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ABSTRACT

The Sun provides us with the only spatially well-resolved astrophysical example of turbulent thermal convection. While various
aspects of solar photospheric turbulence, such as granulation (one-Megameter horizontal scale), are well understood, the questions of
the physical origin and dynamical organization of larger-scale flows, such as the 30-Megameters supergranulation and flows deep in
the solar convection zone, remain largely open in spite of their importance for solar dynamics and magnetism. Here, we present a new
critical global observational characterization of multiscale photospheric flows and subsequently formulate an anisotropic extension of
the Bolgiano-Obukhov theory of hydrodynamic stratified turbulence that may explain several of their distinctive dynamical properties.
Our combined analysis suggests that photospheric flows in the horizontal range of scales between supergranulation and granulation
have a typical vertical correlation scale of 2.5 to 4 Megameters and operate in a strongly anisotropic, self-similar, nonlinear, buoyant
dynamical regime. While the theory remains speculative at this stage, it lends itself to quantitative comparisons with future high-
resolution acoustic tomography of subsurface layers and advanced numerical models. Such a validation exercise may also lead to new
insights into the asymptotic dynamical regimes in which other, unresolved turbulent anisotropic astrophysical fluid systems supporting
waves or instabilities operate.
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1. Introduction

The solar photosphere is the stage of many spectacular
(magneto-)hydrodynamic phenomena and it provides us with
a unique observationally well-resolved example of strongly
nonlinear thermal convection, one of the most common fluid
instabilities and transport processes encountered in nature and
astrophysics (Kupka et al. 2007). While some aspects of solar
thermal turbulence, such as granulation, are now well under-
stood (Nordlund et al. 2009), we still lack definitive answers to
many important questions, such as how the turbulence organizes
on large scales, and how it interacts with and amplifies mag-
netic fields or transports quantities such as angular momentum
or magnetic flux (Miesch 2005; Charbonneau 2014).

The most direct observational characterization of flows
connected to the solar convection zone at scales larger than
the granulation has been achieved through measurements of
Doppler-projected velocities at the photospheric level. In par-
ticular, even a simple visual inspection of Doppler images of
the quiet Sun clearly reveals the pattern of supergranulation
flow “cells”, whose trademark signature is a peak around ` ∼
120−130 (35 Megameters, Mm) in the spherical-harmonics en-
ergy spectrum of Doppler-projected velocities (Hathaway et al.
2000, 2015; Williams et al. 2014). The physical origin of this
supergranulation is widely debated (Rieutord & Rincon 2010).
In particular, while the idea that supergranulation-scale flows
may just be a manifestation of some form of thermal con-
vection has a long history, it has often been dismissed due

to the seeming lack of photometric intensity contrast at the
same scales (Langfellner et al. 2016). Besides, there is as yet
no general consensus on local helioseismic estimates of the am-
plitude, depth and structure of subsurface flows on this scale
(Nordlund et al. 2009; Rieutord & Rincon 2010; Gizon et al.
2010; Švanda et al. 2013; Švanda 2015; DeGrave et al. 2014) –
or in fact on any scale larger than that (see, e.g., Hanasoge et al.
2012; Gizon & Birch 2012; Hanasoge et al. 2016; Greer et al.
2015, 2016; Toomre & Thompson 2015). Numerical simulations
of the problem have, until recently, also been quite limited.
While their results have not led to clear-cut results and con-
clusions (see reviews by Miesch 2005; Nordlund et al. 2009;
Rieutord & Rincon 2010), many of them suggest that meso- to
supergranulation-scale flows have a convective (buoyant) ori-
gin (e.g., Rincon et al. 2005; Lord et al. 2014; Cossette & Rast
2016).

In this article, we attempt to make further progress on this
problem using the high-quality observations of the solar photo-
sphere provided by the Solar Dynamics Observatory (SDO) and
a new theoretical analysis. In Sect. 2, we present a global obser-
vational analysis of multiscale photospheric vector flows recon-
structed from quasi-full disc Doppler and photometric data from
SDO using a tracking technique. This analysis subsequently
leads us in Sect. 3 to formulate a theory of anisotropic turbu-
lent convection that may explain several distinctive dynamical
properties of these flows. As further argued in Sect. 4, the com-
bined results consistently suggest that photospheric flows in the
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horizontal range of scales in between supergranulation and gran-
ulation operate in a strongly anisotropic, self-similar, buoyant
dynamical regime. Connections between these results and ear-
lier work, as well as future perspectives, are discussed in Sect. 5.
The main text of the article is focused on results. The technical
details of the data processing and analysis are provided in the
two Appendices.

2. Observations

Our observational analysis is based on 24 h of uninterrupted
high-resolution white-light intensity and Doppler observations
of the entire solar disc by the HMI instrument aboard the SDO
satellite (Scherrer et al. 2012; Schou et al. 2012). The data was
obtained on October 8, 2010 starting at 14:00:00 UTC, one of
the quietest periods of solar activity since the launch of SDO.
Our analysis is distinct and independent of the recent studies by
Williams et al. (2014), Langfellner et al. (2015), Hathaway et al.
(2015), and both confirms and extends some of their results.

2.1. Data analysis

2.1.1. Velocity field reconstruction

Our first objective is to reconstruct the three components
(ur, uθ, uϕ) of the photospheric vector velocity field in the an-
gular degree range 20 < ` < 850 from available observations. To
this end, we perform a coherent structure tracking analysis (CST,
Roudier et al. 2012) of photometric structures such as granules.
This technique provides us with the projection of the photo-
spheric velocity field (ux, uy) onto the plane of the sky/CCD ma-
trix (Fig. 1). We can then combine the results with Doppler data,
which provides the out-of-plane component uz of the velocity
field, to calculate the full vector velocity field at the surface in
solar spherical coordinates,

ur(θ, ϕ) = sin θ sinϕ ux

+ (cos θ cos B0 − sin θ cosϕ sin B0) uy
+ (sin θ cosϕ cos B0 + cos θ sin B0) uz, (1)

uθ(θ, ϕ) = cos θ sinϕ ux

− (cos θ cosϕ sin B0 + sin θ cos B0) uy
− (sin θ sin B0 − cos θ cosϕ cos B0) uz, (2)

uϕ(θ, ϕ) = cosϕ ux

+ sinϕ sin B0 uy
− sinϕ cos B0 uz, (3)

where B0 = 6.3◦ is the heliographic latitude of the central point
of the solar disc at the time of observation. The reduction and
filtering of the raw photometric and Doppler data required to
build a consistent data set for (ux, uy, uz) is described in detail in
Appendix A.

2.1.2. Spherical-harmonics analysis

The reconstructed vector field u(θ, ϕ) = (ur, uθ, uϕ) is expanded
in terms of vector spherical harmonics as

u(θ, ϕ) =
∑

`

∑̀

m=−`
rm
` Rm

` (θ, ϕ) + sm
` Sm

` (θ, ϕ) + tm
` Tm

` (θ, ϕ), (4)

where Rm
` = Ym

` er, Sm
` = R�∇Ym

` , and Tm
` = −R� × ∇Ym

` .
The spectral coefficients rm

` describe the radial flow component,

z = l.o.s.

z0x0 = x

y0y
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Fig. 1. Coordinate systems used in the reconstruction of the 3D photo-
spheric velocity field.

and the coefficients sm
` and tm

` describe the spheroidal (diver-
gent) and toroidal (vortical) parts of the horizontal flow com-
ponents, respectively. Global maps of the horizontal divergence
and radial vorticity at the surface are obtained by mapping back
−`(` + 1)sm

` /R� and `(` + 1)tm
` /R� to physical space. The corre-

sponding one-dimensional radial, spheroidal and toroidal energy
spectra are given by

Er(`) =
∑̀

m=−`
|rm
` |2, (5)

ES(`) =
∑̀

m=−`
` (` + 1) |sm

` |2, (6)

ET(`) =
∑̀

m=−`
` (` + 1) |tm

` |2, (7)

respectively. The `(` + 1) prefactors in ES and ET result from
the definition of the spheroidal and toroidal vector spherical har-
monics basis vectors.

The technical aspects of the harmonic-transforms procedure
of SDO/HMI data are described in detail in Appendix B. Here, it
suffices to mention that the data must first be apodized because
we only see one side of the Sun, and we must eliminate near-
limb regions where the CST analysis is not reliable. Besides, as
will be shown below, the radial component of the flow is very
weak and can only be tentatively determined using data close to
the disc center to limit contamination by the intrinsic algorithmic
noise of the CST in the deprojection process. We therefore use
an apodizing window with a 15◦ opening heliocentric angle from
the disc center to compute the spectra of the radial and line-of-
sight (Doppler) velocity fields, and a window with a 60◦ opening
angle to compute the spectra of the horizontal velocity field. The
general mathematical definition of these windows is provided in
Eq. (B.5).

2.2. Results

2.2.1. Velocity field maps

Figure 2 shows maps of the horizontal divergence field ∇h · uh
and vertical vorticity field er · (∇h × uh) derived from a sin-
gle snapshot of the 30-min-averaged horizontal surface velocity
field (uθ, uϕ) using the spherical-harmonics spheroidal-toroidal
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Fig. 2. a) Left: quasi-full-disc map of the horizontal divergence −`(`+1)sm
` /R� (color contours) of the 30-min-averaged horizontal surface velocity

field at 14:00:00 UTC, apodized beyond 60◦ from the disc center. Right: local map at the disc center of the divergence field convolved by horizontal-
flow Lagrangian trajectories using a line-integral convolution visualization technique. The map in the right panel is a zoom on the square patch
in the left panel. b) Left: quasi-full-disc map of the vertical vorticity `(` + 1)tm

` /R� (color contours) of the 30-min-averaged horizontal surface
velocity field at 14:00:00 UTC, apodized beyond 60◦ from the disc center. Right: local map at the disc center of the same vorticity field convolved
by Lagrangian trajectories computed from the vortical part of the horizontal flow only (the same line-integral convolution visualization technique
is used). The map in the right panel is a zoom on the square patch in the left panel.

decomposition into divergent and vortical motions. The pattern
is dominated by supergranulation, whose divergent morphology
is revealed in the close-up panel using a line-integral convolu-
tion technique highlighting horizontal-flow Lagrangian trajec-
tories (Cabral & Leedom 1993). The vortical component of the
flow is significantly weaker than the divergent component, as in-
dicated by the associated rate of strains reported in the color bars
(and further demonstrated in the spectral analysis presented be-
low). Figure 3 shows a local map in the same disc-center zone of
the 24h-averaged ur, superimposed with horizontal flows aver-
aged over the same time scale. There is a noticeable correlation

between the weak upflows (downflows) and horizontal diver-
gences (convergences) at the supergranulation scale.

2.2.2. Energy spectra

Figure 4 shows the spherical-harmonics radial, spheroidal and
toroidal energy spectra Er(`), ES(`), and ET(`) of the 30-min-
averaged velocity-field components. The horizontal divergent
component is energetically dominant at all scales probed: the
corresponding spheroidal spectrum ES(`) exhibits a clear peak
at the supergranulation scale ` ∼ 120, corresponding to a
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Fig. 3. Local map at the disc center of the 24h-averaged radial (color
contours) and horizontal spheroidal flow components (arrow field).

typical rms flow velocity of 400 m s−1. The rms radial flow
is 20−30 m s−1 at ` ∼ 120. The spectra of the different flow
components behave differently for ` > 120: the spheroidal
ES(`) and radial Er(`) spectra respectively decay and increase
with decreasing scale, while the toroidal spectrum ET(`) is al-
most flat. The exact shapes of the weaker and noisier Er(`) and
ET(`) are moderately sensitive to the processing and averaging
of the data, but the general trend described here is robust (as
explained in Appendix A.2, it is very difficult to separate the
Doppler contributions of the large-scale spectral tail of granula-
tion from those of the radial component of the large-scale mo-
tions otherwise detected by the CST. Consequently, and while
we did our best to remove the large-scale contribution of gran-
ulation from the Doppler data, our results for Er(`) in the range
120 < ` < 500 still probably slightly overestimate the actual
amplitude of the radial component of flows not associated with
granulation. We also find that Er(`) lies somewhere between `1/2

and ` power laws, depending on the exact filtering procedure ap-
plied to the Doppler signal). The spectral falloff at ` > 500 is
due to the intrinsic 2.5–5 Mm CST spatial resolution down to
which the vector-field reconstruction was performed. The differ-
ent power laws that these apparently self-similar spectra follow
for ` < 500 will be discussed in Sects. 3.3 and 4.3.

2.2.3. Vertical correlation scale

Finally, we estimate the typical vertical correlation scale λr of
these subsonic flows as a function of horizontal scale λh = 2π/kh
(or of the angular degree ` = khR�). This can be obtained from
the mass conservation relation
uh

λh
∼ ur

λr
, (8)

where uh and ur are the horizontal and vertical velocity fluctu-
ations (because the medium is stratified, here λr serves as an
a priori proxy notation for either the radial wavelength of the
perturbations or the local density scale height, whichever one is
smaller). We therefore define

λr(`) =
2πR�
`

√
Er(`)
ES(`)

, (9)

and plot this quantity in Fig. 4 (inset) for 30 < ` < 500. Re-
markably, the typical vertical correlation scale does not vary
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Fig. 4. Spherical-harmonics energy spectra (see Eqs. (5)–(7)) of maps
of the 30-min-averaged (top) velocity field derived from the joint CST-
Doppler analysis. The thin lines indicate different possible spectral
slopes (see Sect. 3). Vertical dashed line: ` = 120. Inset: vertical scale
estimate.

significantly in the range 120 < ` < 500 ([9, 35] Mm), that is
λr ∼ [2.5, 4] Mm. Considering the uncertainties in the determi-
nation of Er discussed in Sect. 2.2.2, this scale estimate should
probably be considered as an upper bound rather than as an ex-
act value. Overall, this scale appears to be comparable with the
density scale height Hρ ' [1, 2] Mm below the surface, but is
somewhat deeper than the granulation thermal boundary layer
(Nordlund et al. 2009).

2.3. Main conclusions

The observational analysis presented above leads us to the fol-
lowing conclusions.

(i) The flow in the range 120 < ` < 500 is characterized by
divergent (convergent) horizontal flows correlated with up-
flows (downflows). This predominantly cell-like morphol-
ogy of the flow suggests that the dynamics in that range of
scales is dominated by buoyancy forces.

(ii) The ratio of uh to ur suggests that motions are strongly
anisotropic (λr � λh) and strongly feel the effects of stratifi-
cation, with the vertical correlation scale of order the density
scale height.

(iii) The significant energy content of horizontal motions and
their spectral break at the supergranulation scale, followed
by the apparent power-law decay of their spectrum at smaller
horizontal scales, suggest that supergranulation corresponds
to the largest buoyancy-driven scale of the system, below
which some form of nonlinear cascade takes place.

3. Theoretical considerations

Let us now attempt a theory of anisotropic turbulent convec-
tion that could explain these observations. As argued by Rincon
(2007), a good starting point is the Bolgiano-Obukhov (BO59,
see Oboukhov 1959; Bolgiano 1962) phenomenology, which is
based on the following assumptions: (i) a constant spectral flux
of buoyancy fluctuations follows from the temperature/energy
equation; (ii) a balance between the inertial and buoyancy terms
in the momentum equation; and (iii) isotropy of motions. BO59
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predicts a k−7/5 thermal spectrum, and a steep k−11/5 velocity
spectrum. For the Sun, the latter is ruled out by Fig. 4 for
120 < ` < 500. This is not very surprising because, while
the first two BO59 assumptions make sense in the present con-
text, the isotropy assumption must manifestly be false because
λr � λh (see Sect. 2.2.3).

More generally, we point out that the isotropic BO59 scaling
laws are not observed either in simulations of Rayleigh-Bénard
convection with order-unity vertical to horizontal aspect ratio
(Rincon 2006, 2007; Kumar et al. 2014). While the conclusions
of these previous studies apply to the regime kH > 1 (where k
is an isotropic wave number), they do not appear to be directly
applicable to the strongly anisotropic regime khH � 1 charac-
teristic of the astrophysical problem investigated in the present
paper. In any case, in what follows, we only use the phenomenol-
ogy of the original isotropic BO59 theory as a physical moti-
vation to derive distinct anisotropic scaling laws for the largely
unexplored “long horizontal wavelength” regime khH � 1.

3.1. Theoretical framework

An anisotropic generalization of BO59 may be derived from the
following set of dynamical equations valid in the Boussinesq and
anelastic limits:
∂u
∂t

+ u · ∇u = −∇p +
θ

Θ0
g er + ν∆u, (10)

∂θ

∂t
+ u · ∇θ = −ur · ∇r Θ0 + κ∆θ, (11)

∇ · (ρ0u) = 0. (12)

Here ρ0 is the mean density, u denotes velocity perturbations,
p denotes pressure fluctuations divided by ρ0, Θ = Θ0 + θ is
the actual temperature in the Boussinesq limit, and the potential
temperature (Pρ−γ)1/γ in the anelastic limit, Θ0(r) is its horizon-
tally averaged part and θ its fluctuations around this average, ν is
the kinematic viscosity, κ is the thermal diffusivity (κ � ν in the
Sun), and g = −g er is the acceleration of gravity.

3.2. Phenomenology of anisotropic turbulent convection

The solar convection zone underneath the thin thermal bound-
ary layer at the surface is in the strongly nonlinear convection
regime, so its thermodynamic profile is very close to adiabatic
and Θ0 is almost independent of r. We may then argue that the
thermal injection term on the r.h.s. of Eq. (11) is small com-
pared to the nonlinear advection term on the l.h.s.. Similarly to
the Kolmogorov phenomenology in hydrodynamics (K41, see,
e.g., Davidson 2004), which postulates a constant flux of kinetic
energy in the inertial range (δu3/λ ∼ const.), the dynamics in
this “thermal-inertial” regime is characterized by a constant flux
of θ variance from scale to scale:

δuh δθ
2

λh
∼ εθ = const., (13)

where εθ =
〈
κ|∇δθ|2

〉
is the (time) average dissipation rate of

thermal fluctuations (equal to their injection rate) and δ denotes
increments of fluctuations between two points separated by a
horizontal separation vector λh at a constant radial coordinate.
Equation (13) effectively corresponds to BO59 assumption (i).
This can, in fact, also be formalized on the basis of Yaglom’s ex-
act law for dissipative scalars (Monin & Yaglom 1971; Rincon
2006), which Eq. (11) obviously satisfies if ∇rΘ0 = 0. Simi-
larly to BO59 assumption (ii), we seek a buoyancy-dominated

dynamical regime balancing the inertial and buoyancy terms in
Eq. (10), but we drop the isotropy assumption, expecting instead
that λr � λh. The result of this is

δuh δur

λh
∼

(
λr

λh

)2

g
δθ

Θ0
· (14)

The small (λr/λh)2 prefactor on the r.h.s. accounts for the partial
cancellation of buoyancy by the pressure gradient in the vertical
direction, as a result of the horizontal redistribution of buoyancy
work by pressure forces (this prefactor also appears in the dis-
persion relation of gravity waves in the limit λr � λh).

3.3. Scaling laws

Equations (13), (14), combined with the mass conservation rela-
tion Eq. (8), lead to the following self-similar scaling relations,

δur ∼

εθ

Θ2
0


1/5

g2/5λ7/5
r λ−4/5

h , (15)

δuh ∼

εθ

Θ2
0


1/5

g2/5λ2/5
r λ1/5

h , (16)

δθ/Θ0 ∼

εθ

Θ2
0


2/5

g−1/5λ−1/5
r λ2/5

h . (17)

As a consistency check, we can see that the isotropic BO59 pre-
diction δu ∼ λ3/5, δθ ∼ λ1/5 is recovered if we set λr = λh.
Here however, we are instead interested in a strongly stratified
regime in which the typical vertical scale height Hρ of the sys-
tem is much smaller than λh. We therefore treat λr as a simple
parameter equal to Hρ in Eqs. (15)–(17), as also suggested by
our observational result of Sect. 2.2.3. Doing this results in the
following power-law energy spectra as functions of horizontal
wave number kh = `/R�,

Er(kh) ∼

εθ

Θ2
0


2/5

g4/5H14/5
ρ k3/5

h , (18)

Eh(kh) ∼

εθ

Θ2
0


2/5

g4/5H4/5
ρ k−7/5

h , (19)

Eθ(kh) ∼

εθ

Θ2
0


4/5

g2/5H−2/5
ρ k−9/5

h . (20)

We note that in the regime khHρ � 1, relevant to the astrophysics
problem investigated here, these scalings are distinct from the
classical isotropic BO59 prediction.

4. Comparison of theory with observations

4.1. Self-similar buoyant dynamics

Physically, the theory proposed above describes a situation
in which buoyant thermal fluctuations stochastically injected
through the surface boundary layer drive nonlinear anisotropic
convective motions (plumes) in the adiabatic layer. By mix-
ing these thermal fluctuations, turbulent velocity fluctuations
drive a horizontal cascade of buoyancy down to thermal dissi-
pative scales, resulting in statistically self-similar buoyant dy-
namics. This picture appears to be very much in line with the
observed phenomenology of flows at scales larger than the gran-
ulation, notably the hierarchical, bubbling recurrent dynamics
of “trees and families of fragmenting granules” documented by

A69, page 5 of 10



A&A 599, A69 (2017)

Roudier et al. (2003, 2009, 2016). The dynamics are “quasi-2D”
in the sense that there is no refinement of the vertical scale as the
horizontal cascade proceeds, but it is 3D in the sense that finite
λr ∼ Hρ is required to ensure mass conservation.

4.2. Spectral amplitudes vs. theoretical estimates

We now test for consistency between the observed spectral am-
plitudes and our theoretical scaling estimates derived by assum-
ing that the observed fluctuations have a convective origin. A
fit of the observed ES(`) ∼ Eh(kh)/R� to Eq. (19) in the range
120 < ` < 500 for Hρ ' 2 Mm gives

εθ

Θ2
0


obs

' 10−9 s−1. (21)

On the other hand, a theoretical dimensional estimate of the same
quantity can be obtained directly in terms of the solar luminosity
L� and internal structure of the Sun. The convective flux as a
function of horizontal scale, as estimated from Eqs. (15)–(17), is

Fc ∼ ρ0 cv δθ δur ∼ ρ0 cv Θ0


εθ

Θ2
0


3/5

g1/5λ6/5
r λ−2/5

h , (22)

where cv is the specific heat at constant volume. We see that
this flux increases with decreasing horizontal scale (the horizon-
tal kinetic energy, on the other hand, increases with increasing
horizontal scale in this regime. This is a consequence of the
different anisotropic scalings for ur and uh, and suggests that
supergranulation-scale convection, while dominant in terms of
horizontal kinetic energy, does not transport a significant frac-
tion of the solar flux). However, this scaling theory is only ap-
plicable for λh � λr. As λh becomes of the order of λr ∼ Hρ,
there should be a crossover to either the standard isotropic Bol-
giano regime δu ∼ λ3/5, δθ ∼ λ1/5, or directly to the Kolmogorov
regime δu ∼ λ1/3, δθ ∼ λ1/3 (Kumar et al. 2014). In both cases,
the cascade proceeds in both horizontal and vertical directions,
with Fc ∼ λ4/5 for BO59 or Fc ∼ λ2/3 for K41, that is, the
convective flux decreases with decreasing scale λ. We therefore
argue that the convective flux peaks at the isotropization scale
λh ∼ λr ∼ Hρ, and require that Fc at this scale be of the order of
the total solar flux,

ρ0 cv Θ0


εθ

Θ2
0


3/5

g1/5H4/5
ρ ∼ L�

4πR2
�
, (23)

where L� ∼ 3.8 × 1026 W is the solar luminosity. Using ρ0 '
10−2 kg m−3, Θ0 ' 1.9 × 104 K, cv ' 105 J kg−1 K−1 (Stix 2004)
and Hρ ' 2 Mm in Eq. (23), we obtain the theoretical estimate

εθ

Θ2
0


th

∼


L�
4πR2

� ρ0 cv Θ0 g1/5H4/5
ρ


5/3

∼ 4 × 10−9 s−1, (24)

which, given the approximate nature of the calculation and the
neglect of geometric prefactors in Eqs. (15)–(17) and Eqs. (18)–
(20), is relatively close to our observational estimate in Eq. (21)
(this cascade time scale also appears to be similar to the typ-
ical plume thermal diffusion time scale in the Sun (Miesch
2005; Cossette & Rast 2016), that is, the “turbulent” diffusivity
Hρδu(Hρ) at scale Hρ is of the order of the molecular diffusiv-
ity κ). Overall, the observed amplitudes therefore seem consis-
tent with a convective origin of the turbulence. We note, finally,

that if this estimate holds, then Eq. (17) suggests relative tem-
perature fluctuations δθ/Θ0 of approximately 1% at supergran-
ulation scales in the first few Mm below the surface, consistent
with helioseismic inferences (e.g., Duvall Jr et al. 1997).

4.3. Spectral power laws

The horizontal spectral scaling laws predicted by our theory for
the vertical and horizontal velocities, Er(`) ∼ Er(kh)/R� ∝ `3/5

(Eq. (18)) and ES(`) ∼ Eh(kh)/R� ∝ `−7/5 (Eq. (19)), are broadly
consistent with our observations, as shown in Fig. 4 by the power
laws in the relevant range of scales. Different tentative scalings
Eh(`) ∝ `−5/3 and Er(`) ∝ `1/3, derived by naively postulating
K41 scalings for the horizontal velocity field and using the mass
conservation Eq. (8) with λr ∼ Hρ to obtain the scaling of the
vertical velocity component, are shown for comparison (dotted
lines). Such scalings cannot be ruled out given the closeness of
their spectral exponents to those of our theory and the afore-
mentioned sensitivity in the determination of Er(`) to the de-
tails of data processing. However, we see no reasonable physical
argument as to why or how such an “anisotropic K41” regime
would actually be realized in this environment, in contrast with
the nonlinear buoyancy regime described above which naturally
produces divergent horizontal motions at all scales (which are
manifest in Figs. 2 and 3). At this stage, we do not have a the-
ory for the scalings of the energy spectrum ET(`) of the weaker
horizontal toroidal velocity field, which seems to be only weakly
coupled to the spheroidal divergent dynamics.

Finally, at even larger scales (` < 120), beyond the super-
granulation spectral break, our observational analysis shows a
regime change to an intriguing ES(`) ∝ `2. This might be one
of the first observations of a large-scale k2 pre-injection spec-
trum predicted by Saffman (1967). In theory, this spectrum is
established as a result of long-range pressure correlations in tur-
bulent flows in which fluid “eddies” have a random distribution
of linear momentum (Davidson 2004), as opposed to a random
distribution of angular momentum, which would instead result in
a k4 spectrum (Batchelor & Proudman 1956). In the solar photo-
sphere, such eddies could perhaps be associated with supergran-
ulation cells and smaller-scale convective motions.

5. Discussion

We have presented a set of consistent arguments suggesting that
turbulent flows at scales larger than granulation are a mani-
festation of statistically self-similar, strongly nonlinear convec-
tion in the bulk adiabatic layer below the solar surface. While
the classic idea that supergranulation has a convective origin
has usually been dismissed due to the seeming lack of photo-
metric intensity contrast at the corresponding scales at the sur-
face (Langfellner et al. 2016), helioseismology suggests that rel-
ative temperature fluctuations of approximately a few percent
are present underneath the surface at such scales (Duvall Jr et al.
1997), in line with our calculation in Sect. 4.2. Besides, all exist-
ing large-scale simulations, including those with radiative trans-
fer that do not display any “meso” or “super” scale intensity con-
trast at the surface, exhibit a strong buoyancy driving and flows at
such scales in the bulk of the convective layer (e.g., Rincon et al.
2005; Nordlund et al. 2009; Bushby & Favier 2014; Lord et al.
2014; Cossette & Rast 2016, see also Rieutord & Rincon 2010,
Fig. 12). Importantly, in these simulations, these scales are sig-
nificantly larger than those of the most unstable linear modes of
the system at rest, and the statistical order at such scales emerges
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dynamically in the nonlinear regime. If there are indeed sig-
nificant thermal fluctuations associated with supergranulation-
scale convection in the first few Mm below the surface, they
may be blanketed by the thinner thermal granulation boundary
layer, or could be optically thick due to the extreme dependence
of opacities on temperature (Nordlund et al. 2009). Our theory
also suggests that anisotropic supergranulation-scale convection,
although it generates strong horizontal flows, does not signifi-
cantly contribute to the transport of thermal energy due to the
weakness of the radial component of the velocity field at such
scales.

We do not have a quantitative answer as to what determines
the spectral supergranulation break, and can only offer direc-
tions. Our theory predicts that thermal fluctuations increase with
scale as Eθ(`) ∝ `−9/5 in the nonlinear convection regime. How-
ever, there is a physical limit to how large such fluctuations can
be, which could determine the maximum buoyant scale at which
the self-similar scaling should break down. This limit should be
related in some way to the maximum entropy fluctuations that
can be injected into the adiabatic layer and, therefore, to the de-
tails of granulation and of the superadiabatic thermal boundary
layer at the surface. This conclusion appears to be in line with the
recent numerical simulations of this problem by Cossette & Rast
(2016), which show that the thickness of the boundary layer
has a strong effect on the energy-containing scale of the turbu-
lent energy spectra. However, other physical explanations (e.g.,
Featherstone & Hindman 2016) cannot be ruled out at this stage.

Based on our experience with this data, the observational
analysis and comparison with theory presented above are close
to the limit of what is achievable with a combination of surface
tracking and direct Doppler measurements given their disparate
natures. Future progress will probably come from acoustic to-
mography (Toomre & Thompson 2015) and advanced numerical
models. While somewhat speculative at this stage, our theory,
including Eqs. (18)–(20), may soon be testable using such tools.
An important question in this respect asks to what extent pristine
power-law scalings derived from simple dynamical arguments
can be realized in systems such as the photospheric transition re-
gion, where a variety of physical processes become intertwined.

The qualitative implications of such analyses could be wider
than the solar context. They may notably provide us with fun-
damental insight into the structure of anisotropic turbulence in
general (e.g., Nazarenko & Schekochihin 2011), as well as into
turbulence in more distant, unresolved astrophysical systems
supporting anisotropic waves or instabilities, such as stellar in-
teriors (Zahn 2008; Miesch & Toomre 2009), galaxy clusters
(Zhuravleva et al. 2014) and accretion discs (Walker et al. 2016).
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Appendix A: Photospheric velocity field
reconstruction

A.1. Data reduction

In order to obtain (ux, uy, uz) needed for the reconstruction of the
three components of the photospheric velocity field in Eqs. (1)–
(3), we used raw 4096 × 4096 HMI photometric and Doppler
images with a 0.5′′ pixel size (∼360 km) every δt = 45 s.

A.1.1. Reorientation and derotation of images

All the images were first reoriented using the SDO CROTA2
fits header keyword to have the solar north pole pointing “up”
(y > 0 corresponds to the northern hemisphere), and derotated’
and aligned to avoid rotational smearing. We used the follow-
ing rotation profile adjusted from the raw Doppler data averaged
over the 24 h of observations:

Ω(λ) = 2.87 − 0.41 sin2(λ) − 0.62 sin4(λ) µrad s−1, (A.1)

where λ = π/2 − θ is the latitude.

A.1.2. Coherent structure tracking (CST) analysis

Starting with a sequence of intensity images, the CST algorithm
(Rieutord et al. 2007; Roudier et al. 2012, 2013) determines the
projection (ux, uy) in the CCD plane of the photospheric Eulerian
velocity field by following the trajectories of many individual in-
tensity structures such as granules during their entire “life” (the
period of time, typically a few minutes, during which a structure
remains a coherent, single object that does not split or merge).
The average velocity of each structure is computed from its to-
tal displacement over this time interval, and supersonic veloci-
ties (larger than 7 km s−1) are rejected. The velocities obtained
this way are irregularly spaced on the field of view, and the last
part of the procedure consists in approximating the results by the
best differentiable Eulerian field fitting the data, using a multi-
resolution wavelet analysis (Rieutord et al. 2007). Applying this
procedure to the SDO/HMI data set, we obtained a sequence of
5862 velocity-field maps with a temporal resolution of 30 min
and a spatial resolution of 2.5 Mm (3.5′′, or 7 HMI pixels, cor-
responding to a maximum angular degree ` ∼ 850). We further
removed the (x, y) velocity signal associated with the satellite
motion

usat
x (x, y, t) = −VW (t)/D�

√
R2
� −

(
x2 + y2), (A.2)

usat
y (x, y, t) = −VN(t)/D�

√
R2
� −

(
x2 + y2), (A.3)

where D� is the distance from the satellite to the Sun, and VW and
VN are the westwards and northwards components of the satel-
lite peculiar velocity (given in the data file’s headers). We finally
found it necessary to filter out all the signal at spherical harmon-
ics ` < 20, as the latter is polluted by systematic large-scale
velocity-field residuals associated with imperfect corrections of
the rotation, satellite motions, plages regions, and artificial large-
scale drifts imprinted by the CST analysis itself far from disc
center (Roudier et al. 2013). This filtering was performed in the
spherical-harmonics space by means of the harmonic-transform
machinery described Appendix B.

A.1.3. Doppler data analysis

Dopplergrams map the out-of-plane (line-of-sight, l.o.s.) com-
ponent of the photospheric velocity field. The SDO/HMI

convention is that uDop is taken as positive when the flow is away
from the observer, so that the out-of-plane velocity towards the
observer is uz ' −uDop (Fig. 1). This equality is only approxi-
mate because of the inclination between the actual l.o.s and the
ez unit vector due to the finite distance between the Earth and the
Sun. This effect is taken into account to eliminate the global ro-
tational satellite motion signals, but is otherwise negligible. We
first substracted the rotational Doppler shift

urot
Dop = Ω(λ) sinϕ cos λ cos B0 R�, (A.4)

where Ω(λ) is given in Eq. (A.1), and the Doppler shift associ-
ated with the satellite motion

usat
Dop = VR cosσ − VW (x/D�) − VN (y/D�) , (A.5)

where σ = arcsin
( √

x2 + y2/D�
)
. The images were subse-

quently “derotated” in the same way as the white-light images
and further corrected from a polynomial radial limbshift func-
tion adjusted from ring averages of two hours of data taken at
different heliocentric angles from disc center ρ,

ulimb
Dop =

(
−0.35 x + 0.2 x2 + 0.46 x3

)
km s−1, (A.6)

where x = 1 − cos ρ and

ρ = arcsin
√

sin2 θ sin2 ϕ + (cos θ cos B0 − sin θ cosϕ sin B0)2·
(A.7)

Since the 5862 velocity-field maps derived from the CST have
a 2.5 Mm spatial resolution, we then downsampled the 40962

Dopplergrams to 5862, keeping only one point out of seven in
each direction, and averaged over 30-min periods to obtain an
effective sequence of maps of uz, with the same spatial and tem-
poral resolution as that of the (ux, uy) maps derived from CST.

A.2. Noise analysis and `-ν filtering

While the raw CST signal is not sensitive to solar oscillations
or granulation, it is contaminated by an undesirable intrinsic al-
gorithmic noise that can, to some extent, be removed via `-ν
filtering using the harmonic-transform machinery described in
Appendix B. The `-ν diagram of the x-component of the raw
CST velocity field computed from 24 h of data is shown in
Fig. A.1 (top – the y-component behaves similarly). The main
signal (red bump) is contaminated by a white-noise-in-time com-
ponent in the form of a vertical white stripe. To remove this
noise, we filtered out all the data at frequencies larger than those
given by the filtering envelope (also shown in the figure):

νc(`) = 0.085 ` e−1/3 (`/300)3
/(300 e−1/3) mHz. (A.8)

The `-ν diagram of the Doppler signal (first downgraded to the
586 × 586 CST resolution) for the same range of frequencies is
shown in Fig. A.1 (bottom; the high-frequency part, not shown
here, contains the usual p-mode ridges). The spectral support of
the turbulent Doppler signal appears to be somewhat different
from that of the CST. In particular, there is a fairly large, rela-
tively high-frequency component in the 300 < ` < 800 range (in
white in the figure), which we attribute to the large-scale spectral
tail of granulation and which is not captured by the CST. Note
that the decrease of this signal at the smallest scales represented
is due to the coarse-graining associated with the downgrade of
the Doppler maps to the CST resolution.
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Fig. A.1. Distribution of power in the `-ν plane for a 24-h sequence
of ux signal derived from the CST (top) and SDO/HMI Doppler signal
(bottom). The dashed line marks the filtering envelope (A.8). The color-
scale from blue to red is identical on both plots and extends over five
orders of magnitude.

The presence of this extra signal component in the Doppler
data but not in the CST implies that the two raw signals can-
not naively be mixed in the 3D-velocity-field reconstruction in
Eqs. (1)–(3), as this would lead to spurious cross-talk between
the different field components. In our view, the most consistent
way to proceed is, therefore, to apply the same `-ν filtering en-
velope (A.8) to both Doppler and CST fields. While it is imper-
fect and does not totally remove the granulation tail contribution
from the large-scale signal, this procedure focuses the analysis
on large-scale motions inferred from the CST, limits the risk of
cross-analysing signals of different physical origin, and makes
it possible to extract the weak supergranulation-scale ur signal
from the Doppler data out of the strong large-scale tail of the sur-
face granulation dynamics. This filtering also entirely removes
the solar oscillation signal from the Doppler data.

Finally, we found it necessary to discard the residual signal
in the spherical harmonics ` < 20 because of the presence of
significant instrumental systematics in the 2010 SDO data (priv.
comm. by Couvidat, Scherrer, Schou, see also Hathaway et al.
2015).

Appendix B: Harmonic-analysis technique

B.1. Harmonic transforms and spectra

Any sufficiently smooth scalar field ψ(θ, ϕ) on the sphere can be
expanded in terms of spherical harmonics as

ψ(θ, ϕ) =
∑

`

∑̀

m=−`
ψm
` Ym

` (θ, ϕ), (B.1)

where Ym
` is the orthonormalized spherical harmonic of degree `

and azimuthal wavenumber m, and

ψm
` =

∫ 2π

0

∫ π

0
ψ(θ, ϕ)Ym

`
∗(θ, ϕ) sin θ dθ dϕ. (B.2)

The one-dimensional energy spectrum of ψ is defined as

Eψ(`) =
∑̀

m=−`
|ψm
` |2. (B.3)

This decomposition can be generalized to vector fields, as ex-
plained in the main article; we refer to Eq. (4). The rest of this
Appendix describes the procedure used to compute the harmonic
transforms of scalar and vector fields derived from SDO/HMI
data sets.

B.2. Data interpolation on a Gauss-Legendre-Fourier grid

Spherical-harmonics transforms of all fields are computed using
Gauss-Legendre quadrature coupled to a Fast-Fourier-Transform
algorithm in the azimuthal direction. This requires the knowl-
edge of the field on a two-dimensional (2D) Gauss-Legendre-
Fourier (GLF) grid of size Nθ×Nϕ of polar angles corresponding
to Gauss nodes θn (0 < θn < π, 1 ≤ n ≤ Nθ), and equally-spaced
longitudes ϕp = 2πp/Nϕ (with 0 ≤ p < Nϕ; by convention, ϕ = 0
is the central meridian of the visible disc, ϕ = π/2 is the eastern
limb and ϕ = −π/2 is the western limb). However, our fields
are originally available on a 5862 Cartesian 2D grid. Therefore,
interpolation from the original Cartesian grid to a GLF grid is
a prerequisite. To carry it out, we choose a spectral resolution
(Nθ,Nϕ), compute the Cartesian coordinates of the correspond-
ing GLF grid in the plane of the sky/CCD, and interpolate the
field on the original, regular Cartesian grid to these coordinates
using the RectBivariateSpline function of the Python mod-
ule scipy.interpolate. A similar, reverse interpolation pro-
cedure is used to reproject fields manipulated in spectral space
from the GLF grid to the original “observation” grid. This is, for
instance, required to obtain the divergence field on this grid.

B.3. Estimator of spectral coefficients

An apodizing window W(θ, ϕ) must be applied to the data in
order to deal with the fact that we only see one side of the Sun,
and to eliminate near-limb regions where the CST analysis is
unreliable due to projection effects. We use the estimator

ψ̃m
` =

1
Nm
`

∫ 2π

0

∫ π

0
ψ(θ, ϕ)W(θ, ϕ)Ym

`
∗(θ, ϕ) sin θ dθ dϕ (B.4)

to obtain the spectral coefficients ψm
` of a scalar field ψ known

on a limited area (see Hathaway 1992, for a similar definition;
the harmonic coefficients of vector fields can be estimated sim-
ilarly). The normalization coefficients Nm

` are functionally de-
pendent on the apodizing window, and can be defined in differ-
ent ways (see next paragraph). The integral in the numerator of
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Eq. (B.4), or its generalization to the vector case, are computed
from the discrete data sets interpolated on the GLF grid using the
python interface of the SHTns library (Schaeffer 2013). The tilde
notation for the estimators of the spectral coefficients is dropped
in the text to simplify notations.

B.4. Apodizing and normalization issues

Dealing with data on a limited area, or apodizing it, introduces
leakage between different harmonics. In helioseismology, this
leakage can partly be alleviated by separating the oscillatory
components of the signal according to their discrete temporal
frequencies (Schou & Brown 1994; Howe & Thompson 1998).
However, this approach cannot be used here because the flows
that we analyze are characterized by a continuum of time scales.
As a result, leakage cannot be eliminated and can notably lead
to overestimating the magnitude of the flow.

The results of a detailed technical analysis including careful
tests and validations using synthetic data (not presented here but
available on request) show that a sensible approach to estimate
accurately the spectral coefficients in our problem is to use a “ρ
(heliocentric angle from disc center) window” function,

W(ρ) =

[
1
2

(
1 − tanh S

(
ρ − ρc

ρc

))]n

, (B.5)

where S is a smoothing parameter, ρc is the critical heliocen-
tric angle from disc center above which the apodization becomes
significant, and integer n parametrizes the sharpness of the fall-
off of the window function. We adopt an “energy-conserving”

normalization, which consists in directly calibrating the coeffi-
cients Nm

` [W] introduced in Eq. (B.4) once and for all based on
a comparison between the (known) analytical spectra of a few
test synthetic scalar fields defined over the whole sphere on the
one hand, and the spectra obtained through a (unrenormalized)
harmonic analysis of the apodized versions of the same fields
on the other hand. For the family of W given by Eq. (B.5), we
found that using a normalization factor independent of ` and m
is appropriate. Most importantly, although this strategy does not
entirely eliminate the leakage problem, it does alleviate that of
overestimating the spectral amplitude.

B.5. Harmonic-analysis parameters

All the results of the paper involving a harmonic analysis were
computed for a resolution (Nθ,Nϕ) = (846, 1728), corresponding
to `max = mmax = 845. This resolution was determined using
the Nyquist criterion applied to the 5862 CST grid resolution of
∼2.5 Mm. We used the window function

W60(ρ) =

[
1
2

(
1 − tanh 5

(
ρ − π/3
π/3

))]6

, (B.6)

which apodizes the field sharply at angular distances from disc
center larger than ρc = 60◦, and the same window with a nar-
rower opening ρc = 15◦. The normalization of the harmonic
spectra of the apodized data is based on the energy-conserving
normalization introduced above, with Nm

` [W60] = 0.36 for all `
and m.
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