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WANDERING DOMAINS ARISING FROM LAVAURS MAPS WITH
SIEGEL DISKS

MATTHIEU ASTORG, LUKA BOC THALER†, AND HAN PETERS

Résumé. Le théorème de non-errance de Sullivan a conclu en 1985 la classification des
composantes de Fatou des fractions rationnelles. En 2016, dans un travail en collabo-
ration entre les premiers et derniers auteurs ainsi que Buff, Dujardin et Raissy, il a été
prouvé que les domaines errants existent en dimensions supérieures. Plus précisément,
des domaines errants peuvent apparaître même pour une classe d’applications polyno-
miales apparemment simple : les produits fibrés polynomiaux. Même si la construction
fournit une infinité d’exemples, et a été étendue aux automorphismes polynomiaux de
C4 par Hahn et le dernier auteur, les domaines errants connus jusqu’à présent sont
essentiellement uniques.

Notre but dans ce papier est de construire un second exemple, en utilisant des
techniques similaires, mais avec un comportement dynamique différent. Au lieu de
produire des domaines errants à partir d’une application de Lavaurs avec un point
fixe attractif, nous travaillons avec une application de Lavaurs ayant un point fixe de
Siegel.

Les disques de Siegel ne sont pas robustes par perturbations, contrairement aux
points fixes attractifs. On prouve une condition nécessaire et suffisante d’existence de
régions pièges pour des systèmes dynamiques non-autonomes donnés par des composi-
tions d’applications convergeant à une vitesse parabolique vers une application limite
de type Siegel.

Pour garantir que cette condition est satisfaite dans notre situation, il est nécessaire
de revenir sur la preuve de la construction de domaines errants, pour obtenir des
estimations plus précises sur la vitesse de convergence. En adaptant certaines idées
de Bedford, Smillie et Ueda, et en prouvant l’existence de courbes paraboliques sur
un domaine approprié, on détermine un équivalent du reste dans la convergence vers
l’application de Lavaurs.

This research was partially supported by the ANR grant Fatou ANR-17-CE40-0002-01.
† Supported by the SIR grant “NEWHOLITE - New methods in holomorphic iteration” no.

RBSI14CFME and by the research program P1-0291 from ARRS, Republic of Slovenia.
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Abstract. The classification of Fatou components for rational functions was con-
cluded with Sullivan’s proof of the No Wandering Domains Theorem in 1985. In 2016
it was shown, in joint work of the first and last author with Buff, Dujardin and Raissy,
that wandering domains do exist in higher dimensions. In fact, wandering domains
arise even for a seemingly simple class of maps: polynomial skew products. While the
construction gives an infinite dimensional class of examples, and has been extended to
polynomial automorphisms of C4 by Hahn and the last author, the currently known
wandering domains are essentially unique.

Our goal in this paper is to construct a second example, arising from similar tech-
niques, but with distinctly different dynamical behavior. Instead of wandering domains
arising from a Lavaurs map with an attracting fixed point, we construct a domain aris-
ing from a Lavaurs map with a fixed point of Siegel type.

Siegel disks are not robust under perturbations, as opposed to attracting fixed
points. We prove a necessary and sufficient condition for the existence of a so-called
trapping domain for non-autonomous dynamical systems given by sequences of maps
converging parabolically towards a Siegel type limit map.

Guaranteeing that this condition is satisfied in our current construction requires a
reconsideration of the proof of the original wandering domain, as more precise esti-
mates on the rate of convergence towards the Lavaurs map are required. By adapting
ideas introduced recently by Bedford, Smillie and Ueda, and by proving the existence
of parabolic curves, with control on their domains of definition, we prove that the
convergence rate is parabolic.

1. Introduction

Rational functions do not have wandering domains, a classical result due to Sullivan
[16]. Recently in [1] it was shown that there do exist polynomial maps in two complex
variables with wandering Fatou components. The maps constructed in [1] are polynomial
skew products of the form

(z, w) 7→ (fw(z), g(w)),

where g(w) and fw(z) = f(z, w) are polynomials in respectively one and two variables.
While the construction holds for families of maps with arbitrarily many parameters, the
constructed examples are essentially unique: they all arise from similar behavior and
cannot easily be distinguished in terms of the geometry of the components or qualitative
behavior of the orbits in the components. The goal in this paper is to modify the
construction in [1] to obtain quite different examples of wandering Fatou components.
Our construction requires much more precise convergence estimates, forcing us to revisit
and clarify the original proof, obtaining a better understanding of the methodology.

The maps considered in [1] are of the specific form

(1) P : (z, w) 7→ (f(z) +
π2

4
w, g(w)),

where f(z) = z + z2 + O(z3) and g(w) = w − w2 + O(w3). Recall that the constant π4

4
is essential to guarantee the following key result in [1]:

Proposition A. As n→ +∞, the sequence of maps

(z, w) 7→ P ◦2n+1
(
z, g◦n

2
(w)
)
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converges locally uniformly in Bf × Bg to the map

(z, w) 7→ (Lf (z), 0) .

Here and later Bf and Bg refer to the parabolic basins of respectively f and g, and
Lf refers to the Lavaurs map of f with phase 0, see for example [8, 14]. By carefully
choosing the higher order terms of f , one can select Lavaurs maps with desired dynamical
behavior.

In Proposition B of [1] it was shown that Lf can have an attracting fixed point. The
fact that P has a wandering Fatou component is then a quick corollary of Proposition
A. It seems very likely that one can similarly construct wandering domains when Lf has
a parabolic fixed point, using the refinement of Proposition A presented here.

In this paper we will construct wandering domains arising when Lf has a Siegel fixed
point: an irrationally indifferent fixed point with Diophantine rotation number. Compo-
sitions of small perturbations of Lf behave so subtly that it is far from clear that Lavaurs
maps with Siegel disks can produce wandering domains.

In order to control the behavior of successive perturbations, we prove a refinement of
Proposition A with precise convergence estimates, showing that the convergence towards
the Lavaurs map is “parabolic”. Moreover, we study the behavior of non-autonomous sys-
tems given by maps converging parabolically to a limit map with a Siegel fixed point. We
introduce an easily computable index characterizing the behavior of the non-autonomous
systems.

In the next section we give more precise statements of our results, and prove how the
combination of these results provides a new construction of wandering domains.

2. Background and overview of results

2.1. Polynomial skew products and Fatou components. There is more than one
possible interpretation of Fatou and Julia sets for polynomial skew products, see for
example the paper [7] for a thorough discussion. When we discuss Fatou components of
skew products here, we consider open connected sets in C2 whose orbits are uniformly
bounded, which of course implies equicontinuity. Since the degrees of f and g in (1) are
at least 2, the complement of a sufficiently large bidisk is contained in the escape locus,
which is connected, all other Fatou components are therefore bounded and have bounded
orbits.

Given a Fatou component U of P , normality implies that its projection onto the
second coordinate πw(U) is contained in a Fatou component of g, which must therefore
be periodic or preperiodic. Without loss of generality we may assume that this component
of g is invariant, and thus either an attracting basin, a parabolic basin or a Siegel disk.

The behavior of P inside a Siegel disk of g may be very complicated and has received
little attention in the literature, but see [11] for the treatment of a special case.

There have been a number of results proving the non-existence of wandering domains
inside attracting basins of g. The non-existence of wandering domains in the super-
attracting case was proved by Lilov in [9], but it was shown in [13] that the arguments
from Lilov cannot hold in the geometrically attracting case. The non-existence of wan-
dering domains under progressively weaker conditions were proved in [12, 6].
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Here, as in [1], we will consider components U for which πw(U) is contained in a
parabolic basin of g. We assume that the fixed point of g lies at the origin, and that g
is of the form g(w) = w − w2 + h.o.t., so that orbits approach 0 tangent to the positive
real axis. We will in fact make the stronger assumption g(w) = w − w2 + w3 + h.o.t..

2.2. Fatou coordinates and Lavaurs Theorem. Consider a polynomial f(z) = z −
z2 + az3 + h.o.t.. For r > 0 small enough we define incoming and outgoing petals

P ιf = {|z + r| < r} and P of = {|z − r| < r}.

The incoming petal P ιf is forward invariant, and all orbits in P ιf converge to 0. Moreover,
any orbit which converges to 0 but never lands at 0 must eventually be contained in P ιf .
Therefore we can define the parabolic basin as

Bf =
⋃
f−nP ιf .

The outgoing petal P of is backwards invariant, with backwards orbits converging to 0.
On P ιf and P of one can define incoming and outgoing Fatou coordinates φιf : P ιf → C

and φof : P of → C, solving the functional equations

φιf ◦ f(z) = φιf (z) + 1 and φof ◦ f(z) = φof (z) + 1,

where φιf (P ιf ) contains a right half plane and φof (P of ) contains a left half plane. By the
first functional equation the incoming Fatou coordinates can be uniquely extended to
the attracting basin Bf . On the other hand, the inverse of φof , denoted by ψof , can be
extended to the entire complex plane, still satisfying the functional equation

f ◦ ψof (Z) = ψof (z + 1).

The fact that the exceptional set of f is empty implies that ψof : C → C is surjective.
We note that both incoming and outgoing Fatou coordinates are (on the corresponding
petals) of the form Z = −1

z +b log(z)+o(1), where the coefficient b vanishes when a = 1.
This is one reason for working with maps f of the form f(z) = z + z2 + z3 + h.o.t..

Let us now consider small perturbations of the map f . For ε ∈ C we write fε(z) =
f(z) + ε2, and consider the behavior as ε → 0. The most interesting behavior occurs
when ε approaches 0 tangent to the positive real axis.

Lavaurs Theorem [8]. Let εj → 0, nj ∈ N and α ∈ C satisfy

nj −
π

εj
→ α as j →∞.

Then

f
nj
εj → Lf (α) = ψof ◦ τα ◦ φιf ,

where τα(Z) = Z + α.

The map Lf (α) is called the Lavaurs map, and α is called the phase. In this paper we
will only consider phase α = 0, and write Lf instead of Lf (0).
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2.3. Propositions A and B. The construction of wandering domains in [1] follows
quickly from two key propositions, the aforementioned Propositions A and B. In this
paper we will prove a variation to Proposition B, and a refinement to Proposition A,
which we will both state here.

Our main technical result is the following refinement of Proposition A. As before
we write P (z, w) = (f(z) + π2

4 w, g(w)), with f(z) = z + z2 + z3 + bz4 + h.o.t., and
g(w) = w − w2 + w3 + h.o.t..

Proposition A’ There exists a holomorphic function h : Bf × Bg → C such that

P 2n+1(z, gn
2
(w)) = (Lf (z), 0) +

(
h(z, w)

n
, 0

)
+O

(
log(n)

n2

)
,

uniformly on compact subsets of Bf × Bg. The function h(z, w) is given by

h(z, w) =
L′(z)

(φιf )′(z)
·
(
C + φιf (z)− φιg(w)

)
,

where the constant C ∈ C depends on b.

Proposition A’ will be proved in section 5.
Proposition B in [1] states that the Lavaurs map Lf of a polynomial f(z) = z + z2 +

az3 + O(z4) has an attracting fixed point for suitable choices of the constant a ∈ C.
We recall very briefly the main idea in the proof of Proposition B: For a = 1 the “horn
map” has a parabolic fixed point at infinity. By perturbing a ' 1, the parabolic fixed
point bifurcates, and for appropriate perturbations this guarantees the existence of an
attracting fixed point for the horn map, and thus also for the Lavaurs map.

In this paper we will consider a more restrictive family of polynomials of the form
f(z) = z + z2 + z3 + O(z4), which means that we cannot use the above bifurcation
argument. Using a different line of reasoning, using small perturbations of a suitably
chosen degree 7 real polynomial, we will prove the following variation to Proposition B
in section 6.

Proposition B’ There exist polynomials of the form f(z) = z + z2 + z3 + O(z4) for
which the Lavaurs map Lf has a Siegel fixed point. Moreover we can guarantee that

(2)
L′′(ζ)(φιf )′(ζ)

λ(1− λ)
− (φιf )′′(ζ) 6= 0.

Condition (2) is necessary to guarantee the existence of wandering domains, see the
discussion of the index κ later in this section, and the discussion in subsection 5.3.

Recall that the fixed point is said to be of Siegel type if λ = L′f (z0) = e2πiζ , where
ζ ∈ R\Z is Diophantine, i.e. if there exist c, r > 0 such that |λn − 1| ≥ cn−r for all
integers n > 0. Recall that neutral fixed points with Diophantine rotation numbers are
always locally linearizable:

Theorem 2.1 (Siegel, [15]). Let p(z) = e2πiζz + O(z2) be a holomorphic germ. If ζ is
Diophantine then there exist a neighborhood of the origin Ωp and a biholomorphic map
ϕ : Ωp → Dr(0) of the form ϕ(z) = z + a2z

2 +O(z3) satisfying

ϕ(p(z)) = e2πiζϕ(z).
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A more precise description of the derivatives λ for which p is locally linearizable was
given by Brjuno [5] and Yoccoz [17]. As we are only concerned with constructing examples
of maps with wandering Fatou components, we find it convenient to work with the
stronger Diophantine condition. Proposition B’ will be proved in section 6.

2.4. Perturbations of Siegel disks. A key element in our study is the following ques-
tion:

Let f1, f2, . . . be a sequence of holomorphic germs, converging locally uniformly to a
holomorphic function f having a Siegel fixed point at 0. Under which conditions does
there exist a trapping region?

By a trapping region we mean the existence of arbitrarily small neighborhoods U, V
of 0 and n0 ∈ N such that

fm ◦ · · · ◦ fn(z) ∈ V as n→∞

for all z ∈ U and n ≥ n0. In other words, any orbit (zn)n≥0 that intersects U for
sufficiently large n will afterwards be contained in a small neighborhood of the origin.
Note that this in particular guarantees normality of the sequence of compositions fm ◦
. . . ◦ f0 in a neighborhood of z0, which is the reason for our interest in trapping regions.

We are particularly interested in the case where the differences fn−f are not absolutely
summable, i.e. when ∑

n≥n0

‖fn − f‖U =∞

for any n0 and U . In this situation one generally does not expect a trapping region.
However, motivated by Proposition A’, we will assume that fn − f is roughly of size 1

n ,
and converges to zero along some real direction. More precisely, we assume that

fn(z)− f(z) =
h(z)

n
+O(

1

z1+ε
),

where h is a holomorphic germ, defined in a neighborhood of the origin.

Theorem 2.2. There exists an index κ, a rational expression in the coefficients of f
and h, such that the following holds:

(1) If Re(κ) = 0, then there is a trapping region, and all limit maps have rank 1.
(2) If Re(κ) < 0, then there is a trapping region, and all orbits converge uniformly

to the origin.
(3) If Re(κ) > 0, then there is no trapping region. In fact, there can be at most one

orbit that remains in a sufficiently small neighborhood of the origin.

Theorem 2.2 holds under more general assumptions regarding the convergence towards
the limit map, but the above statement is sufficient for our purposes. An example of a
more general statement is given in Remark 3.15. An explicit formula for the index κ is
given in section 3, which contains the proof of Theorem 2.2.

Remark 2.3. The case Re(κ) < 0 in Theorem 2.2 is closely related to the description due
to Bracci and Zaitsev [4] of non-degenerate one-resonant germs tangent to the identity.
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2.5. Parabolic Curves. An important idea in the proof of Lavaurs Theorem is that in
a sufficiently small neighborhood of the origin, the function fε = f+ε2 can be interpreted
as a near-translation in the “almost Fatou coordinates”: functions that converge to the
ingoing and outgoing Fatou coordinates as ε → ∞. This idea is especially apparent in
the treatment given in [3]. The almost Fatou coordinates are defined using the pair of
fixed points ζ±(ε) “splitting” from the parabolic fixed point.

When iterating two-dimensional skew products P (z, w) = (fw(z), g(w)) it does not
make sense to base the almost Fatou coordinates on the pair of fixed points of the maps
fw(z) = f(z) + π2

4 w, as the parameter w changes after every iteration of P . Instead, the
natural idea would be to base these coordinates on a pair of invariant curves {z = ζ±(w)},
so-called parabolic curves, defined over a forward invariant parabolic petal in the w-plane.
The invariance of these parabolic curves is equivalent to the functional equations

ζ±(g(w)) = fw(ζ±(w)).

In [1], it is asked whether such parabolic curves exists. Instead, in [1] it was shown
that there exist almost parabolic curves, approximate solutions to the above functional
equation with explicit error estimates. The proof of Proposition A relies to a great extent
on these almost parabolic curves, and the fact that these are not exact solutions causes
significant extra work.

In the recent paper [10] by Lopez-Hernanz and Rosas it is shown that the parabolic
curves indeed exist, in fact, the authors prove the existence of parabolic curves for any
characteristic direction for diffeomorphisms in two complex dimensions. However, to be
used in the proof of Proposition A, it is necessary to also obtain control over the domain
of definition of the two parabolic curves. The result from [10] does not give the needed
control.

In section 4, Proposition 4.1, we give an alternative proof of the existence of parabolic
curves, with control over the domains of definition. The availability of these parabolic
curves forms an important ingredient in the proof of Proposition A’. The method of proof
is a variation to the well known graph transform method, and can likely be used to prove
the existence of parabolic curves in greater generality.

2.6. Wandering domains. Let us conclude this section by proving how Propositions
A’ and B’ together imply the existence of wandering Fatou components. As before we
let

P (z, w) = (f(z) +
π2

4
w, g(w)),

where g(w) = w − w2 + w3 + h.o.t. and the function f(z) = z + z2 + z3 + h.o.t. is
chosen such that Lf has a neutral fixed point ζ with Diophantine rotation number. The
existence of such f is given by Proposition B’.

Proposition A’ states that

P 2n+1(z, gn
2
(w)) = (Lf (z), 0) +

(
h(z, w)

n
, 0

)
+O

(
log(n)

n2

)
,

uniformly on compact subsets of Bf × Bg.
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Recall from Proposition A’ that the function h(z, w) is given by

h(z, w) =
L′(z)

(φιf )′(z)
·
(
C + φιf (z)− φιg(w)

)
,

from which it follows directly that the index κ depends affinely on φιg(w), although it is
conceivable that the multiplicative constant in this dependence vanishes.

As will be explained in detail in subsection 5.3, the index κ is independent from w if
and only if

(3)
L′′(ζ)(φι)′(ζ)

λ(1− λ)
− (φι)′′(ζ) = 0,

in which case κ is constantly equal to +1. The second statement in Proposition B’
therefore implies that f can be chosen in order to obtain an inequality in (3), which
implies that the affine dependence of κ on φιg(w) is non-constant.

It follows that there exists an open subset of Bg where the w-values are such that
Re(κ) is strictly negative. Let D2 ⊂ Bg be a small disk centered contained in this open
subset, so that Re(κ) is negative for all w ∈ D2.

Let D1 be a small disk centered at ζ, the Siegel type fixed point of Lf . We claim that
for n ∈ N large enough, the open set D1 × gn

2
(D2) is contained in a wandering Fatou

component.
Indeed, it follows from Proposition A’ that the non-autonomous one-dimensional sys-

tem given by compositions of the maps z 7→ πz ◦ P 2n+1(z, gn
2
(w)) satisfy case (2) of

Theorem 2.2, where πz is the projection onto the z-coordinate. Thus Theorem 2.2 im-
plies that

Pm
2−n2

(z, w)→ (ζ, 0),

uniformly for all (z, w) ∈ D1 × gn
2
(D2). Since the complement of the escape locus of P

is bounded, it follows that the entire orbits Pm(z, w) must remain uniformly bounded,
which implies normality of (Pm) on D1 × gn

2
(D2), which is therefore contained in a

Fatou component, say U . The fact that on an open subset of U the subsequence Pm2−n2

converges to the constant (ζ, 0) implies convergence of this subsequence to (ζ, 0) on all of
U , since limit maps of convergent subsequences are holomorphic. But if U was periodic
or preperiodic, the limit set would have been periodic. The point (ζ, 0) is however not
periodic: its orbit converges to (0, 0). Thus U is wandering, which completes the proof.

Remark 2.4. From the above discussion we can conclude that all possible limit maps
of convergent subsequence Pnj |U are points. In fact these points form (the closure of) a
bi-infinite orbit of (ζ, 0), converging to (0, 0) in both backward in forward time.

We note however that there are fibers {w = w0}, with w0 ∈ Bg for which Re(κ) = 0.
Let D1 again be a sufficiently small disk centered at ζ, the Siegel type fixed point of Lf .
Theorem A’ together with case (1) of Theorem 2.2 implies that for sufficiently large n the
disk D1 × {gn

2
(w0)} is a Fatou disk for P , i.e. the restriction of the iterates Pn to the

disk form a normal family. For this Fatou disk the sequence of iterates Pm2−n2 converges
to a rank 1 limit map, whose image is a holomorphic disk containing (ζ, 0). All the limit
sets together form (the closure of) a bi-infinite sequence of disks, converging in backward
and forward time to the point (0, 0).
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3. Perturbations of Siegel disks

3.1. Notation. The following conventions will be used throughout this section:
(i) Given a holomorphic function f , we will write f̂ for the non-linear part of f .
(ii) For a sequence of constants λn ∈ C we will write

λn,m =
n∏

j=m+1

λj and λ(n) = λn,0 =
n∏
j=1

λj ,

and similarly for a sequence of functions (fn)

fn,m = fn ◦ · · · ◦ fm+1.

(iii) Given two sequences of holomorphic functions (fn) and (gn) defined on some
uniform neighborhood of the origin, we will write fn � gn if the norms of the
sequence of differences (fn − gn) is summable on some uniform neighborhood of
the origin.

3.2. Preparation.

Definition 3.1. Two sequences of functions (fn) and (gn) are said to be non-autonomously
conjugate if there exist a uniformly bounded sequence of local coordinate changes (ψn)n≥n0 ,
all defined in a uniform neighborhood of the origin, satisfying

fn ◦ ψn = ψn+1 ◦ gn
for all n ≥ n0.

Definition 3.2. A sequence of functions (fn) is said to be non-autonomously linearizable
if there exists a sequence (λn)n≥n0 in C \ {0} and a sequence of coordinate changes
(ψn)n≥n0 , defined and uniformly bounded in a uniform neighborhood of the origin, and
with derivative ψ′n(0) uniformly bounded away from zero, so that

fn ◦ ψn(z) = ψn+1(λn · z)
for all n ≥ n0. If the sequence |λ(n)| is bounded, both from above and away from 0, then
we say that (fn) is rotationally linearizable.

Definition 3.3. A sequence of functions (fn) is said to be collapsing if there is a neigh-
borhood of the origin U and an n0 ∈ N such that fn,m → 0 on U for any m ≥ n0.

An example of a collapsing sequence is given by a sequence of functions fn converging
to a function f with an attracting fixed point at the origin.

Definition 3.4. We say that sequence (fn) is expulsive if there exists r > 0 such that
for every m ≥ 0 there exists at most one exceptional point ẑ such that for every z ∈
Dr(0) \ {ẑ} there exist n > m for which fn,m(z) /∈ Dr(0).

An example of an expulsive sequence can be obtained by considering a sequence of
maps (fn) converging locally uniformly to a map with a repelling fixed point. Since f
maps a small disk around the origin to a strictly larger holomorphic disk, the same holds
for sufficiently small perturbations. A nested sequence argument shows that, starting at
a sufficiently large time n0, there is a unique orbit which remains in the small disk.
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Lemma 3.5. Consider a sequence (fn) of univalent holomorphic functions, defined in a
uniform neighborhood of the origin. Suppose the compositions fn,0 are all defined in a
possibly smaller neighborhood of the origin, and form a normal family. Then the sequence
(fn) is either rotationally linearizable, or there exist subsequences (nj) for which fnj ,0
converges to a constant.

Proof. By normality the orbit fn,0(0) stays bounded. By non-autonomously conjugating
with a sequence of translations we may therefore assume that fn(0) = 0 for all n. Note
that normality is preserved under non-autonomous conjugation by bounded translations.

Write λn = f ′n(0). Normality implies that |λ(n)| is bounded from above. The functions

ψn+1(z) := fn,0(λ(n)−1 · z)

are tangent to the identity, and they satisfy the functional equation

f ◦ ψn(z) = ψn+1(λ · z).

If the sequence |λ(n)| is bounded away from the origin then the maps ψn are uniformly
bounded, and the sequence (f(n)) is rotationally linearizable. Suppose that the sequence
λ(n) is not bounded from below, in which case there is a subsequence λ(nj) converging
to 0. By Hurwitz Theorem the sequence of maps fnj ,0 converges to a constant. �

Lemma 3.6. If the sequence (fn) is rotationally linearizable, and (ζn) is a sequence of
absolutely summable holomorphic functions, i.e.∑

‖ζn‖Dr <∞,

then the sequence (fn + ζn) is also rotationally linearizable.

Proof. Write gn = fn+ζn. We consider the errors due to the perturbations in linearization
coordinates, i.e.

ψ−1n+1 ◦ gn ◦ ψn(z)− ψ−1n+1 ◦ fn ◦ ψn(z) = ψ−1n+1 ◦ gn ◦ ψn(z)− λn · z.

By definition of the non-autonomous linearization, it follows that after restricting to a
smaller neighborhood of the origin the derivatives of the maps ψn and their inverses are
uniformly bounded. It follows that the above errors are also absolutely summable, which
guarantees normality of the sequence ψ−1n+1 ◦ gn,0 in a small neighborhood of the origin,
and hence normality of the sequence gn,0. It follows from Lemma 3.5 that (fn + ζn) is
either rotationally linearizable, or has subsequences converging to the origin. It follows
from the summability of the errors that the latter is impossible. �

3.3. Introduction of the index. Let f(z) = λz + b2z
2 + O(z3) be a holomorphic

function with λ = e2πiζ and ζ ∈ R\Z Diophantine. Let h(z) = c0 + c1z + O(z2) be a
holomorphic function defined in a neighborhood of the origin. Let (ζn(z)) be a sequence of
holomorphic functions that is defined and absolutely summable on some uniform neigh-
borhood of the origin. We consider the non-autonomous dynamical system given by
compositions of the maps

fn(z) = f(z) +
1

n
h(z) + ζn(z).
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We introduce the index κ, depending rationally on the two-jet of f at the origin, and
the one-jet of h at the origin, by

(4) κ :=
2b2c0

λ(1− λ)
+
c1
λ
.

Since ζ is Diophantine the function f is linearizable. Let us write φ(z) = z+h.o.t. for
the linearization map of f , i.e. f ◦ φ(z) = φ(λz).

We define
θn(z) := z +

1

n

c0
1− λ

.

Lemma 3.7. With the above definitions we can write

(5)

fn :=φ−1 ◦ θ−1n+1 ◦ fn ◦ θn ◦ φ

=λ · e
κ
n · z +

1

n

∞∑
l=2

dlz
l + ξn(z),

where (ξn) is a sequence of holomorphic functions that are defined and whose norms are
summable on a uniform neighborhood of the origin.

Proof. First observe that

θ−1n+1 ◦ fn ◦ θn � f(z +
1

n

c0
1− λ

) +
1

n
h(z +

1

n

c0
1− λ

)− 1

n+ 1

c0
1− λ

� f(z) + f ′(z)
1

n

c0
1− λ

+
1

n
h(z)− 1

n+ 1

c0
1− λ

.

Using the power series expansions of f ′ and h we can therefore write

θ−1n+1 ◦ fn ◦ θn � f(z) + (
1

n

λc0
1− λ

+
1

n
c0 −

1

n+ 1

c0
1− λ

) +
1

n
(
2b2c0
1− λ

+ c1)z +
1

n

∞∑
k=2

βkz
k

� f(z) +
c0

1− λ
(
1

n
− 1

n+ 1
) +

1

n
λκz +

1

n

∞∑
k=2

βkz
k

� f(z) +
1

n
λκz +

1

n

∞∑
k=2

βkz
k.

It follows that

fn � φ−1(f(φ(z))) + (φ−1)′(f(φ(z)))

(
1

n
λκφ(z) +

1

n

∞∑
k=2

βkφ(z)k

)

� λ(1 +
κ

n
)z +

1

n

∞∑
k=2

dkz
k

� λe
κ
n z +

1

n

∞∑
k=2

dkz
k.

For the last equality we used that 1 + κ
n = e

κ
n +O( 1

n2 ). �
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Corollary 3.8. If Re(κ) < 0 the sequence fn is collapsing.

Proof. Observe that f ′n(z) � λe
κ
n +O( zn) and note that there is a small disk Dr(0) such

that for n sufficiently large

‖f ′n‖Dr(0) < e
Re(κ)
2n ,

and thus

(6) |fn(z)− fn(w)| ≤ e
Re(κ)
2n |z − w|.

Since Re(κ) < 0 it follows that
∏
n≥1 e

Re(κ)
2n = 0.

Let us write
ϕn(z) = λ · e

κ
n · z + f̂n(z),

i.e. dropping the term ξn from fn. By decreasing the radius r if necessary we can choose
m0 such that ∑

j≥m0

‖ξj‖Dr(0) <
r

2
.

By increasing m0 if necessary we can also guarantee that ϕn,m(z) ∈ Dr/2(0) for all z ∈
Dr/4(0) and m ≥ m0. Using (6) it follows by induction on n that whenever z ∈ Dr/4(0)
and m ≥ m0 then

‖fn,m(z)− ϕn,m(z)‖ ≤
n∑

j=m

(
n∏

k=j+1

e
Re(κ)
2k )‖ξj‖Dr(0).

Indeed, the inequality is trivially satisfied for n = m, and assuming the inequality holds
for some n ≥ m implies

‖fn+1,m(z)− ϕn+1,m(z)‖ =‖fn+1 ◦ fn,m(z)− fn+1 ◦ ϕn,m(z) + ξn+1(ϕn,m(z))‖

≤
n+1∑
j=m

(
n+1∏
k=j+1

e
Re(κ)
2k )‖ξj‖Dr(0).

Note that
∑n

j=m(
∏n
k=j+1 e

Re(κ)
2k )‖ξj‖Dr(0) → 0 as n → ∞, hence the fact that the se-

quence (ϕn) collapses implies that the sequence (fn) collapses as well. �

Since the sequence (fn) collapses, it follows immediately that the sequence (fn) col-
lapses as well, concluding the case Re(κ) < 0.

Corollary 3.9. If Re(κ) > 0 the sequence fn is expulsive.

Proof. Note that there are r, n0 > 0, such that for every z, w ∈ Dr(0) and every n > n0
we have

|fn(z)− fn(w)| = |z − w| · |e
κ
n +

1

n
O(z, w)| > e

Re(κ)
2n |z − w|.

Expulsion of all but one orbit follows immediately. �

Again it follows that (fn) is expulsive, completing the case Re(κ) > 0.
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3.4. Rotationally linearizable case (Re(κ) = 0). Let us define

Ln(z) = eκ
∑n−1
k=1

1
k · z.

We obtain

gn = L−1n+1 ◦ fn ◦ Ln

= λz + e−κ
∑n
k=1

1
k

1

n

∞∑
`=2

d`e
κ`
∑n−1
k=1

1
k z` + L−1n+1 ◦ ξn ◦ Ln

� λz +
1

n

∞∑
`=2

d`e
κ(`−1) lognz`,

where the last equality used that
∑n−1

k=1
1
k = log n+O( 1

n2 ).
Since Re(κ) = 0, the maps Ln are rotations, hence it is sufficient to prove that the

sequence (gn) is rotationally linearizable.
By Lemma 3.6 we may ignore the absolutely summable part of gn, hence with slight

abuse of notation we may assume that

gn = λz +
1

n

∞∑
`=2

d`e
κ(`−1) lognz`.

Recall that λ = e2πiζ , where ζ is Diophantine.

Lemma 3.10. There exist constants C, r > 0 such that for every integer ` ≥ 1 and for
every 0 < m < N we have ∣∣∣∣∣∣

N∑
j=m

λ`j

∣∣∣∣∣∣ < C`r.

Proof. Since ζ is assumed to be Diophantine, there exist c, r > 0 such that |λn−1| ≥ cn−r
for all n. This gives the bound∣∣∣∣∣∣

N∑
j=m

λ`j

∣∣∣∣∣∣ =

∣∣∣∣∣∣
N∑
j=m

λ`(j+1) − λ`j

λ` − 1

∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1

λ` − 1

N∑
j=m

(λ`(j+1) − λ`j)

∣∣∣∣∣∣ <
∣∣∣∣ 2

λ` − 1

∣∣∣∣ < C`r.

�

Lemma 3.11. There exist C̃, r > 0 such that for all integers n, ` > 0 we have∣∣∣∣∣
∞∑
k=n

eκ` log k

k
λk`

∣∣∣∣∣ < C̃`r+1

n

Proof. Summation by parts gives
N∑
k=n

eκ` log k

k
λkl =

eκ` logN

N

N∑
k=n

λk` −
N−1∑
k=n

(
eκ` log(k+1)

k + 1
− eκ` log k

k

)
k∑
j=n

λj`

=
eκ` logN

N

N∑
k=n

λk` −
N−1∑
k=n

eκ` log k

(
1 + κl

k +O( 1
k2

)

k + 1
− 1

k

)
k∑
j=n

λj`.
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Observe that
1+κ`

k
+O( 1

k2
)

k+1 − 1
k = O( 1

k2
) is absolutely summable, hence using Lemma 3.10

we obtain ∣∣∣∣∣
N∑
k=n

eκ` log k

k
λk`

∣∣∣∣∣ < 1

N

∣∣∣∣∣
N∑
k=n

λk`

∣∣∣∣∣+

N−1∑
k=n

∣∣∣∣∣1 + κ`
k +O( 1

k2
)

k + 1
− 1

k

∣∣∣∣∣
∣∣∣∣∣∣
k∑
j=n

λj`

∣∣∣∣∣∣
<
C`r

N
+ C`r

N−1∑
k=n

∣∣∣∣ `κ− 1

k(k + 1)
+O(

1

k3
)

∣∣∣∣
<
C̃`r+1

n
�

Let us introduce one more change of coordinates

Sn+1(z) = z − λ−1
∞∑
`=2

λ(n+1)(1−`)d`z
`
∞∑

k=n+1

eκ(`−1) log k

k
λk(`−1)

Lemma 3.12. Writing Sn(z) = z + Ŝn(z) we obtain

Ŝn+1(λz) = λŜn(z) + ĝn(z).

Proof. Computing Ŝn+1(λz)− ĝn(z) gives

− λ−1
∞∑
`=2

λ(n+1)(1−`)d`λ
`z`

∞∑
k=n+1

eκ(`−1) log k

k
λk(`−1) − 1

n

∞∑
`=2

eκ(`−1) lognd`z
`

= −
∞∑
`=2

λn(1−`)d`z
`
∞∑

k=n+1

eκ(`−1) log k

k
λk(`−1) −

∞∑
`=2

eκ(`−1) logn

n
λn(`−1)λn(1−`)d`z

`

= −
∞∑
`=2

λn(1−`)d`z
`
∞∑
k=n

eκ(`−1) log k

k
λk(`−1) = λŜn(z).

�

Lemma 3.13. The maps Sn satisfy Sn = z +O( 1
n), with uniform bounds.

Proof. ∣∣∣Ŝn(z)
∣∣∣ =

∣∣∣∣∣λ−1
∞∑
`=2

λn(1−`)d`z
`
∞∑
k=n

eκ(`−1) log k

k
λk(`−1)

∣∣∣∣∣
<
C̃

n

∞∑
`=2

|d`z`|(`− 1)r+1.

�

Let us define
hn := S−1n+1 ◦ gn ◦ Sn.

Lemma 3.14. The maps hn are of the form

hn = λz +O(n−2).
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Proof. The definition of hn immediately gives that hn(z) = λz +O( 1
n).

gn ◦ Sn = Sn+1 ◦ hn
and thus

λz + λŜn(z) + ĝn(z + Ŝn) = λz + ĥn(z) + Ŝn+1(λz + ĥn),

which gives

λŜn(z) + ĝn(z) + ĝ′n(z)Ŝn(z) +O(Ŝ2
n) = ĥn(z) + Ŝn+1(λz) + Ŝ′n+1(λz)ĥn +O(ĥ2n).

Hence by Lemma 3.12 we obtain

ĝ′n(z)Ŝn(z) +O(Ŝ2
n) = ĥn(z)(1 + Ŝ′n+1(λz)) +O(ĥ2n).

Since ĝn = O( 1
n) and Ŝn = O( 1

n) we get

ĥn(z)(1 + Ŝ′n+1(λz)) +O(ĥ2n) = O(
1

n2
).

Since hn(z) = λz +O( 1
n) it follows that ĥn(z) = O( 1

n2 ).
�

Lemma 3.6 implies that the sequence (hn) is rotationally linearizable, hence the same
holds for (gn), (fn) and finally (fn), which completes the proof of Theorem 2.2.

Remark 3.15. The proof of Theorem 2.2 also works for more general perturbations, for
example

fn(z) � f(z) +
1

n
h1(z) +

log n

n
h2(z).

In this case we have two indexes κ1 and κ2 associated to h1 and h2 respectively. The
following is a general version of Theorem 2.2.

(1) If Re(κ2) > 0 then the sequence (fn) is expulsive.
(2) If Re(κ2) < 0 then the sequence (fn) is collapsing.
(3) If Re(κ2) = 0 and

(a) Re(κ1) > 0, then the sequence (fn) is expulsive.
(b) Re(κ1) < 0, then the sequence (fn) is collapsing.
(c) Re(κ1) = 0, then the sequence (fn) is rotationally linearizable, hence all limit

maps have rank 1.

4. Existence of parabolic curves

The purpose of this section is to prove the following proposition.

Proposition 4.1. Let P (z, w) := (f(z) + π2

4 w, g(w)), with f(z) = z + z2 + bz3 +O(z4)

and g(w) = w−w2 +O(w3). Then P has at least 3 parabolic curves: one is contained in
the invariant fiber z = 0 and is an attracting petal for f ; the other two are graphs over
the same petal in the parabolic basin Bg. Moreover they are of the form

ζ±(w) = ±c1
√
w + c2w ± c3w3/2 +O(w2),

where c1 = πi
2 and c2 = bπ2

8 −
1
4 .
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Proposition 4.1 gives a positive answer to a question posed in [1]. Note that the
existence of 3 parabolic curves can be derived from the recent paper [10] by Lopez-
Hernanz and Rosas. However, their proof gives no guarantee that the parabolic curves
ζ± are graphs over the same petal in Bg, which is crucial for our purpose. Let us start
by observing that P is semi-conjugate to a map Q, holomorphic near the origin, given
by

Q(z, ε) =

(
f(z) +

π2

4
ε2, ε− ε3

2
+O(ε5)

)
(with ε2 = w). The map Q has 3 characteristic directions: z = 0, z = πi

2 ε and z = −πi
2 ε.

It is clear that there is a parabolic curve tangent to the characteristic direction z = 0,
namely the attracting petal for f in the invariant fiber {z = 0}. We call this parabolic
curve the trivial curve. For the existence of the two other parabolic curves we will use a
graph transform argument.

Let us write Q(z, ε) = (fε(z), g̃(ε)), so that fε(z) = f(z) + π2

4 ε
2 and ε̃ := g̃(ε) =√

g(ε2) = ε− ε3

2 + O(ε5). We are looking for parabolic curves of the form ε → (ζ(ε), ε),
hence satisfying the equation

(7) Q(ζ(ε), ε) = (ζ(ε̃), ε̃).

Equivalently we are looking for a function ζ, defined for ε in a parabolic petal of g̃,
satisfying the functional equation

ζ(g̃(ε)) = fε(ζ(ε)).

We will prove that Q has two parabolic curves ζ±, corresponding to the characteristic
directions z = ±πi

2 ε, which are graphs over the same attracting petal of g̃ in the right
half-plane. This will complete the proof of Proposition 4.1, since these two parabolic
curves can be lifted to parabolic curves of P satisfying the desired properties.

The key idea in proving the existence of ζ(ε) is to start with sufficiently high order
jets ζ1(ε) of the formal solution to the equation (7), and then apply a graph transform
argument, starting with ζ1. By starting with higher order jets, we obtain higher order
error estimates, but the constants in those estimates are likely to deteriorate. However,
these estimates can be controlled by dropping the order of the error estimates by 1, and
working with |epsilon| < δ, with δ depending on the order of the jets. It turns out that
starting with jets of order 20 is sufficient to obtain convergence of the graph transforms.

Lemma 4.2. For every integer n > 0 there exists ζ1(ε) = c1ε+ c2ε
2 + c3ε

2 + · · ·+ cnε
n

and δ > 0 such that |ζ1(ε̃)− fε(ζ1(ε))| < |ε|n for all |ε| < δ. Moreover we have c1 = ±πi
2

and c2 = bπ2

8 −
1
4 .

Proof. Recall from [1] that by choosing ζ1(ε) = c1ε+c2ε
2, with c1 = ±πi

2 and c2 = bπ2

8 −
1
4 ,

we obtain
|ζ1(ε̃)− fε(ζ1(ε))| < O(|ε|4).

Now suppose that c1, . . . , cn are found such that for ζ(ε) = c1ε+ · · ·+ cnε
n we have

|ζ1(ε̃)− fε(ζ1(ε))| < O(|ε|n+2).

Let En(ε) := fε(ζ1(ε))− ζ1(ε̃). For cn+1 ∈ C, let
En+1(ε) := fε(ζ1(ε) + cn+1ε

n+1)− ζ1(ε̃)− cn+1ε̃
n+1;
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we shall prove that there exists some cn+1 such that En+1 = O(εn+3). Indeed,

fε(ζ1(ε) + cn+1ε
n+1) = fε(ζ1(ε)) + f ′(ζn(ε))cnε

n+1 +O(ε2n+2)

= fε(ζ1(ε)) + (1 + 2c1ε)cn+1ε
n+1 +O(εn+3).

On the other hand, we have cn+1ε̃
n+1 = cn+1ε

n+1 +O(εn+3); so

En+1(ε) = En(ε) + 2c1cn+1ε
n+2 +O(εn+3).

Since En(ε) = O(εn+2) (and c1 6= 0), we may therefore find some value of cn+1 for which
En+1(ε) = O(εn+3).

We conclude that if δ is small enough then |ζ1(ε̃)− fε(ζ1(ε))| < |ε|n for all |ε| < δ. �

Remark 4.3. The choice of parabolic curve is determined by the choice of c1. From now
on we will assume that c1 = πi

2 ; for the case c1 = −πi
2 the proofs are essentially the same.

Let us write HR = {Z ∈ C | arg(Z −R) ∈ (−π
2 − ε0,

π
2 + ε0)} for some ε0 > 0,

and
Pδ = {ε ∈ C | ε−2 ∈ Hδ−2 and Re(ε) > 0}.

For δ > 0 sufficiently small the petal Pδ is forward invariant under g̃, i.e. g̃(Pδ) ⊂ Pδ.
Recall the existence of Fatou coordinates on Pδ: the function g̃ is conjugate to the
translation T1 : Z 7→ Z + 1 via a conjugation of the form

Z =
1

ε2
+ α log(ε) + o(1),

where the constant α depends on g. All forward orbits in Pδ converge to 0 tangent to
the positive real axis, and the conjugation gives the estimates

(8) |Re(g̃k(ε))| < C√
k

and |Im(g̃k(ε))| < C

k
,

for a uniform C > 0 depending on δ. We note that by choosing δ sufficiently small, the
constant C can be chosen arbitrarily small as well.

Lemma 4.4. Let n > 0 and ζ1(ε) be as in Lemma 4.2. There exist δ, A > 0 such that
for every |ε| < δ we have

|f−1(f(ζ1(ε)) + 3ε4)− ζ1(ε)| ≤ A|ε|4.

Proof. The Taylor series expansion of f gives

|f−1(f(ζ1(ε)) + 3ε4)− ζ1(ε)| ≤
∞∑
i=1

∣∣∣∣∣(f−1)(i)(f(ζ1(ε)))

i!

∣∣∣∣∣ 3i|ε4|i,
and the desired estimate follows immediately. �

Lemma 4.5. Let n > 0 and ζ1(ε) be as in Lemma 4.2, A > 0 and δ > 0 sufficiently
small. Let (ζk(ε)) be any sequence of holomorphic functions defined on Pδ and satisfying

|ζk(ε)− ζ1(ε)| < A|ε|4.
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Then there exists C1 > 0, depending on ζ1, such that∣∣∣∣∣
k∏
s=l

f ′(ζs(g̃
k+1−s(ε)))

∣∣∣∣∣
−1

< C1 · (k + 1− l),

for all ε ∈ Pδ and every 0 < l ≤ k.

Proof. Let us write xk = Re(g̃k(ε)) > 0 and yk = Im(g̃k(ε)). Estimates (8) imply

(9)
∞∑
k=0

|g̃k(ε)|3 < K <∞ for all ε ∈ Pδ.

Since by assumption |ζs(ε) − ζ1(ε)| < A|ε|4 for every s ≥ 1, it follows that ζs(ε) =
c1ε+ c2ε

2 +O(ε3) and
|f ′(ζs(ε))− f ′(ζ1(ε))| < B|ε4|,

where B > 0 depends only on ζ1 and A.
Observe that f ′(z) = 1 + 2z + 3bz2 +O(z3) = e2z+(3b−2)z2+O(z3), hence we obtain

f ′(ζs(ε)) = e
πiε+

(
π2(1−b)

2
− 1

2

)
ε2+O(ε3)

,

where the bound O(ε3) is uniform with respect to s. Therefore we can find C1 > 0 such
that∣∣∣∣∣

k∏
s=`

f ′(ζs(g̃
k+1−s(ε)))

∣∣∣∣∣ >
∣∣∣∣∣e
∑k
s=` Re

(
πig̃k+1−s(ε)+

(
π2(1−b)

2
− 1

2

)
(g̃k+1−s(ε))2

)
+O((g̃k+1−s(ε))3)

∣∣∣∣∣
>

1

C1

∣∣∣∣∣e
∑k
s=`−πyk+1−s+

(
π2(1−Re(b))

2
− 1

2

)
x2k+1−s

∣∣∣∣∣
>

1

C1

∣∣∣e−∑k
s=`

1
k+1−s

∣∣∣
>

1

C1(k + 1− `)
.

In the first inequality we used the fact that |ez| = eRe(z). The second inequality follows
from estimates (8) and (9). The third inequality depends on the constant C from (8)
being sufficiently small, which can be guaranteed by taking sufficiently small δ. �

Remark 4.6. Note that the estimates in Lemmas 4.2, 4.4 and 4.5 hold regardless of the
choice of n in the definition of ζ1. If n is increased, then all estimates hold, with the
same constants, for δ sufficiently small. It turns out that it will be sufficient for us to
work with n = 20, and we will work with this choice from now on.

Lemma 4.7. There exists sufficiently small δ > 0 such that for every k ≥ 2 and every
ε ∈ Pδ we have

|g̃k(ε)|19k + |g̃k(ε)|39(k − 1) +
k−1∑
`=2

|g̃k+1−`(ε)|23(k − `)
(`− 1)4

+
|g̃(ε)|23

(k − 1)4
<

4|ε|12

k2
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Proof. We will prove that each of the four terms in the left hand summation is bounded
by |ε|

12

k2
. It follows from (8) that for every 0 ≤ ` ≤ 19 we have

|g̃k(ε)|19k < C19k

|k + 1
ε2
|
19
2

<
C19|ε|`k
k

19−`
2

.

If we choose ` = 13 and assume that δ is small enough, then we get

|g̃k(ε)|19k < |ε|
12

k2

for ε ∈ Pδ. The desired bound for a second term follows immediately from the inequality

|g̃k(ε)|39(k − 1) < |g̃k(ε)|19k.
Next observe that for every k ≥ 2 we have

|g̃(ε)|23

(k − 1)4
<

22|ε|23

(2(k − 1)2)2
<
|ε|12

k2
,

where the last inequality holds for sufficiently small δ. Finally, for the third term in the
summation we use (8) to obtain

k−1∑
`=2

|g̃k+1−`(ε)|23(k − `)
(`− 1)4

<
k−1∑
`=2

C10|ε|13(k − `)
(k + 1− `)5(`− 1)4

< C10|ε|
k−1∑
`=2

|ε|12

(k − `)4(`− 1)4
.

In order to obtain the desired bound it suffices to prove that
k−1∑
`=2

1

(k − `)4(`− 1)4
<

44

k2
.

First observe that
1

(`− 1)(k − `)
≤ 4

k
for every k ≥ 3 and 2 ≤ ` ≤ k − 1. To see this let us denote s = ` − 1 and t = k − 1.
The above inequality now translates to

1

s(t− s)
≤ 4

t+ 1

for t ≥ 2 and 1 ≤ s ≤ t− 1, and hence to

pt(s) := 4s2 − 4ts+ t+ 1 ≤ 0.

Observe that pt(1) < 0 and that roots of pt(s) lie outside the closed interval [1, t − 1].
Therefore we obtain

k−1∑
`=2

1

(k − l)4(`− 1)4
<

k−1∑
`=2

44

k4
<

44

k2
,

and hence for δ sufficiently small
k−1∑
`=2

|g̃k+1−`(ε)|23(k − `)
(`− 1)4

<
|ε|12

k2
.

This completes the proof of Lemma 4.7.
�
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Proof of Proposition 4.1: As we have remarked at the beginning of this section, it is
enough to prove that Q has two parabolic curves ζ± corresponding to the characteristic
directions z = ±πi

2 ε, both curves graphs over the same attracting petal of g̃ in the right
half-plane. By Lemma 4.2 there exist δ > 0 and ζ1(ε) = c1ε + c2ε

2 + . . . + c20ε
20 such

that |ζ1(ε̃)− fε(ζ1(ε))| < |ε|20 for |ε| < δ. Let A > 0 be as in Lemma 4.4, and let C1 > 0
be the constant defined in Lemma 4.5.

We will show that the sequence of functions defined inductively by

ζk+1(ε) := f−1ε (ζk(ε̃))

is convergent, and that the limit satisfies the functional equation (7). Let us define

Ek(ε) := ζk(ε̃)− fε(ζk(ε))

and observe that

ζk+1(ε) = f−1ε (ζk(ε̃)) = f−1ε (fε(ζk(ε)) + Ek(ε))

and hence

fε(ζk+1(ε)) = fε(ζ1(ε)) +
k∑
l=1

El(ε).

Note that we can replace fε by f on both sides, giving

ζk+1(ε) = f−1

(
f(ζ1(ε)) +

k∑
l=1

El(ε)

)
,

and hence

ζk+1(ε) = ζ1(ε) +
∞∑
i=1

(f−1)(i)(f(ζ1(ε)))

i!

(
k∑
l=1

El(ε)

)i
.

We will prove that |Ek(ε)| < |ε|4
|k−1|2 for every k ≥ 2 on some small petal Pδ. This will

imply that the sequence ζk+1 converges to a parabolic curve ζ on Pδ for sufficiently small
δ.

We claim that there exists δ > 0 such that for every ε ∈ Pδ and every k > 1 the
following two statements hold:

Ik(1) : |ζk(ε)− ζ1(ε)| < A|ε|4, and
Ik(2) : |Ek(ε)| < 4|ε|12

|k−1|2 <
|ε|4
|k−1|2

We will prove these two statements simultaneously by induction on k.

Step 1: First we prove I2(1). By definition

ζ2 = ζ1(ε) +

∞∑
i=1

(f−1)(i)(f(ζ1(ε)))

i!
(E1(ε))

i ,

hence by Lemma 4.4 we obtain the desired inequality.
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Next we prove that I2(2). Observe that for sufficiently small δ we get

|E2(ε)| <
∣∣∣∣ E1(ε̃)

f ′(ζ1(ε̃))

∣∣∣∣+ C2|E1(ε̃)|2

< C1|g̃(ε)|20 + C2|ε||g̃(ε)|40

< C1|ε||g̃(ε)|19 + C2|ε||g̃(ε)|39

< 4|ε|12.

Here C1 is the constant introduced in Lemma 4.5.

Step 2: Now let us assume that Il(1) and Il(2) hold for every 2 ≤ l ≤ k. Observe that

|ζk+1(ε)− ζ1(ε)| <
∞∑
i=1

∣∣∣∣∣(f−1)(i)(f(ζ1(ε)))

i!

∣∣∣∣∣
∣∣∣∣∣
k∑
l=1

El(ε)

∣∣∣∣∣
i

.

Since |El(ε)| < |ε|4
|l−1|2 for l ≥ 2 and |E1(ε)| < |ε|4 we get∣∣∣∣∣

k∑
l=1

El(ε)

∣∣∣∣∣ < 3|ε|4

hence by Lemma 4.4 inequality Ik+1(1) holds.
Observe that

Ek+1(ε) = ζk+1(ε̃)− fε(ζk+1(ε))

= ζk+1(ε̃)− ζk(ε̃)
= f−1ε̃ (fε̃(ζk(ε̃)) + Ek(ε̃))− ζk(ε̃)
= f−1(f(ζk(ε̃)) + Ek(ε̃))− ζk(ε̃)
= (f−1)′(f(ζk(ε̃))) · Ek(ε̃) +O(Ek(ε̃)

2),

where the constant in the order can be chosen independently from k. It follows that
there exists C2 > 0 independent of k such that

(10) |Ek+1(ε)| <
∣∣∣∣ Ek(ε̃)

f ′(ζk(ε̃))

∣∣∣∣+ C2|Ek(ε̃)|2.

Using the inequality (10) successively we obtain

(11)

|Ek+1(ε)| <
∣∣∣∣ Ek(g̃(ε))

f ′(ζk(g̃(ε)))

∣∣∣∣+ C2|Ek(g̃(ε))|2

<

∣∣∣∣ Ek−1(g̃
2(ε))

f ′(ζk−1(g̃2(ε))) · f ′(ζk(g̃(ε)))

∣∣∣∣+ C2
|Ek−1(g̃2(ε))|2

|f ′(ζk(g̃(ε)))|
+ C2|Ek(g̃(ε))|2

<
|E1(g̃

k(ε))|∏k
l=1 |f ′(ζl(g̃k+1−l(ε)))|

+ C2

k−1∑
l=1

|El(g̃k+1−l(ε))|2∏k
s=l+1 |f ′(ζs(g̃k+1−s(ε)))|

+ C2|Ek(ε̃)|2
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Combining equation 11 and Lemma 4.5 gives

|Ek+1(ε)| < C1|g̃k(ε)|20k + C1C2|g̃k(ε)|40(k − 1)

+ 16C1C2

k−1∑
l=2

|g̃k+1−l(ε)|24(k − l)
(l − 1)4

+ 16C1
|g̃(ε)|24

(k − 1)4

< C1|ε||g̃k(ε)|19k + C1C2|ε||g̃k(ε)|39(k − 1)

+ 16C1C2|ε|
k−1∑
l=2

|g̃k+1−l(ε)|23(k − l)
(l − 1)4

+ 16C1|ε|
|g̃(ε)|23

(k − 1)4
.

If δ is sufficiently small this last inequality together with Lemma 4.7 implies

|Ek+1(ε)| <
4|ε|12

k2
<
|ε|4

k2
,

completing the proof of Ik+1(2) and thus the induction argument. We emphasize that
throughout the proof δ can be chosen dependently of k.

To summarize, the equation

ζk+1(ε) = f−1

(
f(ζ1(ε)) +

k∑
l=1

El(ε)

)
implies that for sufficiently small δ the sequence ζk converges on Pδ to a parabolic curve
ζ satisfying ζ(ε̃) = fε(ζ(ε)). Recall that we have only proven the existence of parabolic
curve for c1 = πi

2 . For c1 = −πi
2 we can use same arguments as above, but we might get

a different value for δ. Since the parabolic petals are nested and forward invariant, both
parabolic curves are graphs over the petal with minimal δ. �

From the proof it follows that

ζ±(ε) = ±c1ε+ c2ε
2 ± c3ε3 +O(ε4),

where c1 = πi
2 and c2 = bπ2

8 −
1
4 .

5. Estimates on Convergence towards Lavaurs map

5.1. Preliminaries. The goal of this section is to obtain explicit estimates for one of
the main objects to appear in our arguments: the functions A(ε, z) and A0(z).

Definition 5.1. Let fw(z) := f(z) + π2

4 w, where f(z) = z + z2 + z3 +O(z4) is a degree
d polynomial. Let g(w) = w − w2 +O(w3) be a degree d polynomial.

In what follows, we set ε :=
√
w. Abusing notation, we write fε(z) := f(z) + π2

4 ε
2

and ζ±(ε) = ±iπ2 ε+ c2ε
2 + O(ε3), where ζ± are the parabolic curves constructed in the

preceding section. Let g̃(ε) :=
√
g(ε2) = ε− 1

2ε
3 +O(ε5) (g̃ is analytic near ε = 0).

Let us first record here the following lemma for later use:

Lemma 5.2. For 1 ≤ j ≤ n, we have:

εj =
1

n
− j

2n3
− φg(w)

2n3
+ o(

1

n3
)
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Proof. We have

φg(wn2+j) = φg(w) + n2 + j =
1

wn2+j
+ o(1)

(note that we assume here g(w) = w − w2 + w3 +O(w4)). Therefore

wn2+j =
1

n2 + j + φg(w) + o(1)
,

and

εj =
√
wn2+j =

1

n

(
1 +

j + φg(w)

n2
+ o

(
1

n2

))− 1
2

=
1

n

(
1− 1

2

j + φg(w)

n2
+ o

(
1

n2

))
.

�

Definition 5.3. Let

ψi/oε (z) :=
1

iπ
log

[
ζ+(ε)− z
z − ζ−(ε)

]
± 1

where log is the principal branch of logarithm.

Remark: with that choice of branch, ψ is defined on C\Lε, where Lε is the real line
through ζ+(ε) and ζ−(ε) minus the segment [ζ−(ε), ζ+(ε)]. In particular, ψιε and ψoε are
both defined in a disk centered at z = 0 whose radius is of order ε.

It will also be useful to note that

(12)
(
ψι/oε

)−1
(Z) =

ζ+(ε)− e±iπZζ−(ε)

1− e±iπZ
= −π

2
ε cot

(
±πZ

2

)
+O(ε2).

Definition 5.4. Let
(1) A(ε, z) := ψ

ι/o
g̃(ε) ◦ fε(z)− ψ

ι/o
ε (z)− ε

(2) A0(z) := − 1
f(z) + 1

z − 1

Note that the formula for A(ε, z) does not depend on whether the ingoing or outgoing
coordinate ψε is used, and is therefore well defined.

Proposition 5.5. We have
(1) A0 is analytic near zero.
(2) There exists r > 0 such that for all ε 6= 0 in a neighborhood of zero, A(ε, ·) is

analytic on D(0, r).

Proof. (1) is easy. For (2), note that

A(ε, z) =
1

iπ
log

(
ζ+(g̃(ε))− fε(z)
fε(z)− ζ−(g̃(ε))

:
ζ+(ε)− z
z − ζ−(ε)

)
− ε

=
1

iπ
log

(
fε(ζ

+(ε))− fε(z)
ζ+(ε)− z

:
fε(z)− fε(ζ−(ε))

z − ζ−(ε)

)
− ε

From the above expression we see that the singularities at z = ζ±(ε) are in fact removable,
unless one of the points coincides with a critical point of f . The fact that these critical
points are bounded away from zero completes the proof. �
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Note that in the above argument, we used in a crucial way the fact that ζ± are exact
parabolic curves, not just approximate parabolic curves.

Lemma 5.6. Let K be a compact subset of C∗. There exists C = CK > 0 such that for
all z ∈ K, ∣∣∣∣z − ζ+(ε)

z − ζ−(ε)
− (1− iπ

z
ε− π2

2z2
ε2)

∣∣∣∣ ≤ Cε3
Proof. For z ∈ K, we have:

ζ+(ε)− z
z − ζ−(ε)

=
ζ+(ε)

z − ζ−(ε)
− z

z − ζ−(ε)

=
ζ+(ε)

z

(
1

1− ζ−(ε)
z

)
− 1

1− ζ−(ε)
z

=
ζ+(ε)

z

(
1 +

ζ−(ε)

z
+O(ε2)

)
−
(

1 +
ζ−(ε)

z
+ (

ζ−(ε)

z
)2 +O(ε3)

)
=
c1ε+ c2ε

2 − c21
z ε

2

z
− 1− −c1ε+ c2ε

2

z
− c21ε

2

z2
+O(ε3)

= −1 +
2c1
z
ε− 2c21

z2
ε2 +O(ε3)

= −1 +
iπ

z
ε+

π2

2z2
ε2 +O(ε3).

�

Lemma 5.7. Let K be a compact subset of C∗. Then

fε(z)− fε(ζ+(ε))

fε(z)− fε(ζ−(ε))
= 1− iπ

f(z)
ε− π2

2f(z)2
ε2 +O(ε3).

As in the previous lemma the constant in the O depends on K.

Proof. The invariance of the parabolic curves gives

fε(z)− fε(ζ+(ε))

fε(z)− fε(ζ−(ε))
=
fε(z)− ζ+(g̃(ε))

fε(z)− ζ−(g̃(ε))
= 1− iπ

fε(z)
g̃(ε) +

π2

2fε(z)2
g̃(ε2) +O(ε3)

= 1− iπ

f(z)
ε+

π2

2f(z)2
ε2 +O(ε3).

The last equality uses the fact that g̃(ε) = ε+O(ε3). �

Proposition 5.8. There exists a constant C0 ∈ C (depending only on f and g) such
that:

A(ε, z) = εA0(z) + ε3C0 +O(ε4, ε3z)

where the constants in the O are uniform for (z, ε) ∈ C2 near (0, 0) (with Re(ε) > 0).
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Proof. Let K be a compact of C∗. Then by the two previous lemmas, we have

A(ε, z) =
1

iπ
log

(
z − ζ−(ε)

z − ζ+(ε)
· fε(z)− fε(ζ

+(ε))

fε(z)− fε(ζ−(ε))

)
− ε

= − 1

iπ
log

(
1− iπ

z
ε− π2

2z2
ε2 +O(ε3)

)
+

1

iπ
log

(
1− iπ

f(z)
ε− π2

2f(z)2
ε2 +O(ε3)

)
− ε

=
ε

z
− ε

f(z)
− ε+O(ε3) = εA0(z) +O(ε3).

Here the constant in the O still depends on K ⊂ C∗. Let φε(z) := A(ε,z)−εA0(z)
ε3

. By
Proposition 5.5 φε is holomorphic on D(0, r). We have proved that for all compact
K ⊂ C∗, for all z ∈ K, and for all small ε 6= 0 with Re(ε) > 0, we have |φε(z)| ≤ CK . By
taking K = {|z| = r

2} we therefore obtain the same estimate |φε(z)| ≤ CK for all |z| ≤ r
2

because of the maximum modulus principle. This gives the desired uniformity. �

Lemma 5.9. If ζ±(ε) = ± iπ
2 ε+c2ε

2+c±3 ε
3+O(ε4), and f(z) = z+z2+z3+bz4+O(z5),

then

C0 =
−3bπ3 + 2π3 + 12c2π + 12i(c−3 − c

+
3 )

12π

Proof. By repeating the computations from Lemma 5.6 and Lemma 5.7 with one addi-
tional order of significance, one obtains

z − ζ+(ε)

z − ζ−(ε)
= 1− iπ

z
ε− π2

2z2
ε2 +

(
c−3 − c

+
3

z
− iπc2

z2
+
iπ3

4z3

)
ε3 +O(ε3),

and
fε(z)− fε(ζ+(ε))

fε(z)− fε(ζ−(ε))
= 1− iπ

f(z)
ε− π2

2f2(z)
ε2+

(
iπ3

4f2(z)
+
c−3 − c

+
3

f(z)
− iπc2
f2(z)

+
iπ3

4f3(z)

)
ε3+O(ε4).

Plugging these two equations into the formula for A(ε, z), and using the power series
expansions of 1

f(z)j
, for j = 1, . . . , 3, one notices again that all terms involving negative

powers of z cancel, either by the argument used in the proof of the previous proposition,
or by lengthy computations using

c2 =
π2

8
− 1

4
.

Summing the terms that do not depend on z gives the desired result. �

Lemma 5.10. We have

c+3 = −c−3 =
1

iπ

(
3

16
+

5π4

64
− bπ4

16
− π2

4

)
.

We will omit the proof, which is a long but direct computation, starting from the
functional equation fε ◦ ζ±(ε) = ζ± ◦ g̃(ε) and identifying coefficients in powers of ε.

In particular, it follows that

C0 = −bπ
2

4
− 1

4
+

7π2

24
+

(
bπ2

8
+

1

2
− 5π2

32
− 3

8π2

)
=
−bπ2

8
+

13π2

96
− 3

8π2
+

1

4
.
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5.2. Convergence result. For the rest of this section we fix a compact subset K ⊂ Bf
and a point z0 ∈ K. Unless otherwise stated, all the constants appearing in estimates
depend on K but not on z0.

Let fj(z) := f(z)+ π2

4 wn2+j , where wn2+j := gn
2+j(w). Let zj := fj ◦fj−1◦. . .◦f1(z0).

Let Fm,p := fm ◦ . . . ◦ fp+1, and let εj :=
√
wn2+j .

Definition 5.11. Let

Z
i/o
j := ψι/oεj (zj) =

1

iπ
log

ζ+(εj)− zj
zj − ζ−(εj)

± 1

Observe that by definition of A(ε, z),

(13) A(εj , zj) = Zij+1 − Zij − εj .

Proposition 5.12. We have

ψι/oεj (z0) = − εj
z0

+O

(
1

n3

)
.

Proof. This follows from computations similar to those appearing in the proof of Propo-
sition 5.5 (recall as well that εj = O

(
1
n

)
). �

We now introduce approximate incoming Fatou coordinates:

Definition 5.13. Let

φιn(z0) :=
1

εn
Zn −

1

εn

n−1∑
j=1

εj

Lemma 5.14. We have, for 0 ≤ j ≤ n− 1:

zj − f j(z) = O

(
j

n2

)
Proof. Let us first note that the proof is local in nature, and only requires that f is a
non-degenerate parabolic germ fixing 0. This is important, since we will later apply this
lemma to a local inverse f−1 of the polynomial f .

Up to replacing z0 by some bounded iterate fk(z0), we may assume that z0 lies in a
small enough attracting petal P (that is, a disk D(−r, r) with r > 0 small), and that for
all y ∈ P we have |f ′(y)| ≤ 1 so that f|P is 1-lipschitz.

Moreover, there exists a constant C1 > 0 such that |εj |2 < 1
n2+C1

. Since for all j ≥ 0,

f j(z0) = −1
j+O

(
1
j2

)
, there also exists a constant C2 > 0 such that |f j(z)+r| < r− 1

j+C2
j2

(up to again choosing P small enough). Let

jn := max

{
j ≤ n− 1 :

1

j
>

j

n2 + C1
+
C2

j2

}
.

It is easy to check that jn = n+O(1).
We now prove the following claim by induction on j, for 0 ≤ j ≤ jn: zj ∈ P and

|zj − f j(z)| ≤ j
n2+C1

. That claim is obvious for j = 0.
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Let j ≤ jn such that zj ∈ P and |zj − f j(z)| ≤ j
n2+C1

. Then

|zj+1 − f j+1(z)| ≤ |f(zj)− f(f j(z))|+ |εj |2

≤ |zj − f j(z)|+
1

n2 + C1

≤ j + 1

n2 + C1
.

Now, if j + 1 ≤ jn, then zj+1 ∈ P: indeed, we have

|zj+1 + r| ≤ |zj+1 − f j+1(z)|+ |f j+1(z) + r|

≤ j + 1

n2 + C1
+ r − 1

j + 1
+

C2

(j + 1)2
< r

by definition of jn. So zj+1 ∈ D(−r, r) = P.
The proposition follows easily from the fact that jn = n+O(1). �

Lemma 5.15. We have:
n−1∑
j=0

A0(zj)−A0(f
j(z0)) = (b− 1)

n−1∑
j=0

z2j − f j(z0)2 +O

(
lnn

n2

)
Proof. Recall that f(z) = z + z2 + z3 + bz4 + O(z5) and A0(z) = − 1

f(z) + 1
z − 1. An

elementary computation gives A0(0) = A′0(0) = 0, and A′′0(0) = 2(b− 1).
To simplify the notations, let yj := f j(z0). We have:

A0(zj)−A0(yj) = A′0(yj)(zj − yj) +
1

2
A′′0(yj)(zj − yj)2 +O

(
(zj − yj)3

)
= (yjA

′′
0(0) +O(y2j ))(zj − yj) +

1

2
(A′′0(0) +O(yj))(zj − yj)2 +O

(
(zj − yj)3

)
.

By Lemma 5.14 we have zj − yj = O
(
j
n2

)
, hence

A0(zj)−A0(yj) = yjA
′′
0(0)(zj − yj) +

1

2
A′′0(0)(zj − yj)2 +O

(
1

jn2
,
j

n4
,
j3

n6

)
= (b− 1)

(
2yj(zj − yj) + (zj − yj)2

)
+O

(
1

jn2
,
j

n4
,
j3

n6

)
= (b− 1)(z2j − y2j ) +O

(
1

jn2
,
j

n4
,
j3

n6
)

It follows that
n−1∑
j=0

A0(zj)−A0(yj) = (b− 1)

n−1∑
j=0

z2j − y2j +O

(
lnn

n2
.

)
�
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Lemma 5.16. For 0 ≤ j ≤ n− 1, let

(14) γj := j +

j−1∑
k=0

A0(f
k(z0)), and xj :=

j−1∑
k=0

εk +A(εk, zk).

Then

xj =
γj
n

+O

(
j2

n3

)
=
j

n
+O

(
1

n

)
.

In particular, there exists k ∈ N independent from n such that for all k ≤ j ≤ n− k,

αj := cot
(π

2
xj

)
is well-defined and strictly positive.

Proof. According to Lemma 5.14, for 0 ≤ j ≤ n− 1 we have that zj − f j(z0) = O
(
j
n2

)
.

In particular, zj = O(1). By Proposition 5.8, we have for every 0 ≤ k ≤ n− 1:

(15) A(εk, zk) = εkA0(zk) +O
(
ε3k, zkε

3
k

)
= εkA0(zk) +O

(
1

n3

)
(indeed, by Lemma 5.14, zk = fk(z0) + O( k

n2 ), so in particular zk = O(1)). By Lemma
5.2, εk = 1

n +O
(
k
n3

)
, hence

xj =

j−1∑
k=0

εk +A(εk, zk)

=

j−1∑
k=0

1

n
+

1

n
A0(zk) +O

(
k

n3

)

=
j

n
+

1

n

j−1∑
k=0

A0(f
k(z0)) +O

(
k

n3
, A′0(f

k(z0))(zk − fk(z0)
)

=
j

n
+

1

n

j−1∑
k=0

A0(f
k(z0)) +O

(
k

n3
,

1

k
· k
n3

)
=
γj
n

+O

(
j2

n3

)
.

Since γj = j +O(1), we also have

γj
n

=
j

n
+O

(
1

n

)
.

Finally, the last assertion follows from the preceding equality and the fact that for
x ∈ (0, π2 ), cot(x) > 0. �

Lemma 5.17. Let u(x) := 2
π tan(π2x), Φ(x) = x2−u(x)2

x2u(x)2
and βj := 2n

παj
. We have :

γ2j − β2j
γ2j β

2
j

=
1

n2
Φ(xj) +O

(
1

jn2

)
.
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Proof. We have

γ2j − β2j
γ2j β

2
j

=
n2

n4

γ2j
n2 − u(xj)

2

u(xj)2
γ2j
n2

Now recall that by Lemma 5.16, γjn = xj +O( j
2

n3 ), so that
γ2j
n2 = x2j +O

(
j3

n4

)
. So:

γ2j − β2j
γ2j β

2
j

=
1

n2
x2j − u(xj)

2 +O( j
3

n4 )

u(x2j )(x
2
j +O( j

3

n4 ))

=
1

n2
x2j − u(xj)

2

u(x2j )(x
2
j +O( j

3

n4 ))
+O

(
j3

x2ju(xj)2n6

)
and note that

1

x2ju(xj)2
= O

(
1

x4j

)
= O

(
n4

j4

)
.

Therefore
γ2j − β2j
γ2j β

2
j

=
1

n2
x2j − u(xj)

2

u(x2j )(x
2
j +O( j

3

n4 ))
+O

(
1

jn2

)

=
1

n2
x2j − u(xj)

2

u(x2j )x
2
j (1 +O( j3

n4x2j
))

+O

(
1

jn2

)

=
Φ(xj)

n2

(
1 +O

(
j

n2

))
+O

(
1

jn2

)
=

Φ(xj)

n2
+O

(
1

jn2

)
.

Note that in the last line, we used the fact that Φ has only removable singularities at
x = 0 and x = 1, so that Φ(xj) = O(1). �

Proposition 5.18. There exists a universal constant C1 ∈ R such that
n−1∑
j=0

A0(zj)−A0(f
j(z)) =

C1(b− 1)

n
+O

(
lnn

n2

)
.

More precisely, C1 :=
∫ 1
0 Φ(x)dx = 1

4(4− π2).

Proof. We have, for 0 ≤ j ≤ n− 1:

zj = ψ−1εj (Zιj) = − π

2n
cot(

π

2
Zιj) +O

(
1

n2

)
and

Zιj = Zι0 +

j−1∑
k=0

εk +A(εk, zk).
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Recalling the notation xj :=
∑j−1

k=0 εk + A(εk, zk) and αj := cot(π2xj) from Lemma 5.16,
and using the trigonometry formula cot(a+ b) = cot a cot b−1

cot a+cot b , we therefore obtain:

(16) zj = − π

2n

cot(π2Z
ι
0)αj − 1

αj + cot( π2nZ
ι
0)

+O

(
1

n2

)

Let k be as in Lemma 5.16, so that αj > 0 for k ≤ j ≤ n − k. We have cot(π2Z
ι
0) =

−2n
π z0 +O

(
1
n

)
, so that

(17) zj = − π

2n

cot(π2Z
ι
0)αj

αj + cot( π2nZ
ι
0)

+O

(
1

n2

)
=

z0αj

αj − z0 2nπ
+O

(
1

n2

)

Finally, with βj := 2n
παj

, we get

(18) zj = − 1

− 1
z0

+ βj
+O

(
1

n2

)
.

On the other hand, from the definition of A0 it follows that
∑j−1

k=0A0(f
k(z0)) = 1

z0
−

1
fj(z0)

− j, which we may rewrite as

(19) f j(z0) = − 1

− 1
z0

+ γj
.

Therefore:

(20) zj − f j(z0) =
βj − γj(

− 1
z0

+ βj

)(
− 1
z0

+ γj

) +O

(
1

n2

)

Now note that j = O(βj): indeed, 1
βj

= O

(
cot( jπn +O( 1

n
))

n

)
= O

(
n/j
n

)
= O(1j ).

Therefore:

1

(− 1
z0

+ γj)(− 1
z0

+ βj)
=

1

(γj +O(1))(βj +O(1))

=
1

γjβj +O(βj)

=
1

γjβj
+O

(
1

γ2j βj

)
.
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Therefore, setting yj := f j(z0):

z2j − y2j = (zj − yj)(zj + yj)

=

(
βj − γj
βjγj

+O

(
βj − γj
γ2j βj

))(
−βj + γj

βjγj
+O

(
βj + γj
γ2j βj

))

=
γ2j − β2j
β2j γ

2
j

+O

(
β2j − γ2j
β2j γ

3
j

)

=
1

n2
Φ(xj) +O

(
1

jn2

)
by Lemma 5.17.

Therefore by Lemma 5.15,
n−1∑
j=0

A0(zj)−A0(yj) =

b− 1

n2

n−1∑
j=0

Φ(xj)

+O

(
lnn

n2

)

=
b− 1

n

∫ 1

0
Φ(x)dx+O

(
lnn

n2

)
.

In the last equality, we recognize a Riemann sum with subdivision (xj)0≤j≤n−1. Finally,
we have ∫ 1

0
Φ(x)dx =

π

2

∫ π
2

0
cot2 t− 1

t2
dt = −π

2

[(
cot t− 1

t

)
+ t

]π
2

0

= 1− π2

4
.

�

5.2.1. Incoming part. The following error estimate is one of the two crucial estimates that
we will obtain in this section: it measures accurately how close φιn is to the incoming
Fatou coordinate φι.

Proposition 5.19. We have

φιn(z) = φι(z) +
Eι(z)

n
+O

(
lnn

n2

)
where Eι(z) := C0 + (C1 − 1)(b− 1) + 1

2φ
ι(z).

Proof. Recall that by definition,

φι(z) = lim
n→∞

− 1

fn(z)
− n = lim

n→∞
−1

z
+
n−1∑
j=0

A0(f
j(z)).

Similarly, we have:
n−1∑
j=0

A(εj , zj) =

n−1∑
j=0

Zιj+1 − Zιj − εj = Zιn − Zι0 −
n−1∑
j=0

εj ,

and thus

φιn(z) =
Zιn
εn
− 1

εn

n−1∑
j=0

εj =
Zι0
εn

+
1

εn

n−1∑
j=0

A(εj , zj).
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Therefore:

(21) φιn(z)− φι(z) = E1 + E2 + E3,

where

E1 :=
Zι0
εn

+
1

z

E2 :=
1

εn

n−1∑
j=0

A(εj , zj)−
n−1∑
j=0

A0(f
j(z))

E3 := −
∞∑
j=n

A0(f
j(z))

We will now estimate each of the error terms Ei separately. For j ∈ N, we set yj :=
f j(z0).

Lemma 5.20. We have E1 = − 1
2nz +O

(
1
n2

)
.

Proof of Lemma. We have

Zι0
εn

=
1

εn
ψε0(z)

= − ε0
εnz

+O

(
ε30
εn

)
by Prop. 5.12

= −1

z

√
n2 + n+O(1)

n2 +O(1)
+O

(
1

n2

)
= −1

z
− 1

2nz
+O

(
1

n2

)
.

�

Lemma 5.21. We have E2 = 1
n

(
1
2z + 1

2φ
ι(z) + C0 + C1(b− 1)

)
+O

(
lnn
n2

)
.

Proof of Lemma. Recall that we have

A(ε, z) = εA0(z) + C0ε
3 +O(zε3, ε4),

so that

E2 =
1

εn

n−1∑
j=0

A(εj , zj)−
n−1∑
j=0

A0(yj)

=
1

εn

n−1∑
j=0

εjA0(zj) + C0ε
3
j +O(

zj
n3

)− εnA0(yj).



WANDERING DOMAINS ARISING FROM LAVAURS MAPS WITH SIEGEL DISKS 33

Therefore:

E2 =

n−1∑
j=0

εj
εn
A0(zj)−A0(yj)

+

n−1∑
j=0

C0

ε3j
εn

+O(
zj
n2

)

 ,

and
n−1∑
j=0

C0

ε3j
εn

+O
( zj
n2

)
= C0

n−1∑
j=0

1

n2
+O

(
1

n2j

)

=
C0

n
+O

(
lnn

n2

)
.

On the other hand, we have

(22)
n−1∑
j=0

εj
εn
A0(zj)−A0(yj) =

n−1∑
j=0

(
εj
εn
− 1

)
A0(zj) +

n−1∑
j=0

A0(zj)−A0(yj).

Now note that
n−1∑
j=0

(
εj
εn
− 1

)
A0(zj) =

n−1∑
j=0

(
εj
εn
− 1

)
A0(yj) +

n−1∑
j=0

(
εj
εn
− 1

)
(A0(zj)−A0(yj)) ,

and that∣∣∣∣∣∣
n−1∑
j=0

(
εj
εn
− 1

)
(A0(zj)−A0(yj))

∣∣∣∣∣∣ ≤ max
0≤j≤n−1

∣∣∣∣1− εj
εn

∣∣∣∣ · n−1∑
j=0

|A0(zj)−A0(yj)|

= O

(
1

n2

)
,

by Lemmas 5.2 and Proposition 5.18. Another consequence of Lemma 5.2 is that

(23)
εj
εn
− 1 =

1

2n

(
1− j

n
+O

(
1

n

))
.

Therefore, by (22), (23) and Proposition 5.18:
n−1∑
j=0

εj
εn
A0(zj)−A0(yj) =

C1(b− 1)

n
+

1

2n

n−1∑
j=0

A0(yj) +O

(
lnn

n2

)

=
C1(b− 1)

n
+

(
1/z + φi(z)

2n

)
+O

(
lnn

n2

)
.

Therefore, as announced, we have:

E2 =
1

n

(
1

2z
+

1

2
φι(z) + C0 + C1(b− 1)

)
+O

(
lnn

n2

)
.

�

Lemma 5.22. We have E3 = 1−b
n +O( 1

n2 ).
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Proof. By explicit computations we have A0(z) = (b − 1)z2 + O(z3), so that A0(yj) =
(b− 1)j−2 +O(j−3). Therefore:

E3 = (1− b)
∞∑
j=n

j−2 +O(j−3)

and
∑∞

j=n j
−3 = O(

∫∞
n

dx
x3

) = O( 1
n2 ). Similarly,

∑∞
j=n j

−2 ∼
∫∞
n

dx
x2

= 1
n , so that

E3 = 1−b
n +O( 1

n2 ). �

Finally, putting together the three preceding lemmas, the proof of Proposition 5.19 is
finished.

�

5.2.2. Outgoing part. We will now work to obtain estimates for the outgoing part of the
orbit, that is, for n ≤ j ≤ 2n + 1. The method is largely similar to the incoming case.
Recall that the estimates we obtain only depend on the chosen compact set K ⊂ Bf .

We will first need a rough preliminary estimate on boundedness of z2n+1. Of course,
by [ABPD], we know that z2n+1 converges to L(z0), and we could deduce this preliminary
estimate from there. However, we prefer to present here a direct argument, so that the
proof of Theorem 5.32 remains self-contained.

Proposition 5.23. There exists k ∈ N (independent from n) such that z2n+1−k belongs
to a repelling petal D(r, r) for f . In particular, z2n+1 = O(1).

Proof. Recall that by Proposition 5.19, we have that

φιn(z) :=
Zιn
εn
− 1

εn

n−1∑
j=0

εj = φι(z0) + o(1) = O(1).

In particular,

Zιn =

n−1∑
j=0

εj

+O(εn) = 1 +O

(
1

n

)
and therefore Zon = −1 +O

(
1
n

)
.

Let Rn denote the rectangle defined by the conditions −1 − C
n ≤ Re(Z) ≤ − 3

n and
−1 ≤ Im(Z) ≤ 1, where C > 0 is a constant chosen large enough that Zon ∈ Rn. Let

(24) jn := max{k ≤ 2n+ 1 : Zok ∈ Rn}.

Recall that for j ≤ 2n, we have Zoj+1 = Zoj + A(εj , zj), and that by Proposition 5.8,
we have

(25) A(εk, zk) = εkA0(zk) +O
(
ε3k, ε

3
kzk
)

= O
(
εkz

2
k

)
.

Moreover, for n ≤ j ≤ jn, we have Zoj = − π
2n cot

(
π
2Z

o
j

)
+ O

(
1
n2

)
, and therefore there

exists a constant C > 0 such that for all n ≤ j ≤ jn,

(26) |A(εj , zj)| ≤
C ′

n3

∣∣∣cot
(π

2
Zoj

)∣∣∣2 ≤ C

|Zj |2n3
,
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and thus

(27)

∣∣∣∣∣Zoj − Zon −
j−1∑
k=n

εk

∣∣∣∣∣ ≤ C

n3

j−1∑
k=n

1

|Zk|2
.

From (27), we can prove inductively on j that for n ≤ j ≤ jn,
∣∣∣Zoj − Zon −∑j−1

k=n εk

∣∣∣ =

O
(
1
n

)
and hence jn = 2n+O(1).

Let r > 0 small enough such that D(r, r) is a repelling petal for f . By the argument
above and the definition of Rn, we have that Zojn = O

(
1
n

)
, so that

z2n+1−k = −π
2

cot
(π

2
Zo2n+1−k

)
+O

(
1

n2

)
=

1

k +O(1)
.

Therefore, we can find some k bounded independently from n such that z2n+1−k ∈ D(r, r).
�

We now introduce approximate outgoing Fatou coordinates:

Definition 5.24. For n ≤ m ≤ 2n+ 1, let

φon(zm) :=
Zon
εn

+
1

εn

m−1∑
j=n

εj .

Lemma 5.25. We have

φon(zm) =
Zom
εn
− 1

εn

m−1∑
j=n

A(εj , zj).

Proof. We have
m−1∑
j=n

A(εj , zj) =
m−1∑
j=n

Zoj+1 − Zoj − εj

= Zom − Zon −
m−1∑
j=n

εj

so that
Zon
εn

+
1

εn

m−1∑
j=n

εj = φon(zm) =
Zom
εn
− 1

εn

m−1∑
j=n

A(εj , zj).

�

Proposition 5.26. Let k ∈ N be the integer from Prop. 5.23. Let y2n+1−k := z2n+1−k
and y2n+1 = fk(y2n+1−k). For n ≤ j ≤ 2n we define:

yj := f−(2n+1−j)(y2n+1),

where f−1 is the local inverse of f fixing 0: f−1(z) = z− z2 + z3− bz4 +O(z5). We have
2n∑
j=n

A0(zj)−A0(yj) =
C1(b− 1)

n
+O

(
lnn

n2

)
.
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Proof. The proof mirrors the incoming case, so we will only sktech it and leave the details
to the reader. Recall that y2n+1 = O(1) by Proposition 5.23, and that z2n+1−k belongs
to a repelling petal for f for some k ∈ N independent from n, so that the (yj)n≤j≤2n+1

are well-defined.
By a straightforward adaptation of Lemma 5.14, zj − yj = O

(
2n+1−j
n2

)
for n ≤ j ≤

2n + 1. More precisely, this applies for n ≤ j ≤ 2n + 1 − k; but it is clear from the
definition of the yj that for 2n+ 1− k ≤ j ≤ 2n+ 1, we have zj − yj = O( 1

n2 ). Therefore
the proof of Lemma 5.15 can be repeated to yield that

(28)
2n∑
j=n

A0(zj)−A0(yj) = (b− 1)
2n∑
j=n

z2j − y2j +O

(
lnn

n2

)
.

Next, we have, for n ≤ j ≤ 2n:

zj =
(
ψoεj

)−1
(Zoj ) =

(
ψoεj

)−1Zo2n+1 −
2n∑
k=j

εk +A(εk, zk)


= − π

2n
cot

π
2
Zo2n+1 −

π

2

2n∑
k=j

εk +A(εk, zk)

+O

(
1

n2

)
.

Through similar computations as those appearing in the proof of Proposition 5.18, we
deduce that

(29) zj = − 1

− 1
z2n+1

− βj
+O

(
1

n2

)
,

with βj := 2n
π tan(π2xj) = 2n

π tan(π2
∑2n

k=j εk +A(εk, zk)). On the other hand,

− 1

yj
= − 1

y2n+1
−

2n∑
k=j

A0(yj),

from which it follows that yj = − 1
− 1
y2n+1

−γj
, with γj :=

∑2n
k=j A0(yj). Then, again,

similar computations show that

z2j − y2j =
1

n2
Φ(xj) +O

(
1

n2(2n+ 1− j)

)
,

and xj = 2n−j+O(1)
n for n ≤ j ≤ 2n. Therefore, we finally obtain:

2n∑
j=n

A0(zj)−A0(yj) =
b− 1

n

∫ 1

0
Φ(x)dx+O

(
lnn

n2

)
=
C1(b− 1)

n
+O

(
lnn

n2

)
.

�

In what follows, a slight technical complication comes from the fact that the expected
endpoint of the orbit, z2n+1, needs not lie in a small enough repelling petal in which φo
is well-defined. In order to overcome this issue, we stop a few iterations short and work
instead with z2n+1−k.

We now come to the main proposition of this subsection:



WANDERING DOMAINS ARISING FROM LAVAURS MAPS WITH SIEGEL DISKS 37

Proposition 5.27. We have:

φon(z2n+1−k) = φo(z2n+1−k) +
Eo(z2n+1−k)

n
+O

(
lnn

n2

)
,

where Eo(z) = −1
2φ

o(z)− C0 − (C1 − 1)(b− 1).

Proof. We proceed similarly to the proof of Proposition 5.19. We have, for z in a small
enough repelling petal:

(30) φo(z) = −1

z
−
∞∑
j=1

A0(f
−j(z)),

where f−1 is the inverse branch of f fixing 0. With the same notations as in Proposition
5.26, we set: yj := f j−(2n+1−k)(z2n+1−k).

We have:

φon(z2n+1−k)− φo(z2n+1−k) =
Zo2n+1−k

εn
+

1

z2n+1−k
+

2n−k∑
j=n

− 1

εn
A(εj , zj) +A0(yj) +

n−1∑
j=−∞

A0(yj)

(31)

= E1 + E2 + E3,(32)

where

E1 =
Zo2n+1−k

εn
+

1

z2n+1−k

E2 =

2n−k∑
j=n

− 1

εn
A(εj , zj) +A0(yj)

E3 =
n−1∑
j=−∞

A0(yj)

Lemma 5.28. We have E1 = 1
n

1
2z2n+1−k

+O
(

1
n2

)
.

Proof of the lemma. By Proposition 5.12, we have Zo2n+1−k = − ε2n+1−k
z2n+1−k

+O
(

1
n3

)
so that

E1 =
1

z2n+1−k
− ε2n+1−k

εn

1

z2n+1−k
+O

(
1

n2

)
=

1

z2n+1−k

(
1−

√
n2 + n+O(1)

n2 + 2n+O(1)

)
+O

(
1

n2

)
=

1

n

1

2z2n+1−k
+O

(
1

n2

)
.

�

Lemma 5.29. We have

E2 =
1

n

(
− 1

2z2n+1−k
− 1

2
φo(z2n+1−k)− C0 − C1(b− 1)

)
+O

(
lnn

n2

)
.
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Proof of the lemma. We have

E2 =
2n−k∑
j=n

A0(yj)−
1

εn
A(εj , zj)

=

2n−k∑
j=n

A0(yj)−
εj
εn
A0(zj)

−
2n−k∑

j=n

C0ε
3
j +O(zjε

3
j )

 .

Same as before, we have 1
εn

∑2n−k
j=n C0ε

3
j + O(zjε

3
j ) = C0

n + O
(

1
n2

)
. On the other hand,

we have
2n−k∑
j=n

A0(yj)−
εj
εn
A0(zj) =

2n−k∑
j=n

(1− εj
εn

)A0(zj) +
2n−k∑
j=n

A0(yj)−A0(zj).

Now note that
2n−k∑
j=n

(1− εj
εn

)A0(zj) =
2n−k∑
j=n

(1− εj
εn

)A0(yj) +
2n−k∑
j=n

(1− εj
εn

)(A0(zj)−A0(yj)),

and that∣∣∣∣∣∣
2n−k∑
j=n

(1− εj
εn

)(A0(zj)−A0(yj))

∣∣∣∣∣∣ ≤ max
n≤j≤2n−k

∣∣∣∣1− εj
εn

∣∣∣∣ · 2n−k∑
j=n

|A0(zj)−A0(yj)|

= O

(
1

n2

)
,

by Proposition 5.26. Therefore, as in the proof of Proposition 5.19:
2n−k∑
j=n

A0(yj)−
εj
εn
A0(zj) = −C1(b− 1)

n
+

1

2n

2n−k∑
j=n

A0(yj) +O

(
lnn

n2

)

= − 1

n

(
C1(b− 1) +

1

2z2n+1−k
+

1

2
φo(z2n+1−k)

)
+O

(
lnn

n2

)
from which the lemma follows. �

Lemma 5.30. We have E3 = b−1
n +O

(
1
n2

)
.

Proof of the lemma. The proof is the same as in the incoming case: it follows from the
fact that A0(y) = (b− 1)y2 +O(y3) and yj = 1

2n−j +O
(

1
(2n−j)2

)
. �

�

5.2.3. Conclusion.

Proposition 5.31. We have:

1

εn

 2n∑
j=0

εj

− 2

 = − 1

n

(
1

2
+ φg(w)

)
+O

(
1

n2

)
.
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Proof. We have:

2n∑
j=0

εj =
2n∑
j=0

1√
n2 + j + φg(w) + o(1)

=

2n∑
j=0

1

n

(
1− j

2n2
− φg(w)

2n2
+ o(

1

n2
)

)

= 2 +
1

n
− φg(w)

n2
+ o(

1

n2
)− 1

2n3

2n∑
j=0

j

= 2 +
1

n
− φg(w)

n2
+ o(

1

n2
)− 1

2n3
2n(2n+ 1)

2

= 2− φg(w)

n2
− 1

2n2
+ o(

1

n2
).

On the other hand:

1

εn
=
√
n2 + n+O(1)

= n

(
1 +

1

2n
+O

(
1

n2

))
= n+

1

2
+O

(
1

n

)
,

and therefore:

1

εn

 2n∑
j=0

εj

− 2

 =

(
−φg(w)

n2
− 1

2n2
+ o(

1

n2
)

)(
n+

1

2
+O

(
1

n

))

= − 1

n

(
1

2
+ φg(w)

)
+O

(
1

n2

)
.

�

We are now finally ready to prove the following theorem:

Theorem 5.32 (Lavaurs’ theorem with an error estimate). We have:

z2n+1 = L(z0)+
1

n

L′(z0)
(φι)′(z0)

(
2C0 + 2(C1 − 1)(b− 1) + φι(z0)−

1

2
− φg(w0)

)
+O

(
lnn

n2

)
.
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Proof. We have, by definition:

φon(z2n+1−k) =
1

εn
Zon +

1

εn

2n−k∑
j=n

εj

=
Zιn
εn
− 2

εn
+

1

εn

2n−k∑
j=n

εj

= φιn(z0)−
2

εn
+

1

εn

2n−k∑
j=0

εj ,

and therefore

φo(z2n+1−k)+
Eo(z2n+1−k)

n
= φι(z0)+

Eι(z0)

n
− φg(w0) + 1/2

n
− 1

εn

2n∑
j=2n−k

εj+O

(
lnn

n2

)
,

by Propositions 5.19, 5.27 and 5.31.
On the other hand, we have:

1

εn

2n∑
j=2n−k

εj =
1

1
n −

1
2n2 +O( 1

n3 )

(
k

n
− k 2n

2n3
+O(

1

n3
)

)
by Lemma 5.2

=

(
1 +

1

2n
+O(

1

n2
)

)(
k − k

n
+O(

1

n2
)

)
= k − k

2n
+O(

1

n2
).

Therefore:

φo(z2n+1−k) + k +
Eo(z2n+1−k)− k/2

n
= φι(z0) +

Eι(z0)

n
− φg(w0) + 1/2

n
+O

(
lnn

n2

)
.

Recall that the outgoing Fatou coordinate φo has a well-defined inverse ψf : C → C
satisfying the functional equation ψf (Z + 1) = f ◦ ψf (Z). Observe that since k = O(1),
we have

ψf (φo(z2n+1−k) + k) = fk(z2n+1−k) +O

(
1

n2

)
= z2n+1 +O

(
1

n2

)
.

Therefore, composing on both sides by ψf and setting Eo(z2n+1) := Eo(z2n+1−k) − k
2 ,

we get:

z2n+1 = (φo)−1
(
φι(z0) +

Eι(z0)− Eo(z2n+1)− 1/2− φg(w0)

n
+O

(
lnn

n2

))
= L(z0) + ((φo)−1)

′
(φι(z0))

(
Eι(z0)− Eo(z2n+1)− 1/2− φg(w0)

n

)
+O

(
lnn

n2

)
= L(z0) +

L′(z0)
(φι)′(z0)

(
Eι(z0)− Eo(z2n+1)− 1/2− φg(w0)

n

)
+O

(
lnn

n2

)
.
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In particular, we have proved that z2n+1 = L(z0) + O
(
1
n

)
. From there, we deduce that

φo(z2n+1−k) + k = φo(z0) + O
(
1
n

)
. Plugging this into the expression for Eo(z2n+1), we

finally obtain:

z2n+1 = L(z0)+
1

n

L′(z0)
(φι)′(z0)

(
2C0 + 2(C1 − 1)(b− 1) + φι(z0)−

1

2
− φg(w0)

)
+O

(
lnn

n2

)
.

�

5.3. Choice of index. Assume that ζ is a Siegel fixed point for the Lavaurs map L,
and let λ be its multiplier. Denote by κζ the index from Theorem 2.2: it is given by the
formula

κζ =
2b2c0

λ(1− λ)
+
c1
λ
,

with 2b2 = L′′(ζ), c0 = h(ζ), c1 = h′(ζ), and

(33) h(z) :=
L′(z)

(φι)′(z)

(
2C0 + 2(C1 − 1)(b− 1) + φι(z)− 1

2
− φg(w0)

)
.

The function h is the error term computed in the previous section.
A straightforward computation gives us that

(34) κζ = 1 +
C + φι(ζ)− φg(w0)

((φι)′(ζ))2

(
L′′(ζ)(φι)′(ζ)

λ(1− λ)
− (φι)′′(ζ)

)
,

for some universal constant C ∈ R.
Observe that Re(κζ) is independent from w0 if and only if

(35)
L′′(ζ)(φι)′(ζ)

λ(1− λ)
− (φι)′′(ζ) = 0.

If condition (35) is satisfied, then κζ = 1, and accordingly, Theorem 2.2 implies that
there are no wandering domains for P converging to the bi-infinite orbit of (ζ, 0), since
we are then in the expulsion scenario of the trichotomy.

On the other hand, if the equality (35) is not satisfied, then w0 7→ κζ(w0) is a non-
constant holomorphic function (defined on the parabolic basin Bg), of the form w0 7→
aφg(w0) + b, with a, b ∈ C (independent from w0) and a 6= 0. Therefore, the condition
for Re(κζ(w0)) to be negative is equivalent to φg(w0) belonging to some half-plane; but
φg(Bg) contains a domain of the form U := {W ∈ C : Re(W ) > R−k|Im(W )|}, for some
R > 0 and k ∈ (0, 1), see e.g. [14, Proposition 2.2.1 p.330]. Since U intersects any open
half-plane, if condition (35) is satisfied, then there exists some open subset U0 ⊂ U for
which Re(κζ(w0)) < 0, and so by Theorem 2.2 there is a wandering domain accumulating
on (ζ, 0).

6. A Lavaurs map with a Siegel disk

The goal of this section is to construct a polynomial f of the form f(z) = z + z2 +
z3 + O(z4) whose Lavaurs map has a Siegel fixed point with diophantine multiplier λ,
which does not satisfy equality (35). The outline of the argument is as follows:

• We start by finding a degree 7 real polynomial whose Lavaurs map has a super-
attracting fixed point, and for which a suitable reformulation of (35) does not
hold
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• We perturb that polynomial to get an attracting but not superattracting fixed
point, in a way that equality (35) still does not hold
• We apply quasiconformal surgery to get a multiplier arbitrarily close to 1
• We show that in the limit, we get a polynomial whose Lavaurs map has a parabolic
fixed point that does not exit the parabolic basin
• We perturb that last polynomial to get a Siegel fixed point, leaving the family
of real polynomials; we prove that condition (35) does not hold for that last
polynomial.

Recall that in [1], there are two constructions of a Lavaurs map with an attracting
fixed point. One is based on a residue computation near infinity in the Ecalle cylinder,
and makes use of the fact that in the family fa(z) := z + z2 + az3, the multiplier of
the horn map ea of fa at the ends of the Ecalle cylinder is a non-constant holomorphic
function of a. This method cannot be used in a family of polynomials of the form
f(z) = z + z2 + z3 + O(z4), where those fixed points for the horn map are persistently
parabolic. This is why we adapt the second strategy for the first two steps described
above.

Let φι be the incoming Fatou coordinate, and ψo the outgoing Fatou parametrization.
Recall that the Lavaurs map is given by L = ψo ◦ φι : Bf → C, the lifted horn map is
E = φι ◦ ψo : V → C, with V ⊂ C containing {Z : |Im(Z)| > R} for R large enough.
We have E ◦ φι = φι ◦ L, and E(Z + 1) = E(Z) + 1, so E descends to a self-map of C/Z.
Conjugating by the isomorphism Z 7→ e2iπZ , we obtain a map e : U − {0,∞} → C∗,
where U is an open set containing 0 and ∞. The map extends to U , and fixes 0 and
∞. Since we consider polynomials with f(z) = z + z2 + z3 + O(z4), both of those fixed
points have multiplier 1.

For a polynomial f(z) = z + z2 + O(z3) and a fixed point ζ = L(ζ) of the Lavaurs
map, with multiplier λ /∈ {0, 1}, we say that condition (*) is satisfied if

L′′(ζ)(φι)′(ζ)

λ(1− λ)
− (φι)′′(ζ) = 0.

Lemma 6.1. We have:

(36)
L′′(ζ)(φι)′(ζ)

λ(1− λ)
− (φι)′′(ζ) =

λ

1− λ

[
(ψo)′′(φι(ζ))(φι)′(ζ)

(ψo)′(φι(ζ))2
+ (φι)′′(ζ)

]
.

Proof. Since L = ψo ◦ φι we obtain

L′(z) = (ψo)′(φι(z))φ′(z)

and
L′′(z) = (ψo)′′(φι(z))φ′(z)2 + (ψo)′(φι(z))(φι)′′(z).

Recalling that L′(ζ) = λ it follows that

φ′(ζ)

λ
=

1

(ψo)′(φι(ζ))
,
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and so
L′′(ζ)φ′(ζ)

λ
=

(ψo)′′(φι(ζ))(φι)′(ζ)2

(ψo)′(φι(z))
+ (φι)′′(ζ).

It follows that
L′′(ζ)(φι)′(ζ)

λ(1− λ)
− (φι)′′(ζ) =

1

1− λ

[
(ψo)′′(φι(ζ))(φι)′(ζ)2

(ψo)′(φι(ζ))
+ (φι)′′(ζ)

]
− (φι)′′(ζ)

=
(ψo)′′(φι(ζ))(φι)′(ζ)2

(1− λ)(ψo)′(φι(ζ))
+ (φι)′′(ζ)

λ

1− λ

=
λ

1− λ

[
(ψo)′′(φι(ζ))(φι)′(ζ)

(ψo)′(φι(ζ))2
+ (φι)′′(ζ)

]
.

�

For the rest of the paper we shall set

(37) F(f, ζ) :=
(ψo)′′(φι(ζ))(φι)′(ζ)

(ψo)′(φι(ζ))2
+ (φι)′′(ζ),

where ψo and φι are the Fatou parametrization and coordinates associated to f . Note
that for λ /∈ {0, 1}, condition (*) is equivalent to F(f, ζ) = 0.

We record here for later use the following lemma:

Lemma 6.2. Let f(z) = z + z2 + az3 + O(z4) and let φι denote its incoming Fatou
coordinate. Let c be a critical point in the parabolic basin of f . Then we have (φι)′′(c) = 0
if and only if either c is multiple critical point of f , or if the orbit of c meets another
critical point of f .

Proof. We have the following limit :

φι(z) := lim
n→∞

− 1

fn(z)
− n− (1− a) lnn =: lim

n→∞
φn(z),

the convergence being locally uniform on the parabolic basin. Therefore (φι)′′(c) equals

limn→∞ φ
′′
n(c). Moreover, φ′n(z) =

(fn)′(z)

[fn(z)]2
and

φ′′n(c) =
d

dz |z=c

(fn)′(z)

[fn(z)]2

=
(fn)′′(c) [fn(c)]2 − 2 [(fn)′(c)]2 fn(c)

[fn(c)]4

=
(fn)′′(c)

[fn(c)]2

= f ′′(c)

∏n−1
k=1 f

′(fk(c))

[fn(c)]2
.
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For the third and fourth equalities we used the fact that f ′(c) = 0. Since c is in the
parabolic basin of f , we have [fn(c)]2 ∼ 1

n2 . Moreover, for k ≥ k0 with k0 large enough,
f ′(fk(c)) 6= 0 and

f ′(fk(c)) = 1− 2

k
+O

(
ln k

k2

)
= exp

(
−2

k
+O

(
ln k

k2

))
.

Therefore:
n−1∏
k=k0

f ′(fk(z)) =
n−1∏
k=k0

exp

(
−2

k
+O

(
ln k

k2

))
=

exp(O(1))

n2
.

In particular, limn→∞

∏n−1
k=k0

f ′(fk(c))

[fn(c)]2
6= 0, so (φι)′′(c) = 0 if and only if f ′′(c) = 0 or

(fk)′(c) = 0, which concludes the proof. �

For t ∈ R, a real polynomial P (z) = z + z2 + z3 +O(z4) and n > degP odd, let

ft(z) = P (z)− P ′(t)

ntn−1
zn

Note that f ′t(t) = 0: the choice of this family ensures that we have a marked critical
point in R. By Lt we denote the Lavaurs map of phase 0 for the polynomial ft.

Proposition 6.3. Assume that there exists P, n and t∞ < 0 as above such that :
(1) ft∞(t∞) = 0
(2) d

dt |t=t∞ft(t) < 0

(3) ft∞ has negative leading coefficient
(4) there exists x > 0 in the repelling petal of ft∞ that escapes to infinity.

Then there is a sequence tn → t∞ such that Ltn(tn) = tn.

Proof. We will rely on the following two claims:

Claim 1. For t ∈ (t∞, t∞ + ε) with ε > 0 small enough, the critical point t is in the
parabolic basin of ft.

Proof of the claim. It is enough to show that there is r > 0 such that (−r, 0) is in the
parabolic basin of ft for all t close enough to t∞. Indeed, by (1) and (2), we have that
for all r > 0 there exists ε > 0 such that ft(t) ∈ (−r, 0) for all t ∈ (t∞, t∞ + ε). Let

rt := sup{r > 0 : ∀y ∈ (−r, 0), 0 <
ft(y)

y
< 1}.

For all y ∈ (−rt, 0), t < ft(y) < 0 hence y is in the parabolic basin of ft. Finally, t 7→ rt
is continuous and rt∞ > 0. �

Claim 2. There exists a sequence t̃n → t∞ (with t̃n > t∞) such that Lt̃n(t̃n) = fn
t̃n

(x).

Proof of the claim. We adapt here the argument from [1]. The desired equality Lt̃n(t̃n) =

fn
t̃n

(x) is equivalent to ψo
t̃n
◦ φι

t̃n
(t̃n) = ψt̃on(φo

t̃n
(x) + n).
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In particular, it is enough to find t̃n such that φι
t̃n

(t̃n) = φo
t̃n

(x) + n. We look for t̃n
under the form t̃n = t∞ − α

n+u , with α = 1
d
dc |c=t∞

fc(c)
. By the preceding claim, it is in

the parabolic basin for n large enough.
We have φo

t̃n
(x) + n = n + φot∞(x) + o(1) since the map t 7→ φot is continuous. Addi-

tionally,

φι
t̃n

(t̃n) = φι
t̃n

(ft̃n(t̃n))− 1

= − 1

ft̃n(t̃n)
− 1 + o(1), (according to the asymptotic expansion of φι)

= n+ u− 1 + o(1).

Therefore, we have reduced the problem to solving the equation u − 1 + o(1) = φot∞(x)
for u ∈ R, where the o(1) term is a continuous function of u. By the Intermediate value
Theorem there is a solution u = un ∈ (φot∞(x), φot∞(x)+2). We can take t̃n = t∞− α

n+un
,

and since (un)n∈N is bounded from below, the sequence (tn) is well-defined for n large
enough and converges to t∞. �

We now come back to the proof of Proposition 6.3. For n large enough, Gt̃n(x) > 0 (by
continuity of the Green function G). Therefore Lt̃n(t̃n) = fn

t̃n
(x) tends to ∞, and more

precisely, +∞ or −∞ depending on the parity of n, thanks to condition (3). Therefore
the continuous function F (t) := Lt(t)− t alternates sign between two consecutive t̃n, so
by the IVT must have a zero tn between them. �

Proposition 6.4. Let P (z) := z + z2 + z3 + az4 + bz5, with a := 23
7 and b := 17

7 ; let
t∞ := −1 and n := 7. Then P , n and t∞ satisfy conditions (1)− (4) in Proposition 6.3.

Proof. The constants a and b are chosen so that ft∞(t∞) = 0 and P ′(t∞) = 1. That
second property implies that ft∞ has negative leading coefficient. Therefore, conditions
(1) and (3) are satisfied.

Let us check that condition (2) is also satisfied. We have:
d

dt |t=t∞
ft(t) =

d

dt |t=t∞
P (t)− t

n
P ′(t)

=
n− 1

n
P ′(t∞)− t∞

n
P ′′(t∞)

=
6

7
+

1

7
P ′′(−1) = −50

49
< 0.

Finally, condition (4) is satisfied for x := 1. Indeed, using symbolic computation
software, one can check that f3t∞(1) is larger than the escape radius for ft∞ . Recall here
that if f(z) =

∑n
k=0 akz

k is a complex polynomial, then the filled-in Julia set Kf is

contained in D
(

0,
1+
∑n−1
k=0 |ak|
|an|

)
. This proves rigorously that x := 1 has unbounded orbit

under ft∞ . �

Lemma 6.5. For ε0 > 0 small enough, there exists t > −1 such that the following
properties hold for ft:

(1) Lt has a fixed point xt with multiplier ε0 6= 0
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(2) F(ft, xt) 6= 0
(3) ft has 4 real critical points, ordered from left to right : c1, c2, c3, c4, with t = c2;

and two non-real complex conjugate critical points c′ and c′.
(4) the critical points c1 and c4 lie in the basin of infinity; the critical points c2 and

c3 are in the parabolic basin.
(5) there is a unique repelling fixed point ξ ∈ (c1, c2), and the intersection of R and

the immediate basin of attraction of 0 is (ξ, 0).
(6) there is a unique y ∈ (ξ, c2) such that ft(y) = c2

Proof. We will find t by taking a perturbation of one of the tn0 constructed above, with
n0 large enough.

First, note that properties (3)-(6) hold for f := ft∞ : z 7→ z+z2+z3+ 23
7 z

4+ 17
7 z

5− z7

7 ;
we leave the details to the reader. Therefore, for n0 large enough, properties (3)-(6) still
hold for ftn0 , as these properties are clearly open (in R) near t = t∞. To lighten the
notations, we let f := ftn0 and c2 := tn0 .

We now claim that F is well defined at (f, c2), and that F(f, c2) 6= 0. According to
Lemma 6.2, since f satisfies conditions (3)-(6), we have (φι)′′(c) 6= 0. Indeed, c2 is a
simple critical point of f ; and we claim that the forward orbit of c2 does not meet any
other critical point of f . To see this, note that the critical point c2 is simple for f , and
real. Since c′ and c′ are not real, the orbit of c2 cannot land on either of them. Since the
critical points c1 and c4 do not belong to the parabolic basin, the orbit of c2 cannot land
on them either. Finally, since f(c2) > c3, and since f(c2) belongs to a small attracting
petal in which the sequence of iterates (fn(c2))n∈N is increasing, the orbit of c2 cannot
land on c3 either.

Now that we have proved that (φι)′′(c2) 6= 0, it is sufficient to prove that

(ψo)′′(φι(c2))(φ
ι)′(c2)

(ψo)′(φ(c2))2
= 0.

In fact, since (φι)′(c2) = 0, it is suffices to prove that (ψo)′(φι(c2)) 6= 0. Recall that for
any Z ∈ C, (ψo)′(Z) = 0 if and only if there exists n ≥ 1 such that (ψo)′(Z − n) is a
critical point for f ; here, Z = φι(c2) and ψo ◦ φι(c2) = c2, so we must prove that for
all n ≥ 1 and any critical point ci of f , fn(ci) 6= c2. Since c1 and c4 escape, neither
of their orbit can land on c2; and since c2 is not periodic under f , its own orbit cannot
land on itself either. Since c3 is in the immediate parabolic basin, the orbit (fn(c3))n∈N
is increasing, and so does not contain c2 since c3 > c2.

Finally, it remains to argue that the orbits of the two non-real critical points c′ and c′
do not eventually land on c2. To see that it cannot be the case, note that since the horn
map e of f has two parabolic fixed points at 0 and ∞ corresponding to the ends of the
Ecalle cylinder, each of those fixed points must attract singular values of e distinct from
themselves, see [1]. The singular values of e are the fixed points at 0 and ∞, as well as
the π(ci), where ci are the critical points of f in the parabolic basin and π(z) = e2iπφ

ι(z).
I ffn(c′) = c2 for some n ≥ 1, then by real symmetry we would also have fn(c′) = c2,
and so π(c′) = π(c′) = π(c2); but then π(c3) would be the only non-fixed singular value
of e, which is impossible.

Therefore f has no critical relation, and so (ψo)′(φι(c2)) 6= 0; and F(f, c2) 6= 0 as
announced.
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To sum things up, we have proved that for n0 large enough, the polynomial ftn0 satisfies
properties (2)-(6). Since tn0 is a super-attracting fixed point of Ltn0 but persistently
fixed, for ε0 > 0 small enough, there exists t close to tn0 such that ft satisfies (1); and
by openness, if ε0 is small enough, ft still satisfies (2)-(6). �

The next step is to use quasiconformal deformations to construct an immersed disk D
in parameter space passing through ft, made of polynomials pu whose Lavaurs map has
an attracting fixed point of multiplier e2iπu, u ∈ H. We use on purpose the notation pu
instead of ft to emphasize the fact that except for ft, the polynomials pu do not a priori
belong to the family (ft)t∈R∗ .

Proposition 6.6. Let p := ft and ε0 > 0 be as in Lemma 6.5. There exists a holomorphic
map Φ : H→ P7 such that

(1) Φ(u0) = p, for some u0 ∈ H with e2iπu0 = ε0
(2) For all u ∈ H, the Lavaurs map of Φ(u) =: pu has a fixed point zu of multiplier

e2iπu ∈ D∗; and u 7→ zu is holomorphic
(3) All the maps pu are quasiconformally conjugated to p, the conjugacy being holo-

morphic outside of the grand orbit under p of the attracting basin of zu0 := xt
(4) If e2iπu ∈ (0, 1), then the conjugacy preserves the real line
(5) The set Φ(H) is relatively compact in P7.

Proof. Let e : U → P1 be the horn map of g; since L has an attracting fixed point
zu0 := xt, so does e (since they are semi-conjugated). Denote this attracting fixed point
by x.

Let u ∈ H, and µ be a Beltrami form invariant by e (i.e. e∗µ = µ) such that the
corresponding quasiconformal homeomorphism hµ conjugates e to some holomophic map
eµ with an attracting fixed point of multiplier e2iπu : hµ ◦ e = eµ ◦ hµ and e′µ(hµ(x)) =

e2iπu. We recall here briefly how to construct such a Beltrami form, and refer the reader to
[Branner-Fagella] for more details. If τ is a linearizing coordinate for the horn map e near
x, i.e. a holomorphic map defined near p satisfying the functional equation τ ◦ e = ε0τ ,
we set:

(38) µ = µ(u) := τ∗
(
u− u0
u+ u0

z

z

dz

dz

)
where u0 ∈ H is any point such that e2iπu0 = ε0. Notice that u 7→ µ(u) is holomorphic.
In the rest of the proof, we fix u ∈ H and just use the notation µ instead of µ(u).

We choose the normalization of hµ so that it fixes 0, 1 and ∞. Let E(z) := e2iπz and
T1(z) := z + 1. We define:

(1) ν := E∗µ: so that ν = T ∗1 ν, and ν = E∗ν
(2) σ := φ∗ν: so that σ = g∗σ and σ = L∗σ
(3) The quasiconformal homeomorphisms hν and hσ associated to ν, σ respectively.

Since ν = T ∗1 ν, the map hν◦T1◦h−1ν : C→ C is holomorphic; since it is conjugated to T1, it
is also a translation (distinct from the identity), and we choose the normalization of hν so
that hν ◦T1◦h−1ν = T1 and hν(0) = 0. Similarly, since σ = g∗σ, the map pu := hσ ◦p◦h−1σ
is holomorphic, hence a polynomial (since it has same topological degree as f); it also
has a parabolic fixed point with one attracting petal at the origin. We choose the unique
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Figure 1. The graph of f := ft∞ (blue), with the line y = x in red. We
have c1 ≈ −2.8, c2 = −1, c3 ≈ −0.4, and c4 ≈ 4. The critical values f(c1)
and f(c4) are out of the picture.

normalization of hσ such that pu(z) = z+z2+O(z3). We set Φ(u) := pu; the holomorphic
dependance u 7→ µ(u) and the parametric version of Alhfors-Bers’ Theorem imply that
Φ is holomorphic on H.

We now define :
(1) φσ := hν ◦ φ ◦ h−1σ : hσ(B)→ C, where B is the parabolic basin of f
(2) ψν := hσ ◦ ψ ◦ h−1ν : C→ C

Lemma 6.7. The map φσ is an incoming Fatou coordinate for pu; and the map ψν is
an outgoing Fatou parametrization for pu.

Proof of the lemma. We start with φσ. First, note that since σ = φ∗ν, the map φσ is
holomorphic on Bσ := hσ(B), which is exactly the parabolic basin of pu. Then, note
that :

φσ ◦ pu = hν ◦ φ ◦ h−1σ ◦ pu
= hν ◦ φ ◦ g ◦ h−1σ
= hν ◦ T1 ◦ φ ◦ h−1σ
= T1 ◦ hν ◦ φ ◦ h−1σ = T1 ◦ φσ.
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So φσ conjugates pu on the whole parabolic basin to a translation, which means it is a
Fatou coordinate.

The proof is completely analoguous for ψν : first, to prove that ψν is holomorphic, note
that ν = ψ∗σ. Indeed, ν = E∗ν = ψ∗φ∗ν = ψ∗σ. To conclude, one can check directly
that ψν ◦ T1 = pu ◦ ψν .

�

As a consequence of the lemma, Eν := hν ◦ E ◦ h−1ν is a lifted horn map of pu, and
Lσ := hσ ◦ L ◦ h−1σ is a Lavaurs map of pu; and they have the same phase. The phase
could a priori be a non-zero, but we will prove that it is not the case. In order to do
that, first we will prove that E ◦ Eν = eµ ◦E, i.e. that eµ is a horn map that lifts to Eν .

Since ν = E∗µ, the map Eν := hµ ◦E ◦h−1ν : C→ C∗ is holomorphic. Moreover, since
E : C→ C∗ is a universal cover, so is Eν . So Eν is of the form Eν(z) = λeαz, and with
our choices of normalizations we find Eν(z) = e2iπz = E(z). So E ◦ hν = hµ ◦ E.

From this, we deduce the following:

E ◦ Eν = E ◦ hν ◦ E ◦ h−1ν
= hµ ◦ E ◦ E ◦ h−1ν
= hµ ◦ e ◦ E ◦ h−1ν
= hµ ◦ e ◦ h−1µ ◦ E
= eµ ◦ E.

Finally, it remains to observe that since eµ is topologically conjugated to e, it also has
two parabolic fixed points at 0 and ∞ respectively, each of multiplier 1. Recall that the
horn map of phase 0 of a parabolic polynomial f(z) = z+z2+az3+O(z4) has multipliers
at 0 and∞ both equal to e2π2(1−a), and that the horn map of phase ϕ ∈ C/Z is obtained
from the horn map e of phase 0 by multiplication by e2iπϕ. In particular, its multipliers
at 0 and ∞ are respectively e2π2(1−a)+2iπϕ and e2π2(1−a)−2iπϕ. In this case, since both
multipliers are equal to 1, we must have a = 1 and ϕ = 0. Therefore, Lσ is the Lavaurs
map of phase 0 of pu, and pu(z) = z + z2 + z3 +O(z4).

Finally, if πσ(z) := e2iπφσ(z), then πσ ◦ Lσ = eµ ◦ πσ, and πσ is locally invertible near
zu := hσ(zu0), and πσ(zu) = hµ(x). Therefore, zu as a fixed point of Lσ has the same
multiplier e2iπu as hµ(x). This proves claims (1)-(3) of the proposition.

To prove claim (4), note that if e2iπu ∈ (0, 1) then the Beltrami form u−u0
u+u0

z
z
dz
dz has real

symmetry (since then u−u0
u+u0

∈ R). We claim that this implies that σ has real symmetry.
Indeed, since g(R) = R, its Lavaurs map Lmaps a small interval I ⊂ R centered at xt into
itself. Moreover, the map τ ◦π semi-conjugates L to the multiplication by ε0 > 0; so τ ◦π
maps I into R, which means that the holomorphic map τ ◦ π is real: τ ◦ π(z) = τ ◦ π(z)

for all z in the parabolic basin of g. Therefore σ = (τ ◦π)∗
(
u−u0
u+u0

z
z
dz
dz

)
has real symmetry,

hence hσ restricts to a real homeomorphism.
Finally, Φ : H → P7 is bounded in the space of polynomials of degree 7. Indeed,

by [2, Prop. 4.4] the set of polynomials of given degree with given values of the Green
function at the critical points is bounded, and since the conjugacy between the pu and p
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is analytic outside of the parabolic basin, their Green functions have the same values at
critical points. �

Proposition 6.8. With the same notations as before, there exists p0 in the closure of
Φ(H) such that the Lavaurs map of p0 has a parabolic fixed point of multiplier 1.

Proof. Applying Proposition 6.6 with un = i
n , we get a sequence of polynomials pun such

that pun(z) = z + z2 + z3 +O(z4), and the Lavaurs map Ln of pun has a fixed point xn
of multiplier e−2π/n.

Each of the pun are quasiconformally conjugate to the real polynomial ft from Lemma
6.5 by a homeomorphism whose restriction to the real line is real and increasing, so the
pun still satisfy the properties (3)-(6) from Lemma 6.5.

By item (5) in Proposition 6.6, the sequence (pun)n∈N is bounded in the space of degree
7 polynomials. So up to extracting, we may assume that

(1) pun converges to a degree 7 polynomial p0
(2) the critical points ci,n of pun converge to critical points ci of p0
(3) the repelling fixed point ξn converges to a non-attracting fixed point ξ of p0
(4) xn converges to x ∈ R and yn to y ∈ R.
We denote by L the Lavaurs map of p0. If we can prove that x lies in the parabolic

basin of p0, then we will get that L(x) = x and L′(x) = 1. To do that, it is enough to
prove that x ∈ (ξ, 0). But for all n, we have:

ξn < yn < xn < c2,n < 0;

hence ξ < y ≤ x ≤ c2 < 0. The inequality ξ < y is strict because as a limit of repelling
fixed points, we have |f ′(ξ)| ≥ 1, so we can not have y = ξ for otherwise we would have
ξ = f(ξ) = f(y) = c2 and so f ′(ξ) = 0, a contradiction. Similarly, we can not have
c2 = 0 since p′0(0) = 1 6= 0. So x ∈ (ξ, 0) and ξ is in the parabolic basin of f , and so
L′(x) = 1 and L(x) = x. Therefore p0 has the desired property. �

Proposition 6.9. There exists a polynomial g(z) = z+ z2 + z3 +O(z4) of degree 7 such
that:

(1) L has a Siegel fixed point ζ with diophantine multiplier, and
(2) (g, ζ) does not satisfy condition (*).

Proof. Recall that P7 denotes the space of degree 7 polynomials of the form f(z) =
z+ z2 + z3 +O(z4), and let V = {(f, ζ) ∈ P7×C : ζ ∈ Bf}: V may be identified with an
open set in C5. Finally, we consider F := {(f, ζ) ∈ V : L(ζ) = ζ}, which is an analytic
hypersurface of V .

We consider the functions λ : F → C and F : F → C defined as λ(f, ζ) = L′(ζ) and
F(f, ζ) = (ψo)′′(φι(ζ))(φι)′(ζ)

(ψo)′(φι(ζ))2 + (φι)′′(ζ), where φι and ψo are the Fatou coordinate and
parametrization of f . The function λ is analytic on F , and F is meromorphic on F and
analytic on λ−1(C∗), since (ψo)′(φι(z)) = 0 implies that L′(z) = 0.

Let Φ : H → P7 be the map defined in Proposition 6.6, and let Φ̃ : H → F be the
map given by Φ(u) = (pu, zu), where zu is the fixed point of the Lavaurs map of pu with
multiplier e2iπu. Then D := Φ̃(H) is contained in one irreducible component F0 of F .
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Let p0 be the polynomial given by Proposition 6.8 such that its Lavaurs map has a
parabolic fixed point z0. By Proposition 6.8, (p0, z0) is in the closure of D in V ; therefore
(p0, z0) ∈ F0.

Assume for a contradiction that for all (f, ζ) ∈ F0 such that L′(ζ) has modulus one and
diophantine argument, condition (*) holds. Then by density of diophantine numbers, we
must have F(f, ζ) = 0 on λ−1(S1)∩F0. Since for all u ∈ H, λ◦Φ̃(u) = e2iπu, the analytic
map λ is non-constant on F0. In particular, λ−1(S1) is a real analytic subset of F0 of real
codimension 1, non-empty since λ(p0, z0) = 1. By Proposition 6.6, D contains (ft, xt),
where ft is the polynomial given by Lemma 6.5, and such that F(ft, zt) 6= 0. So the
analytic map F is not identically zero on F0, and therefore it cannot vanish identically
on λ−1(S1) ∩ F0, a contradiction.

�
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