; thanks to the
Expectation-Maximization (EM) algorithm®. Keeping the notations used previously in the
paper, we write K} the number of Gaussian components in the mixture g, for k = 0,1. We
compute the MW, map between these two mixtures and the corresponding Tipeqn. We use
it to compute Tnean(uo), an image with the same content as ug but with colors much closer
to those of uy. Figure 8 illustrates this process on two paintings by Renoir and Gauguin,
respectively Le déjeuner des canotiers and Manhana no atua. For this experiment, we choose
Ky = K1 = 10. The corresponding transport map for MW is relatively fast to compute (less
than one minute with a non-optimized Python implementation, using the POT library [15]
for computing the map between the discrete distributions of 10 masses). We also show on the
same figure T,qnq(ug), the result of the sliced optimal transport [25, 5], and the result of the
separable optimal transport (i.e. on each color channel separately). Notice that the complete
optimal transport on such huge discrete distributions (approximately 800000 Dirac masses for
these 1024 x 768 images) is hardly tractable in practice. As could be expected, the image
Trand(ug) is much noisier than the image Tean(uo). We show on Figure 9 the discrete color
distributions of these different images and the corresponding classes provided by EM (each
point is assigned to its most likely class).

The value K = 10 that we have chosen here is the result of a compromise. Indeed, when
K is too small, the approximation by the mixtures is generally too rough to represent the
complexity of the color data properly. At the opposite, we have observed that increasing the
number of components does not necessarily help since the corresponding transport map will
loose regularity. For color transfer experiments, we found in practice that using around 10
components yields the best results. We also illustrate this on Figure 10, where we show the
results of the color transfer with M Ws for different values of K. On the different images, one
can appreciate how the color distribution gets closer and closer to the one of the target image
as K increases.

We end this section with a color manipulation experiment, shown on Figure 11. Four
different images being given, we create barycenters for M Wy between their four color palettes
(represented again by mixtures of 10 Gaussian components), and we modify the first of the
four images so that its color palette spans this space of barycenters. For this experiment (and

3In practice, we use the scikit-learn implementation of EM with the kmeans initialization.
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Figure 8: First line, images up and u; (two paintings by Renoir and Gauguin). Second line,
Tinean(uo) and Tpqpng(ug). Third line, color transfer with the sliced optimal transport [25, 5],
that we denote by SOT'(up) and result of the separable optimal transport (color transfer is
applied separately on the three dimensions - channels - of the color distributions).

this experiment only), a spatial regularization step is applied in post-processing [24] to remove
some artifacts created by these color transformations between highly different images.

7.2. Texture synthesis. Given an exemplar texture image u : 2 — R3, the goal of texture
synthesis is to synthetize images with the same perceptual characteristics as u, while keeping
some innovative content. The literature on texture synthesis is rich, and we will only focus here
on a bilevel approach proposed recently in [16]. The method relies on the optimal transport
between a continuous (Gaussian or Gaussian mixtures) distribution and a discrete distribution
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Figure 9: The images ug and u; are the ones of Figure 8. First line: color distribution of
the image ug, the 10 classes found by the EM algorithm, and color distribution of T),ean (uo)-
Second line: color distribution of the image u;, the 10 classes found by the EM algorithm,
and color distribution of Tqpnq(ug).

K=1 K=3 K =10

Figure 10: The left-most image is the “red mountain” image, and its color distribution is
modified to match the one of the right-most image (the “white mountain” image) with MWy
using respectively K =1, K = 3 and K = 10 components in the Gaussian mixtures.

(distribution of the patches of the exemplar texture image). The first step of the method can
be described as follows. For a given exemplar image v : Q — R3, the authors compute the
asymptotic discrete spot noise (ADSN) associated with u, which is the stationary Gaussian
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Figure 11: In this experiment, the top left image is modified in such a way that its color palette
goes through the MW2-barycenters between the color palettes of the four corner images. Each
color palette is represented as a mixture of 10 Gaussian components. The weights used for
the barycenters are bilinear with respect to the four corners of the rectangle.

random field U : Z? — R? with same mean and covariance as u, i.e.

with W a standard normal Gaussian white noise on Z2?. Once the ADSN U is computed,
they extract a set S of p x p sub-images (also called patches) of u. In our experiments, we
extract one patch for each pixel of u (excluding the borders), so patches are overlapping and
the number of patches is approximately equal to the image size. The authors of [16] then
define n; the empirical distribution of this set of patches (thus 7 is in dimension 3 X p X p, i.e.
27 for p = 3) and 7y the Gaussian distribution of patches of U, and compute the semi-discrete
optimal transport map Tsp from 79 to n;. This map Tsp is then applied to each patch of a
realization of U, and an ouput synthetized image v is obtained by averaging the transported
patches at each pixel. Since the semi-discrete optimal transport step is numerically very
expensive in such high dimension, we propose to make use of the M W5 distance instead. For
that, we approximate the two discrete patch distributions of v and U by Gaussian Mixture
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models pp and p1, and we compute the optimal map Tyeqn for MWy between them. The
rest of the algorithm is similar to the one described in [16]. Figure 12 shows the results for
different choices of exemplar images u. In practice, we use Ko = K1 = 10, as in color transfer,
and 3 x 3 color patches. The results obtained with our approach are visually very similar to
the ones obtained with [16], for a computational time approximately 10 times smaller. More
precisely, for instance for an image of size 256 x 256, the proposed approach takes about 35
seconds, whereas the semi-discrete approach of [16] takes about 400 seconds. We are currently
exploring a multiscale version of this approach, inspired by the recent [22].

Figure 12: Left, original texture u. Middle, ADSN U. Right, synthetized version.

8. Discussion and conclusion. In this paper, we have defined a Wasserstein-type distance
on the set of Gaussian mixture models, by restricting the set of possible coupling measures to
Gaussian mixtures. We have shown that this distance, with an explicit discrete formulation, is
easy to compute and suitable to compute transport plans or barycenters in high dimensional
problems where the classical Wasserstein distance remains difficult to handle. We have also
discussed the fact that the distance M W5 could be extended to other types of mixtures, as
soon as we have a marginal consistency property and an identifiability property similar to the
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one used in the proof of Proposition 4. In practice, Gaussian mixture models are versatile
enough to represent large classes of concrete and applied problems. One important question
raised by the introduced framework and its generalization in Section 6.2 is how to estimate the
mixtures for discrete data, since the obtained result will depend on the number K of Gaussian
components in the mixtures and on the parameter A that weights the data-fidelity terms. If
the number of Gaussian components is chosen large enough, and covariances small enough,
the transport plan for MWy will look very similar to the one of Wy, but at the price of a high
computational cost. If, on the contrary, we choose a very small number of components (like
in the color transfer experiments of Section 7.1), the resulting optimal transport map will be
much simpler, which seems to be desirable for some applications.

Acknowledgments. We would like to thank Arthur Leclaire for his valuable assistance for
the texture synthesis experiments.

Appendix: proofs.
Density of GM My(o0) in P,(RY).
Lemma 3.1. The set

N
{Zﬂkdyk s NeN, (yo)r € RHY, (mp)x € FN}

k=1

is dense in Pp(RY) for the metric Wy, for any p > 1.

Proof. The proof is adapted from the proof of Theorem 6.18 in [31] and given here for the
sake of completeness.
Let 1 € Py(R?). For each € > 0, we can find 7 such that fB(o e lly[Pdu(x) < €P, where

B(0,7) € R? is the ball of center 0 and radius =, and B(0,7)¢ denotes its complementary set
in R%. The ball B(0,7) can be covered by a finite number of balls B(yg,€), 1 <k < N. Now,
define By, = B(yk, €) \ Ui<j<kB(yj, €), all these sets are disjoint and still cover B(0, ).
Define ¢ : R* — R? on R such that

Vk, Vy € BN B(0,7), ¢(y) =yr and Yy € B(0,7)°, ¢(y) = 0.

Then,

N

¢#u =Y u(Br N B(0,7))dy, + u(B(0,7))d

k=1

and
Wyt < [ Iy = ol duty)
<o [ ) [ ulPda) < e =20

B(0,r) B(0,r)c

which finishes the proof. |
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Identifiability properties of Gaussian mixture models.

Proposition 2. The set of finite Gaussian mixtures is identifiable, in the sense that two
miztures f1o = 25:01 mhuk and py = ZkK:ll ik, written such that all {uf}x (resp. all {pl};)
are pairwise distinct, are equal if and only if Ko = Ky and we can reorder the indexes such
that for all k, 78 = ¥, m§ = m¥ and 2f = ¥F.

This result is classical and the proof is also given here in the Appendix for the sake of com-
pleteness.

Proof. This proof is an adaptation and simplification of the proof of Proposition 2 in [34].
First, assume that d = 1 and that two Gaussian mixtures are equal:

Ko K '
(8.1) Y omous =Y mu-
k=1 =1

We start by identifying the Dirac masses from both sums, so only non-degenerate Gaussian
components remain. Writing pf = NV'(mF, (o¥)?), it follows that

7

Ko k 7(zfmé:)2 K J 7(1*"”]1.)2

T, T 1
0 2(0k)2  _ 1 2(07)2
E —€ 0" = E —e V7 Vo e R

=1 20 =191

Now, define ky = argmax,of and jo = argmaxja{. If the maximum is attained for several

values of k (resp. j), we keep the one with the largest mean mf (resp. mjl) Then, when

T — 400, we have the equivalences

k ; j
Ko o _G-mb)? ko _lammg? Ky ojo ey i _@*T;ﬂ
g —2@ 2(of)? ~ Lke 20" and g “le 200)? ~ L 200%
Py ogs x—+00 0-00 o J{ r—>+00 U{O

Since the two sums are equal, these two terms must also be equivalent when x — +o0, which

implies necessarily that o0 = 0%, mt® = m?° and 7 = 73°. Now, we can remove these two
components from the two sums and we obtain
ok Gammb)? Ll
ky2 Jy2
E —%e o)™ = E —;e 2D)” L VreR.
k=1...Ko, ktko 00 j=1...K1, j#jo 71

We can start over and show recursively that all components are equal.
For d > 1, assume once again that two Gaussian mixtures pg and p; are equal, written as
in Equation (8.1). The projection of this equality yields

KO KI . . .
(82) D TN ((mg,€),6'566) = Y mN((m],€),£'57¢), V& e RY.
k=1 7=1

At this point, observe that for some values of &, some of these projected components may
not be pairwise distinct anymore, so we cannot directly apply the result for d = 1 to such
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mixtures. However, since the pairs (m£, ) (resp. (mjl, 2]1)) are all distinct, then for i =0, 1,

the set

o= U {g st. (mF —mF ) =0 and ¢ (zf—zf’)gzo}

1<k,k/'<K;

is of Lebesgue measure 0 in R?. For any ¢ in R\ ©gU Oy, the pairs {({(mf, &), £'SFE) b (vesp.
{((m],£),£'21€)};) are pairwise distinct. Consequently, using the first part of the proof (for

d=1),

(8.3)

where

we can deduce that Ky = K7 and that

Rd\@()U@l CﬂUE’W
kg

Ekj = {5, s.t. 7r§ = <m§ — m{,f} =0 and ¢ (EIS — E{) £ = 0}.

Now, assume that the two sets {(nf, m&, £§)}, and {(x7,m], £])}; are different. Since each
of these sets is composed of different triplets, it is equivalent to assume that there exists k in
{1,... Ko} such that (7f, mk ) is different from all triplets (7], mJ,%7). In this case, the
sets Zp ; for j = 1,... Ky are all of Lebesgue measure 0 in R9, which contradicts (8.3). We
conclude that the sets { (7%, mk, 2k)}; and {(77{, m{, Z{)}j are equal. [ ]
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