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Abstract : The path leading to pumpkin-like configurations and toroidal shapes 1s
investigated using a one-parameter shape sequence. The deformation energy is determined
within the analytical expressions obtained for the various shape-dependent functions and the
generalized rotating liquid drop model taking into account the proximity energy and the
temperature. With increasing mass and angular momentum, a potential well appears in the
toroidal shape path. For the heaviest systems, the pocket is large and locally favourable with
respect to the plane fragmentation barriers which might allow the formation of evanescent
toroidal systems which would rapidly decay in several fragments to minimize the surface
tension.



1.Introduction

Heavy-ion accelerators delivering projectile energy up to 100 MeV/u and very
efficient 47 detectors [1-2] are now available and, besides the fusion, fission, evaporation
and deep-inelastic regime, the nuclear fragmentation corresponding to the emission of
several intermediate mass fragments and the vaporization related to the decay into many
light particles can now be obtained [3-5]. The underlying physics responsible for the
fragmentation process is still debated [6] and the possibilities of the simultaneous explosion
of a very hot system and of the sequential breakup of excited fragments have been advanced.
Experimentally, the two scenarii seem possible since, for example, analyses of the data
(within the cascade fission approach) have shown that the average time between two
successive binary decays decreases from more than 500 fm/c to less than 50 fm/c when the
beam energy increases from 30 to 60 MeV/u in the Ar + Au reaction [7]. From branching
ratios for different decay channels it has also been asserted [8] that the sources decay in a
statistical manner. Nevertheless, the role of the dynamics in the entrance channel is essential
since a considerable portion of the mass, energy and angular momentum is radiated before
the decay causing a significant reduction of the fragmentation width [9].

The successful statistical fragmentation models [10-11] presently employ sources
with uniform interiors. It is questionable whether the dynamics in such violent collisions
lead really to homogeneous quasi-spherical nuclear systems or whether the compression and
expansion effects induce spinodal, surface or Coulomb instabilities [12]. Recently, exotic
nuclear shapes like tori and bubbles were observed in simulations within microscopic
transport models [13-18]. These topologies were early suggested as being metastable long
time ago [19-20]. A number of observables have been proposed which might signal the
decay of toroidal configurations [13,14,16,17] but the formation of tori has not yet been
experimentally confirmed though it seems that several intermediate mass fragments emitted
almost in the same plane have been observed [21]. To have a first rough estimate of these
exotic exit channels, the fragmentation barriers into several spherical nuclei in a volume-like
manner [22] and in a ring-like manner [23] have been recently determined and compared
within the liquid drop model including the nuclear proximity energy and the finite
temperature. The 3, 4, 6 and 8 nascent fragments were spatially symmetrically arranged ; the
geometric configurations being respectively equilateral triangle, tetrahedron, spheres along
three Cartesian axes and cube in the first case and equilateral triangle, square, hexagon and
octogon for the two-dimensional emission. It was found that the plane fragmentation
barriers are always lower than the ones corresponding to the emission in the whole space.

In the present work we determine the energy of a nucleus in the deformation path
leading continuously from the initial spherical shape towards toroidal configurations and
compare with the plane fragmentation barriers. The purpose is to know to what extent
evanescent toroidal nuclear systems might survive before decaying into several fragments.
In sect.2 the selected one-dimensional shape sequence starting from the sphere and roughly
reproducing the first steps of the toroidal deformation valley is defined. Analytical
expressions are given for the different geometric characteristics such as volume, moment of
inertia, root-mean-square radius,.. in sect.3. In sect.4 the surface and Coulomb shape-
dependent functions are calculated. The dependence of the toroidal deformation barriers on
the mass, temperature and rotation is displayed in sect.5. Finally, the barriers standing in the
different exit channels are compared in sect.6.



2. Oblate elliptic lemniscatoid and torus

The family of elliptic lemniscates allows to describe continuously the transition
from one circle to two-tangent circles [24]. In polar coordinates in the (x,z) plane the
lemniscate is defined by (see figure 1) :

R?*(8)=a’cos’0+c’sin’ @ 2.1
where a and c are the semi-axis lengths. In cartesian coordinates the equation reads :
c’x*+a’z? = (x*+2%)%. (2.2)

The solid (called later oblate elliptic lemniscatoids) generated by the rotation around the z
axis has a pumpkin-like configuration. Assuming volume conservation, the unique
dimensionless parameter s = a/c is sufficient to define the shape completely. When s
decreases from 1 to 0, an hollow progressively appears and the oblate lemniscatoid varies
continuously from a sphere to a torus for which the upper and lower hollows are just linked.
Later on, the evolution from this initial toroidal shape towards torii with large radius r¢ can
be governed by :

s=(r,—r1,)/2r, 0<s<s_,, (2.3)
where smax corresponds to a realistic limit of the sausage radius rg.
The following parameters are also of interest :

a=r1, -1,
b=r, +T1, (2.4)
c=b-a=2r.

3. Geometric characteristics

As for the prolate elliptic lemniscatoids (obtained by a rotation around the X axis)
used in fission and fusion studies [24,25] we obtain analytical expressions for the various
shape-dependent functions. The volume, relative perpendicular moment of inertia and the
relative mean square radius of the oblate elliptic lemniscatoids are given by :
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where R is the radius of the initial sphere.
For an holed torus, the same quantmes are defined by :

4 2.3
Voo o B 1) (3.4)
35 16 3
=22 _ 3.
| 32(1+3s+3s )(37t(1+25)) (3.5)
2 __5_ 2 __1_6__ 2/3
<r‘>_ = 6(1+25+25 )(3Tr,(1+25)) . (3.6)

From (3.4) it follows :
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L= R G 2y - (3.7)
As an illustration, for s = 0, 1, 2 and 3 one obtains respectively <r > = 1.089, 1.688, 2.296
and 2.846, r/Ro= 0.596, 0.414, 0.349 and 0.312 and ri/rg=1,3,5and 7.
In figures 2 and 3 the variations of s and 1. versus the relative r.m.s radius are displayed and
compared with the values in the new binary fission valley corresponding to compact and
creviced shapes rapidly leading to two spherical fragments and approximated by prolate
lemniscatoids and two separated spheres. For a same s ratio, the r.m.s radius is greater in the
binary fission path since the matter distribution is farther from the centre. The moment of
inertia varies very smoothly when the nuclear shape evolves from the sphere to oblate
lemniscatoids and later to large torii and the curve profiles are identical in the two
deformation valleys.

4. Relative surface and Coulomb energies

The relative surface energy can be expressed as :

S c? sin"\ll—s4)

B, = = 2 4.1
T A @.1)
for the pumpkin-like configurations and as :
an’rr mc?
=—lt = 1+2 42
T amR? TRz 0TH) (4.2)

for the torus.

For the non-holed shape, the relative Coulomb energy has been evaluated using the method
of Cohen and Swiatecki [26]

Vo 0
where the electrostatic potential v(8.) is calculated at the surface of the shape and vy is the
surface potential of the sphere.

v6)_ 3 [ A(8,8)K (k) - k*B(6,6, D) o
v, 4mR} C(6,6,)

B.=1/2. [ YO El(ze—i)]] $in 6,6, (4.3)

4.4)
with

A(6,6,)=R(6)sin {R(B)R(H,)cos(8+6,)+c*(1—s?) I;((%)) cos Bsin Bsin(6+ 6, ) - R*(6)]

: 2
B(6,6,)=[R’(6,)+R’(6)— 2R(6,)R(6) cos(8+ 6,)]- [-R(8) sin 8+ c*(1 _Sz)s_uﬁcﬂ] 4.5)

R(6)
C(6,6,)=[R*(6,)+R*(6)— 2R(8,)R(6) cos(6+6, )]
K(k)-E(k
and D(k)= ‘% . (4.6)
E and K are the complete elliptic integrals of the argument k given by :
2 4R(6)R(8B,)sin Osin 6, 47

~R(6,)+R(8)— R(8,)R(B)cos(6+6,)
For the toroidal configurations the shape-dependent Coulomb function has been calculated
within the method of Wong [27]
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(4.8)
where the toroidal coordinate 1, and the r, and r, radii are connected with :

Ne=cosh ™ (r/r, ) (4.9)
r=Ry(2cosh’ny/3m)"? (4.10)
re=R(2/(3ncoshng))"” (4.11)

Bn(x)=(n+1/2)Pn+,,2(x)Q§_l,2(x)-—(n—3/2)Pn_1,2(x)Q:+l,2(x)

C,(x)=(n+1/2)Q,1n(X)Q;2(X) = (0 =3/ 2)Q, 1, (X)Q},12(X)
€,=2-38,,
P and Q are the Legendre functions of first and second kind.

The general rends of the B; and B, shape-dependent functions are displayed in
figure 4. The matter moves essentially on a plane for the pumpkin-like configurations and
torii while it changes place on an axis in the case of the fission and, consequently, for a
given r.m.s radius the B, and B, functions have respectively more increased and decreased in
the toroidal shape valley. In the binary decay path and, more generally, in the path leading to
n spherical fragments, the surface is constant once the rupture of the bridge of matter
between the nascent fragments is realized. In contrast, the surface energy increases infinitely
with the torus radius which is the main explanation of the instability of this topology.

and (4.12)

5. L and T dependent toroidal deformation barriers

Assuming volume conservation and within the generalized liquid drop model
including the nuclear proximity effects and the temperature, the energy of a rotating
deformed nucleus relatively to the energy of the non-rotating sphere may be defined as [22-
25]

2r92 2
E,, =§%(BC -D+a,(1-26I")A**(B,-1)+E,,, +%jl) (5.1
with I=(N-Z)/A. The proximity term supplements the surface energy to take into account the
attraction between the surfaces in regard in the hollows of the oblate lemniscatoids and in
the hole of the torus.
The temperature dependences of the surface coefficient and the effective sharp
radius are defined as :
ag=17.9439(1+1.5T/17)(1-T/17)3/2 MeV (5.2)
Ro=(1.28A1/3.0.76+0.8A-1/3)(1+0.0007T2) fm. (5.3)

Such a prescription leads to the L and T dependent barriers displayed in figures 5, 6
and 7 for 147Tb, 240Py and 322128. In the whole isotope table, a high barrier stands in the
toroidal deformation path at T = O preventing the non-rotating nuclei to investigate the torus
shape. For the heaviest nuclear systems of mass around 300-350 accessible as residue after
evaporation in heavy-ion reactions at intermediate energies ( such as Gd+U, Au+Au,
Pb+Au) the potential barriers present two wells. The first one is located closely to the shape
at s = 0 while the second one is very large the minimum of which corresponding roughly to
a relative r.m.s radius of 1.85 and ry ~ 2.3 rg. With increasing angular momenta, the two
deformed minima appear in the whole mass range. The first one disappears progressively at
the highest angular momenta while the outer one is pushed to very large deformations. The
potential energy is lowered by the temperature. For example at T= 6 MeV and for 240py a
deformed minimum appears already at 1 = 0. For the heaviest masses, only the first inner
minimum remains and disappears relatively rapidly with increasing angular momenta.



6. Comparison between the toroidal shape path and the plane fragmentation

In figures 8, 9 and 10 the deformation energy in the toroidal shape path is compared
with the plane fragmentation barriers encountered by n equal fragments symmetrically
arranged on regular polygon configurations. In the case of the planar fragment emission, the
barrier tops always correspond to separated fragments maintained in unstable equilibrium by
the balance between the repulsive Coulomb forces and the attractive nuclear forces. The
barrier heights increase with the number of fragments except for the hot heaviest systems.
For masses below around 220 the absence of potential energy minimum for the non-rotating
toroidal configurations, even at high temperature, seems to forbid the smallest stability.
Furthermore, the deformation energy is greater than the one of the polygon configurations.
For the heaviest existing systems, the situation is reverse since a wide and deep potential
pocket appears and is lower than the potential barriers for the n fragment emission in some
deformation range. This might perhaps allow to such exotic toroidal shapes, generated by
the dynamics in the first phase of the most massive heavy-ion collisions, to survive in a
metastable state before decaying in the multifragment exit channels due to the effects of the
surface tension forces which clusterize the matter distribution to minimize the nuclear
surface. The angular momentum transfer accompanying the formation of these toroidal
shapes in heavy-ion reactions might also slightly increase their stability.

7. Conclusion

The path leading to rotating pumpkin-like configurations and toroidal shapes at
finite temperature has been investigated using a one-parameter shape sequence and within
the generalized liquid drop model taking into account the proximity energy. The geometric
characteristics such as root-mean-square radius, volume, surface and moment of inertia are
given analytically.

At T = 0, a high regular barrier without deformed minimum stands for all nuclear
masses preventing the non-rotating nuclei to investigate the toroidal shapes. For the heaviest
nuclear systems, accessible as residue in heavy-ion reactions, a deep and wide potential
pocket appears corresponding to torus with a large hole. With increasing angular momentum
and temperature the potential barriers present two minima in the whole mass range. The
shape of the inner minimum is a torus with a nascent hole, it disappears at the highest
angular momenta. For masses higher than about 200 the potential energy is lower in the
toroidal deformation path than in the n fragment decay paths for some deformation range
increasing with the mass. If the dynamics in the most massive heavy-ion collisions leads the
system in the toroidal configuration valley, the presence of a well in the deformation barrier
,which is moreover locally lower than the plane fragmentation barriers, might allow to these
exotic toroidal shapes to survive in a metastable state before decaying into n fragments to
minimize the surface tension.
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FIGURE CAPTIONS
Figure 1 : Oblate elliptic lemniscatoids as a function of the ratio s of the minor a and major ¢
semi-axes and torus defined by the sausage rg and torus r¢ radii. Oz is the axis of revolution.
Volume conservation is assumed.

Figure 2 : Variation of s as a function of the relative root-mean-square radius. The full curve
corresponds to the oblate lemniscatoid and toroidal shapes and the dashed curve to the
prolate lemniscatoid and two sphere shapes (new fission valley).

Figure 3 : Relative perpendicular moment of inertia as a function of the relative root-mean-
square radius. The full curve corresponds to the oblate lemniscatoid and toroidal shapes and
the dashed curve to the prolate lemniscatoid and two sphere shapes.

Figure 4 : Variation of the surface Bg and Coulomb B¢ shape-dependent functions as a
function of the relative root-mean-square radius. The full curve is relative to the oblate
lemniscatoid and toroidal shapes and the dashed curve to the prolate lemniscatoid and two
sphere shapes. The vertical dashed and dotted curve corresponds to the transient case s = 0.

Figure 5 : Sum of the deformation and rotatioqa%energies at T = 0 and 6 MeV as functions
of the r.m.s radius and angular momentum for "~ "Tb in the toroidal shape path.

Figure 6 : Same as figure 5 but for 24OPu.

32278

Figure 7 : Same as figure 5 but for
Figure 8 : Comparison at T = 0 and T = 6 MeV between the toroidal deformation barrier
(full curve) laéwi barriers of plane fragmentation into 2, 3, 4, 6 and 8 fragments (dashed
curves) for Tb.

Figure 9 : Same as figure 8 but for 240p,,

Figure 10 : Same as figure 8 but for 322173,
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