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The deubiquitinating enzyme CYLD controls apical
docking of basal bodies in ciliated epithelial cells
Thibaut Eguether1,2,w, Maria A. Ermolaeva3, Yongge Zhao4, Marion C. Bonnet3,5, Ashish Jain4,

Manolis Pasparakis3, Gilles Courtois6,7 & Anne-Marie Tassin1,8

CYLD is a tumour suppressor gene mutated in familial cylindromatosis, a genetic disorder

leading to the development of skin appendage tumours. It encodes a deubiquitinating enzyme

that removes Lys63- or linear-linked ubiquitin chains. CYLD was shown to regulate cell

proliferation, cell survival and inflammatory responses, through various signalling pathways.

Here we show that CYLD localizes at centrosomes and basal bodies via interaction with the

centrosomal protein CAP350 and demonstrate that CYLD must be both at the centrosome

and catalytically active to promote ciliogenesis independently of NF-kB. In transgenic

mice engineered to mimic the smallest truncation found in cylindromatosis patients, CYLD

interaction with CAP350 is lost disrupting CYLD centrosome localization, which results in

cilia formation defects due to impairment of basal body migration and docking. These results

point to an undiscovered regulation of ciliogenesis by Lys63 ubiquitination and provide

new perspectives regarding CYLD function that should be considered in the context of

cylindromatosis.
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C
entrioles are conserved microtubule-based organelles
displaying structural asymmetry, with the mother cen-
triole bearing two sets of appendages at its distal end. In

resting cells, the mother centriole can turn into a so-called basal
body and dock to the plasma membrane through the distal
appendages, to complete primary cilia formation1. In addition to
these primary cilia, multiple motile cilia are present in some
mammalian epithelia (for example, brain ventricles, respiratory
tract and fallopian tubes). In contrast to cycling cells, these
multiciliated cells have the ability to assemble hundreds of
centrioles that anchor to the plasma membrane and grow cilia2.
In all cases, ciliogenesis is a multistep process that includes basal
body assembly, maturation and migration, transition zone
formation, docking to the cell surface and further axonemal
extension, which requires intraflagellar transport3.

Primary cilia are considered as cell antennas that receive
extracellular signals and transmit them to the cell bodies, thus
coordinating cell growth, polarity and differentiation4,5. Among
their role in sensing the environment, cilia are required to
mediate several signal transduction pathways6. Therefore, any
defects in this organelle lead to a wide range of developmental
disorders and diseases grouped under the term ‘ciliopathies’1.

Among the numerous centrosomal proteins, CAP350 serves as
a platform to anchor several proteins to the centrosome. FOP
(FGFR1 oncogene partner) localization at the centrosome
depends on its association with CAP350 and is required to
recruit EB1 at the centrosome7. The complex CAP350/FOP was
shown to be required for microtubule anchoring to the
centrosome. In addition, as a microtubule binding protein
CAP350 stabilizes the microtubule network8 as well as the
microtubules of the centriolar barrel9, allowing the maintenance
of a continuous pericentrosomal golgi ribbon8. Interestingly,
removal of EB1 from the centrosome by expression of a carboxy-
terminal fragment of CAP350 as well as depletion of FOP inhibits
primary cilia formation10.

CYLD was originally identified as a gene mutated in familial
cylindromatosis, a genetic condition that predisposes patients to
the development of skin appendages tumours, referred to as
cylindromas. Patients with cylindromatosis carry heterozygous
germ-line mutations in the CYLD gene11. During their life, some
cells undergo a loss of heterozygosity with the disappearance of
the wild-type (WT) CYLD allele. The remaining mutated allele
leads to the expression of a truncated protein, thus resulting in
the development of cylindromas. Therefore, this mode of tumour
formation defines CYLD as a tumour suppressor. The CYLD gene
encodes a deubiquitinating (DUB) enzyme, which removes lysine
63-linked polyubiquitin chains (K63-linked ubiquitin) as well as
linear chains from target proteins12. Interestingly, most of the
mutations of CYLD found in human cylindromas are predicted to
cause C-terminal truncations and catalytic inactivation of the
DUB domain.

The CYLD protein was shown to regulate cell survival and
inflammatory responses mainly through inhibiting nuclear
factor-kB (NF-kB) and mitogen-activated protein (MAP) kinase
signalling13,14. In addition, CYLD was also shown to negatively
regulate the Wnt/b-catenin signalling pathway by removing K63-
linked ubiquitin of Dishevelled (Dvl)15, and more recently CYLD
was found to interact with the centrosomal protein CEP192 (ref.
16), which plays a critical role in centrosome biogenesis17.

The tumour suppressing function of CYLD has been studied,
in vivo, using Cyld knockout (KO) mice. Surprisingly, these mice
do not spontaneously develop tumours but their skin is more
sensitive to tumorigenic chemicals compared with WT mice18.
Intriguingly, transgenic mice, which carry a complete deletion of
the DUB domain (CyldD9/D9) die perinatally from respiratory
dysfunction and exhibit immature lungs characterized by

hyperplasic mesenchyme19. The striking difference between
those two phenotypes led us to use a knockin mouse model
engineered to recapitulate more closely the smallest truncation
found in patients by expressing a truncated CYLD protein lacking
the last 24 C-terminal amino acids of its catalytic domain
(CyldD932).

To further characterize how CYLD may contribute to
cylindromatosis onset, we highlight the interaction between
CYLD and the centrosomal CAP350 protein, which leads to
CYLD localization to the centrosome. In addition, we demon-
strate that CyldD932 mice show impaired apical migration and
docking of basal bodies in multiciliated cells with a concomitant
loss of CYLD centrosomal localization and CAP350 interaction.
To understand the mechanism by which CYLD impairs basal
body migration/docking, we expressed several constructs of the
protein and show that CYLD overexpression in the cytosol
prevents primary cilia formation, while its specific expression at
the centrosome leads to primary cilia formation. Conversely,
expression of the catalytically inactive CYLD at the centrosome
abolishes ciliogenesis. This demonstrates that both centrosome
localization and CYLD DUB activity are required for cilia
formation. Finally, we demonstrate by inhibiting the NF-kB
pathway that catalytically inactive CYLD abolishes ciliogenesis in
an NF-kB-independent manner. Altogether, these results point to
an unravelled role of Lysine 63 ubiquitination in ciliogenesis.

Results
CYLD interacts with CAP350 at the centrosome/basal bodies.
We identified CYLD as a potential interacting partner of CAP350,
by performing immunoprecipitation directed against CAP350
followed by mass spectrometry analysis. Eleven peptides were
found in the 110-kDa band that matched sequences throughout
the tumour suppressor protein CYLD (Fig. 1a and Supplementary
Fig. 1). We confirmed the presence of CYLD in the CAP350
immunoprecipitate using a monoclonal antibody directed against
the catalytic domain of CYLD (Fig. 1b), thus establishing
CAP350/CYLD interaction. To further map the interacting
domains of CAP350 and CYLD, we transfected Myc-tagged DNA
constructs encoding various portions of CAP350 with full-length
Flag-tagged CYLD into HEK 293T cells and performed immu-
noprecipitation with an anti-Flag antibody. The CYLD interact-
ing domain was mapped to the C-terminal domain of CAP350
(Fig. 1c). As full-length CAP350 is insoluble, we overexpressed
the CAP350 C-terminal domain with either a CYLD DN (AA394-
956) or CYLD DC (AA1-585) construct. We found that the
CAP350 C-terminal domain interacts with a CYLD DN (AA394-
956) protein but not with the CYLD DC (AA1-585) protein,
suggesting that it interacts with the DUB domain of CYLD
(Fig. 1d). In addition, cells co-expressing both proteins show a co-
localization of CAP350-GFP and CYLD-Flag to the centrosome
and to the microtubules (Supplementary Fig. 2a). Such localiza-
tion has already been observed for CAP350 overexpression alone,
as previously described8, while CYLD-Flag expressed alone was
present in the cytosolic fraction (Supplementary Fig. 2b). These
results suggest that CAP350 directs CYLD localization to perform
specific functions in cells.

CYLD localizes to the centrosome and basal bodies. This
CAP350/CYLD interaction prompted us to investigate the loca-
lization of endogenous CYLD. To that end, we generated and
affinity purified an antibody directed against CYLD (CYLD 089).
Staining with this antibody showed that CYLD is enriched at the
centrosome throughout the cell cycle (Fig. 2a,b). In addition, a
faint labelling of the nucleus was observed in interphase cells.
Such a nuclear staining has previously been observed for several
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Figure 1 | CYLD interaction with CAP350. (a) Schematic representation of the CYLD protein with the three CAP-Gly domains and the catalytic

DUB domain (593–956). The locations of the 11 peptides found by mass spectrometry are underlined. In the lower panel, representation of the truncated

protein expressed in CyldD932 mice, which lacks the last 24AA of the the DUB domain. (b) IP experiments were performed on RPE1 cells using pre-immune

(PI, as control), polyclonal anti-CAP350 (CAP), or monoclonal anti-CYLD (CYLD) IgGs. The immunoprecipitated proteins and non-associated

components are referred to as ‘Immunoprecipitates’ and ‘unbound fraction’, respectively. IP products were analysed by WB analysis using antibodies

directed against CAP350 and CYLD (polyclonal) as indicated. CAP, CAP350. (c) Full-length CYLD-Flag and three CAP350 fragments as schematized above

were expressed in HEK293. CYLD-Flag immunoprecipitates the C-terminal domain of CAP350. (d) CAP350 C-terminal domain and either CYLD

DC (1–585) and CYLD DN (394–956) were expressed in HEK293. CYLD DN immunoprecipates the C-terminal domain of CAP350. Un.Fr, unbound

fractions; IP, Immunoprecipitates.
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ciliary or centrosomal proteins20. During metaphase, CYLD was
detected along some spindle microtubules and at the spindle poles
(Fig. 2b), reminiscent of CAP350 staining8. To further ascertain
this centrosomal localization, we used a biochemical approach.
Western blot (WB) analysis with two antibodies against CYLD
identified a major band at 110 kDa, which was specifically
enriched in the centrosomal fraction of KE37 cells but also weakly
detected in Triton X-100-soluble and -insoluble fractions

(Fig. 2c). Consistent with these observations, purified centro-
somes were strongly labelled by CYLD antibodies (Fig. 2d). We
conclude that CYLD is a centrosomal protein.

To confirm the centrosomal localization of CYLD, we
investigated its localization in multiciliated cells that contain
numerous basal bodies. Serum starvation of cultured ependymal
cells leads to the development of numerous motile cilia growing
from these basal bodies21. Therefore, we cultured ependymal cells
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Figure 2 | CYLD localizes to the centrosome and basal bodies. (a) Double labelling of RPE1 cells with polyclonal affinity-purified CYLD antibody

(CYLD 089) and the monoclonal g-tubulin antibody GTU88, which recognizes the centrosome. (b) CYLD staining in RPE1 during metaphase (upper panel)

and telophase (lower panel) with antibodies directed against CYLD and g-tubulin. During metaphase, CYLD remains localized to the centrosome but

is also present along the spindle as previously described for CAP350 (ref. 8). During telophase, CYLD antibodies label the centrosome and some

dots around it. Staining of the midbody and the central spindle was never observed. (c) WB analysis of CYLD in Triton X-100-soluble (S) and insoluble (I)

protein fractions and a highly enriched centrosomal fraction (CTR) from KE37 cells. (d) Immunostaining of isolated centrosomes with polyclonal

affinity-purified CYLD antibody (CYLD089) and CTR453. (e) Deconvoluted images of cultured ependymal cells stained with antibodies against CAP350

and TAP 952. (f) Deconvoluted images of cultured ependymal cells stained with antibodies against CYLD and TAP 952. Note that CYLD stained

not only basal bodies but also cilia tips. Scale bars, 10mm.
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from mouse brains and stained them with antibodies against
CAP350 and CYLD. Antibodies directed against glycylated
tubulin, such as TAP952 (ref. 22) were used to decorate the
cilia. Numerous dots located at the cilia base were labelled
by antibodies directed against CAP350 or CYLD (Fig. 2e,f). A
co-staining with antibodies directed against g-tubulin suggests
that both proteins localize at the basal bodies of multiciliated
cells (Supplementary Fig. 3). Surprisingly, CYLD antibodies,
but not CAP350 antibody, stained the tips of the cilia and
weakly the cilia themselves (Fig. 2f). Altogether, these results
suggest that CYLD localizes at the centrosome and basal bodies
but also at the ciliary tips.

Truncated CYLD inhibits primary cilia formation. The pre-
sence of CYLD at the basal bodies and at the ciliary tips prompted
us to investigate the role of this protein in ciliogenesis. Therefore,
we turned to CyldD932 mice23, which express the smallest
truncation of CYLD causing the human pathology (a deletion
of the last 24 amino acids) leading to a catalytically inactive
protein24 (Fig. 1a). As previously described in mice with complete
deletion of CYLD catalytic domain (CyldD9/D9)19, CyldD932

mutants die perinatally from respiratory distress with
pulmonary defects (Supplementary Fig. 4) reminiscent of the
phenotype observed in several mouse models exhibiting defects in
signalling as Wnt5a25, Vangl2 (ref. 26) and GMAP210 (ref. 27).
As these mutants show defects in cilia or in PCP signalling, we
decided to investigate primary cilia formation in primary mouse
embryonic fibroblasts (MEFs) derived from CyldWT or CyldD932

littermate embryos. We first verified that proliferation of cells of
both genotypes was comparable as proliferation rate is likely to
modify cell’s behaviour in respect to ciliation. Results of
fluorescence-activated cell sorting (FACS) analysis or KI67
staining (a marker of proliferative cells) show that both WT
and mutant MEFs proliferate similarly (Supplementary Fig. 5a–c).
As CYLD is a tumour suppressor, and primary cilia usually form
in the G0/G1 phase of the cell cycle28, we also wanted to
determine whether both cell types were able to undergo cell cycle
arrest on serum starvation. Again, after FACS analysis and KI67

staining we found no difference in the ratio of non-cycling cells
between the two conditions (Supplementary Fig. 5a–c). Although
both cell types proliferate similarly and are able to stop cycling on
serum starvation, primary cilium staining showed that only 32%
of CyldD932 cells present a primary cilium compared with 68% of
WT MEFs (Fig. 3a,b), suggesting that truncated CYLD mildly
affects primary cilia formation.

Truncated CYLD inhibits multiple motile cilia formation. We
next examined motile cilia formation in trachea of WT and
CyldD932 E18.5 embryos from several litters by scanning electron
microscopy. As ciliogenesis in the trachea occurs proximo-dis-
tally29, we imaged and counted the ciliated cells in every field
from the larynx to the beginning of the main bronchi to avoid
bias due to spatial differences. For each litter, the number of
multiciliated cells was at least 50% lower in the mutants than in
WT embryos. In addition, the motile cilia of mutant multiciliated
cells were generally shorter and scarce (Fig. 4a). As a control of
the specificity of this result, we took advantage of the previously
published Cyld knock-out mouse model18,30,31. As CyldKO mice
live without any major health issues, we were not expecting any
defects in cilia formation. Indeed, there was no difference in the
morphology and number of multiciliated cells between the WT
and CyldKO embryos (Fig. 4a, graph). These results show that
CYLDD932, a truncated catalytically inactive protein, behaves as a
dominant negative form of CYLD to inhibit formation of motile
cilia in multiciliated cells, whereas complete absence of CYLD has
no effect on cilia formation.

As the decreased number of multiciliated trachea cells might be
due to a developmental delay in the CyldD932 embryo, we used the
ependymal culture system21 and compared motile cilia formation
in parallel cell cultures obtained from WT and CyldD932

littermates. There was no difference in the doubling time of
cells with these different genotypes, but there was a dramatic
difference in the number of multiciliated cells between WT and
CyldD932 cells, independently of cell-density variations (Fig. 4b).
Altogether, our results in trachea and ependymal cells culture
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show that truncation of the catalytic domain of CYLD affects
formation of motile cilia of multiciliated cells.

CyldD932 basal bodies duplicate normally but fail to anchor. To
determine the reason of the decrease in cilia formation in CyldD932

embryos, we studied basal body formation in ependymal cell cul-
tures from each genotype at several differentiation time points by
staining with antibodies specific for basal bodies and cilia. In WT
cell cultures, multiciliated cells showed abundant basal bodies
decorated with anti-centrin3 antibodies (Fig. 5a). Abundant basal
bodies were also observed in CyldD932 cells irrespective of the
number of cilia in these cells. Quantification of cells with numer-
ous basal bodies revealed only a slight decrease in CyldD932 mutant
cells, suggesting that basal bodies amplification proceeds similarly
in WT and CyldD932 cells (Fig. 5a). In addition, the timing of
formation was not different between the two cell types. To further
investigate a possible basal body defect, we performed detailed
electron microscopy analysis of WT and mutant tracheas. We

found that a significant number of basal bodies failed to position
apically and dock at the plasma membrane in CyldD932 tracheal
ciliated cells (Fig. 5b). They appeared to be positioned in different
orientation (Fig. 5b, arrows). In addition, the microvilli, which
interspaced the axonema, appeared to be reduced in length as well
as in number, compared with the WT samples from the same litter,
reminiscent of actin organization or Rho GTPase activity
defect32,33. Thus, in mutant cells basal bodies multiply normally
but fail to migrate apically, suggesting a defect in transport and/or
docking at the apical membrane.

Centriole maturation and satellites are not affected. The failure
of basal bodies to anchor could be explained by either a defect in
centriole maturation or in centriolar satellite organization.
Indeed, centriolar maturation is characterized by the acquisition
of subdistal and distal appendages, which form the ciliary basal
feet and transition fibres, respectively34. Both of them are
required for cilia formation. Furthermore, centriolar satellites
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are believed to drive cargo to the centrosome and basal bodies35,
and are also required for ciliogenesis36. To ascertain the presence
of centriolar satellites and appendages, we stained ependymal
cells with antibodies directed against PCM1 and OFD1, two
proteins of centriolar satellites35,36, as well as with antibodies
against Cep164 and CCDC123 (Cep123), two proteins located
within the distal appendages37,38, and ODF2, a protein located
both at distal and subdistal appendages39. All antibodies
decorated centriolar satellites or basal bodies irrespective of the
genotype (Fig. 6), suggesting that basal body maturation and
centriolar satellite organization are not significantly modified in
CyldD932 mice.

CyldD932 does not interact with CAP350. To gain molecular
insight into the defects associated with CYLDD932 expression, we
tested whether CYLDD932 protein interacted with CAP350 by
immunoprecipitation of CAP350 in WT and CyldD932 MEFs. In
parallel experiments, CAP350 antibody immunoprecipitated
CYLD (revealed by a polyclonal antibody directed against the
amino-terminal domain) in WT but not CyldD932 MEFs (Fig. 7),
suggesting that the truncated version of CYLD is unable to
interact with CAP350. It follows that CYLDD932 would not be
localized at the centrosome and, indeed, we did not detect any
CYLD at the centrosome or basal bodies in CyldD932 mutant

ependymal cells (Fig. 7b,c), while CAP350 remained at the cen-
trosome. It is worth noting that CYLD was still localized at the
ciliary tip in mutant ependymal cells. These observations indicate
that the lack of interaction between CYLDD932 and CAP350
results in abnormal CYLD localization.

CYLD localization and activity are required for ciliogenesis. As
the impaired ciliogenesis observed in CyldD932 mice might be
driven by the absence of CYLD at the centrosome, or by its
compromised catalytic activity or both, we decided to investigate
the effect of CYLD activity and localization on primary cilia
formation. This was performed by overexpressing CYLDWT as
well as its catalytically inactive version CYLDH871/N (ref. 24) in
RPE1 cells. Overexpressed CYLDWT or CYLDH871/N protein is
mainly cytosolic with no obvious enrichment at the centrosome
(Fig. 8a). We observed a dramatic decrease in primary cilia for-
mation in cells expressing GFP-CYLDWT, CYLDWT-Flag or
CYLDH871/N-Flag (Fig. 8a) with 23%, 17% and 24% of ciliated
cells, respectively, while non-transfected cells or green fluorescent
protein (GFP)-transfected cells showed B90%.

As this result could be due to aberrant CYLD localization, we
decided to force CYLD expression at the centrosome using the
centrosomal targeting domain, PACT40. The targeting of this
GFP-PACT-CYLDWT to the centrioles affected ciliogenesis only
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slightly, resulting in B80% of ciliated cells (Fig. 8b). By contrast,
the targeting to the centrioles of CYLD with a point mutation,
which impaired the catalytic activity of CYLD (GFP-PACT-
CYLDH871/N), showed only 57% of ciliated cells. A similar
decrease was also observed (Fig. 8b, graph) when using the
truncated and catalytically inactive version of CYLD, GFP-PACT-
CYLDD932 (ref. 24). To control that these observations are not
caused by differences in the expression level of the constructs,
we measured GFP fluorescence intensity at the centrosome for
each condition in a new experiment. General observation of the
slides showed similar differences in cell ciliation of transfected
cells (ciliated cells: GFP-PACT-CYLDWT (82%), GFP-PACT-
CYLDH871/N (60%), GFP-PACT-CYLDD932 (36%)), but no
significant difference in mean fluorescence intensity was
observed between ciliated and unciliated cells, irrespective of
the construct, which shows that ciliation is independent of
expression level (Fig. 8c).

These results demonstrate that both the localization of CYLD
at the centrosome/basal body and its deubiquitinase activity are
essential for its function in ciliogenesis.

Ciliogenesis defects are independent of NF-jB activation. As
CYLD is a negative regulator of the NF-kB signalling pathway, we
were wondering whether the defective ciliogenesis observed on
the trachea and ependymal cells of mutant mice or after targeting
at the centrosome catalytically inactive CYLD, might be due to a
deregulation of the NF-kB pathway. Therefore, we decided to co-
transfect RPE1 cells with either GFP-PACT-CYLDWT or GFP-
PACT-CYLDD932 with or without a non-degradable form of IkB
acting a Super-repressor of NF-kB (IkBa Super-Repressor (IkBa-
SR))41 to block NF-kB activation. As shown on Fig. 8d, the
addition of the tumour necrosis factor (TNF) induced activation
of NF-kB either in the presence of serum or after 48 h serum
depletion, while the presence of IkBa-SR completely blocked this
activation. In parallel, cells were fixed and analysed for the
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presence of a primary cilium. Expression of IkBa-SR did not
impact the ciliation process either in GFP-PACT-CYLDWT- or in
GFP-PACT- CYLDD932-expressing cells as shown in Fig. 8e,
suggesting that the defects in the ciliogenesis process due to
the presence of GFP-PACT-CYLDD932 at the centrosome is
independent of NF-kB signalling.

Discussion
In this study we demonstrate that part of the CYLD pool is
located at the centrosome/basal bodies, through its interaction
with CAP350. This interaction is attested by several observations.

First of all, we identified CYLD by mass spectrometry as a partner
of CAP350 and confirmed their interaction in endogenous
immunoprecipitation experiments; Furthermore, we demonstrate
by co-overexpression that the C-terminal portion of CYLD,
including the DUB domain, interacts with the C-terminal domain
of CAP350. Second, CAP350 overexpression directs the centro-
somal localization of overexpressed CYLD; finally, CYLD no
longer localizes at the centrosome when its interaction with
CAP350 is abolished. It is worth noting that CYLD has already
been found in interaction with another centrosomal protein
CEP192 in co-overexpressed conditions, reinforcing the centro-
somal localisation of CYLD16. Nevertheless, the relationship
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between CAP350/CEP192 and CYLD will require further
investigations.

This specific centrosomal localization combined with the
staining observed at the tip of motile cilia suggests that CYLD
plays a role in cilia assembly/disassembly. Interestingly, localiza-
tion of CYLD at the cilia tips is reminiscent of the enrichment
observed for several other proteins such as EB1/EB3 (ref. 42),
some IFT proteins43 and, more recently, cep104/FAP256 (ref. 44).
This localization of CYLD is probably independent of its DUB
activity, as the staining at the cilia tip is still observed in CyldD932

ependymal cells. As a matter of fact, an interaction between
CYLD and EB1 has recently been reported45. In any case, this
dual CYLD localization at the centrosome and at the cilia tip
suggests that CYLD has distinct functions depending on the
partners it interacts with.

Our results show that CYLD participates in ciliogenesis by
allowing basal bodies to migrate and dock to the plasma
membrane. However, not all motile cilia are affected, as
CYLDD932 mutants do not display any left–right patterning
defects, suggesting that the function of the node is unaffected by
CYLD truncation. In addition, we demonstrate that CYLD has to
be both catalytically active and located at the centrosome to
promote ciliogenesis. Therefore, we propose a model (Fig. 9) in
which ciliogenesis would be only possible if a centrosomal
protein, or CAP350 itself, is deubiquitinated. In the WT situation,
CYLD would be located at the centrosome/basal body via
CAP350 and be able to hydrolyse K63- or linear-linked ubiquitin
chains from its substrate, enabling ciliogenesis to proceed. In the
mutant situation, CYLD would not be present at the centrosome,
resulting in impaired ciliogenesis. On CYLD overexpression,
extra CYLD in the cytoplasm would delocalize its targets and
prevent ciliogenesis. However, when CYLD is overexpressed and
targeted to the basal body by the PACT domain, it can
deubiquitinate its target and, consequently, ciliogenesis occurs.
Conversely, cells overexpressing the catalytically inactive
CYLDH871/N or CYLDD932 fused with the PACT domain do
not retain the ability to develop cilia. All these results argue for
the involvement of K63-ubiquitination/deubiquitination in cilio-
genesis. Importantly, we demonstrate that this role is NF-kB
independent. Recently, several reports have suggested an inhibi-
tion of ciliogenesis caused by activation of the NF-kB pathway.
First, Lattke et al.46 have shown that the activation of this
pathway by the expression of constitutively active IKK2 inhibits
cilia formation. However, it is not clear whether the cilia
formation defect is a consequence of a direct cell-autonomous

NF-kB activation rather than activation of inflammatory
processes. Moreover, it could also be a direct effect of active
IKK2 in ependymal cells, independently of NF-kB, as IKK2 has
NF-kB-independent functions47. As a matter of fact, IKK2 has
been found inhibiting ciliogenesis in an RNA interference
screen48. Second, the pro-inflammatory cytokine TNF triggered
a dose-dependent loss of primary cilia in mesenchymal stromal
cells49, but no molecular explanation was provided. However, our
study brings several arguments supporting the fact that this DUB
acts on ciliogenesis independently of NF-kB activation as trachea
from CYLD KO mice do not show any defects in motile cilia
formation, whereas they are defective in NF-kB signalling14,18,
and inhibition of the NF-kB pathway by the expression of a non-
degradable form of IkBa acting as a Super-repressor41 do not
modify the ciliogenesis defect caused by expression of the
CYLDD932 protein at the centrosome.

Nevertheless, it is intriguing that CyldKO mice are perfectly
viable without any problem in motile cilia formation, whereas the
mice expressing a truncated version of CYLD die at birth with
cilia defects. These results suggest some redundancy in the
control of ciliogenesis by DUBs. In the CyldKO mice another DUB
may compensate for the function of CYLD, whereas in the
CyldD932 mice the mutant CYLD protein probably acts as a
dominant negative by delocalizing its substrate, thus preventing
the action of the substitute DUB. USP 21 is a good candidate for
carrying this function, as it has recently been shown to localize at
the centrosome and affect primary cilia formation50. Moreover, it
shares a similar target with CYLD in the regulation NF-kB
signalling pathway51.

The involvement of the deubiquitinase CYLD in basal body
migration/docking has to be integrated in a more general role of
ubiquitination processes in ciliogenesis or centrosomal function.
At first, ubiquitinated proteins have been reported to be present
in cilia and flagella52, and the K63-specific E2 ubiquitin-
conjugating enzyme Ubc13 is present in the ciliome of various
species52–55. Next, protein ubiquitination was involved in flagellar
disassembly52. Finally, the E3 ubiquitin ligase MIB1 (ref. 56) was
identified in a centrosome proteome57 and the deubiquitinase
USP21 is shown to be required for primary cilia formation50. In
addition, another deubiquitinase Usp33 has recently been shown
to localize at the centrosome by its binding with CP110 and its
activity antagonizes SCFcyclinF ubiquitination of CP110 (ref. 58).

How may CYLD regulate ciliogenesis? Our data show that
CYLD is required to allow basal body migration and docking at
the plasma membrane. We also show that centriole maturation

Figure 8 | Regulation of primary cilium formation by CYLD in an NF-jB-independent manner. (a) Left, immunostaining of cells overexpressing

CYLD-Flag; red, anti-Flag antibodies; green, anti-acetylated tubulin antibodies. Non-transfected cells show a primary cilium (arrow), while cells transfected

with CYLD-Flag show only the centrosome (arrowhead). Scale bars, 10mm. Right: percentage of ciliated cells. Untransfected and GFP-transfected cells

show a similar percentage of ciliated cells. Fewer cells are ciliated after transfection with GFP-CYLD, CYLD-Flag or CYLD H/N-Flag. For each condition, at

least 500 cells in 3 experiments were counted. P-values after w2-test are 0.02 for GFP and o0.0001 for the three other conditions. (b) Left:

immunostaining of cells overexpressing GFP-PACT-CYLDWTor GFP-PACT-CYLDH/N. Red, anti-acetylated tubulin antibodies; green, GFP. Scale bars, 10mm.

Right: percentage of ciliated cells expressing GFP-PACT-CYLDWT, GFP-PACT-CYLDH/Nand GFP-PACT-CYLDD932. The targeting of CYLDWT to the

centrosome does not affect ciliogenesis unless the catalytic domain is not functionnal (GFP-PACT-CYLDH/N and GFP-PACT-CYLDD932). For each condition,

at least 500 cells in 3 experiments were counted. P-values after w2-test are o0.001 for GFP-PACT-CYLD and o0.0001 for the other conditions. (c) Left:

cells with high expression level or low expression level of the H/N construct can be ciliated or unciliated. Cells were transfected with GFP-PACT-CYLD H/N

(green) and stained with anti-acetylated tubulin antibody (red). Right: average fluorescence intensity (arbitrary units) measured at the centrosome for

ciliated and unciliated cells after transfection of the three constructs (GFP-PACT-CYLDWT, GFP-PACT-CYLDH/N or GFP-PACT-CYLDD932¼GFP-PACT-Cyld

del) in RPE1 cells. Mean and s.d. are shown. Differences after Mann–Whitney’s test are not statistically significant (n.s; P¼0.3; P¼0.9 and P¼0.65,

respectively). (d) Ig-kB-Luciferase-derived activity measured after culture of cells in high or low serum medium. In each case both basal (Mock)

and induced (TNF) levels of NF-kB activity were strongly inhibited by IkBa-SR. Errors bars in all graphs show s.d. (e) Percentage of ciliated cells in

GFP-PACT-CYLDWT, GFP-PACT-CYLDH/N and GFP-PACT-CYLDD932 after inhibition of the NF-kB signalling by expression or not of the Super-repressor

IkBa. It is worth noting that after w2-test statistically significant differences can be observed irrespective of the PACT-CYLD fusion construct after

NF-kB inhibition.
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proteins as well as some centriolar satellite proteins are still
present in our mutants, suggesting that the anchoring defect is
not a result of basal body structural defects. However, we cannot
rule out that ubiquitination/deubiquitination processes might
affect centriole appendages and centriolar satellite functions59,60.

Interestingly, a target of CYLD, Dvl15, has been shown in
Xenopus multiciliated cells to be essential for the positioning of
the apical basal bodies and for the activation of the Rho
GTPase61. In addition, the RhoGEF LARG, co-immuno-
precipitates with CYLD62. Therefore, we propose that CYLD
would allow basal body migration by deubiquitinating, a substrate
working with Dvl, and LARG to activate RhoA GTPase and
subsequently remodel actin. The recent report that
phosphorylated CYLD redistributes to the dorsal ruffles63

supports this hypothesis of a link between CYLD and the actin
network.

In conclusion, our work identifies CYLD as a new regulator of
ciliogenesis. Two recent studies64,65 have recently reported that
impaired ciliogenesis impacts skin homeostasis and affects the
pilosebaceous unit from which cylindroma are believed to
originate. This convinced us that future studies designed to
precisely characterize the molecular pathways regulated by CYLD
during ciliogenesis might provide novel insights into how CYLD
deregulation results in cylindroma in the cylindromatosis
pathology.

Methods
Mice. All animals were housed in specific pathogen-free conditions at Institut
Curie according to French and European Union laws. All animal procedures were

conducted in accordance with European, national and institutional guidelines and
protocols, and were approved by local government authorities (Authorization for
animal testing N�91-518, Direction départementale des services vétérinaires de
l’Essonne).

CyldD932 and CyldKO mice were generated in a c57/Bl6J background as
described previously23,30. Male and female embryos were used. As no differences
between CyldD932 heterozygous mice or embryos and their WT littermates were
observed throughout the study, we pooled the results of both genotypes under the
classification of WT. The embryonic stage was estimated on the basis of gestational
time, with day 0.5 being defined as the morning when a vaginal plug was detected.
Adult mice and embryos were genotyped by PCR.

Cell culture. Human retinal pigment epithelial (RPE1) cells were obtained from
ATCC and grown in DMEM/F12 medium supplemented with 10% FCS. Human
lymphoblastic KE37 cells obtained from M. Bornens’s laboratory were grown in
RPMI medium supplemented with 10% FCS. MEFs were obtained after trypsini-
zation of dissected embryos at embryonic day 13.5 (E13.5) and grown in DMEM
medium supplemented with 10% FCS and non-essential amino acids. Ependymal
cell cultures were maintained as described previously21,66. Human embryonic
kidney cells (HEK293T) from ThermoScientific were transiently transfected with
plasmid DNA using the calcium phosphate precipitation method. RPE1 cells were
transiently transfected with plasmid DNA using X-tremeGENE HP (Roche) or
Nucleofection (Amaxa) and fixed 24–48 h after transfection.

Cellular fractionation. Centrosomes were isolated from KE37 cells as described
previously67. Briefly, cells were pretreated for 1 h with Nocodazole (2� 10� 7M)
and Cytochalasin D (1 mgml� 1). Cells were washed in PBS and resuspended in 8%
sucrose in ten times diluted PBS before cell lysis in lysis buffer (1mM HEPES,
0.5mM MgCl2, 0.5%NP40, 1mM phenylmethanesulphonyl fluoride and anti-
proteases). After centrifugation at 2,500 g, the supernatant is filtered through a
nylon-mesh and readjusted to 10mM HEPES and treated with DNAse.
Concentrated centrosomes were overlaid on a discontinuous sucrose gradient
(70%, 50% and 40%) in a SW28 tube and centrifuged for 1 h 15min at 26,000 r.p.m.
Fractions were collected and analysed for centrosomes.
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One percent Triton X-100 soluble or insoluble cell fractions were isolated from
KE37 or RPE1 cells as described by Tassin et al.68

Plasmid construction. Full-length CAP350 and CYLD cDNAs were subcloned
into a GFP vector (GFP-C3 from Clontech) for expression of GFP-tagged proteins.
Different fragments of CAP350 cDNAmyc-tagged corresponding to AA 1-893,
984-2589 and 2590-3117 were previously described8. The CYLD-Flag construct
was previously described24. The DC CYLD construct was designed by introducing a
stop codon in AA 586.

The PACT domain was amplified from human AKAP450 and then subcloned
into the GFP-CYLD vectors. All constructions have been verified by sequencing.

Antibodies. Three antibodies directed against CYLD were used: a polyclonal
antibody obtained by immunizing rabbits against the N-terminal region (amino
acids 1–555) of CYLD (CYLD 089) and affinity purified (diluted 1/1,000 for WB
analysis and 1/300 for immunofluorescence (IF), a monoclonal antibody directed
against the full-length CYLD supplied by Millipore, which does not recognize
endogenous protein from RPE1 and HEK293T cells (diluted 1/500 for WB analysis)
and a monoclonal antibody supplied by Santa Cruz Biotechnology (E-10, SC-74435)
recognizing the catalytic domain of the protein (diluted 1/100 for WB analysis). All
antibodies have been characterized by the following procedure: they are recognized
by WB analysis and IF overexpressed GFP-CYLD, as well as the immunoprecipi-
tated protein. However, the polyclonal one gave a stronger signal both in IF and WB
analysis. Two antibodies directed against g-tubulin were used: a previously descri-
bed polyclonal antibody68 (1/500) and a monoclonal one (GTU88 from Sigma 1/
1,000). We also used affinity-purified rabbit polyclonal antibodies directed against
Centrin 3 (ref. 69) (1/1,000), CAP350 (ref. 8) (1/1,000), Ccdc123 (ref. 38) (1/250),
Cep 164 (ref. 37) (1/1,000), PCM1 (ref. 70) (1/1,000), OFD1 (residues 145–1,012)36

(1/100), ODF2 (residus 250–632)48 (1/1,000) and several anti-tubulin antibodies
were used, such as detyrosinated tubulin (T12)(1/1,000), polyglutamylated-tubulin
(GT335) (1/50,000) and monoglycylated tubulin (TAP) (1/50,000) as described in
Janke and Bulinski22. Antibodies against acetylated tubulin (clone 6-11 B 1) (1/
1,000) and tubulin (clone B5-1-2) were purchased from Sigma and rabbit anti-Ki67
(1/500) (Novocastra Laboratories). DAPI (40 ,6-diamidino-2-phenylindole, Sigma)
was used for DNA labelling. In all experiments using Flag antibodies, we used the
anti-flag M2 from Sigma (F1804)(1/1,000). Only the WB analysis of the DN CYLD
was revealed by Rabbit anti-Flag antibodies (F7425) (1/500).

Western blotting. Protein extracts were run on a PAGE gel of various acrylamide/
bisacrilamyde percentages. Gels were transferred on nitrocellulose membranes with
a semi-dry transfer device (Bio-Rad). Membranes were then blotted with various
antibodies then revealed by electrochemiluminescence on autoradiographs. Non-
cropped scans of the autoradiograps of the main WB analysis are presented in
Supplementary Fig. 6.

IF microscopy and data processing. Cells were either fixed with methanol for
6min at � 20 �C and permeabilized for 30 s in PHEM buffer containing 0.25%
Triton X-100 before methanol fixation or fixed with 4% paraformaldehyde for
15min before permeabilization with 1% Triton X-100 and processed for IF as
described previously68.

After immunostaining, three-dimensional microscopy was performed using an
upright motorized microscope (DM RXA2, Leica Microsystems, Mannheim,
Germany) equipped with an oil immersion � 40, � 63, � 100/numerical aperture
1.4 Plan-Apochromat objective lens and a cooled interline charge-coupled device
detector (Photometrics Coolsnap HQ). Z-positioning was accomplished using a
piezoelectric driver (LVPZT, Physik Instruments, Waldbronn, Germany) mounted
underneath the objective lens. The whole system operated using Metamorph
software (Universal Imaging Corp., Downingtown, PA). Z-stacks were generated
from optical sections taken at 0.2-mm intervals. Z-stacks were deconvoluted using
Metamorph software with the appropriate point spread function (PSF) and
Meinel algorithm.

In Fig. 8c, pictures were taken with a wide-field fluorescence microscope (Zeiss
Axiovert 200M equipped with an Hamammatsu C4742 camera). For each picture
in the GFP channel, all parameters were kept identical (exposure time, binning,
camera gain, Offset and so on). Average pixel fluorescence intensity of GFP at the
centrosome was then measured within a defined and constant circular area of the
size of a centriole, using the measurement tools of Image J. Quantification data
were compiled from measurements of 80 cells from each of the 3 constructs. Raw
measurements for each 80 cells are plotted along the y axis in the graph to make
comparison easier.

Immunoprecipitation experiments. Proteins from RPE1, HEK293T or MEF cells
were extracted with 1D buffer15,68. After a centrifugation to eliminate trace
aggregates, primary antibodies preadsorbed to protein G-sepharose beads
(Pharmacia) were added to the sample and the mixture incubated for 2 h at 4 �C.
Protein G-sepharose beads were then sedimented. The sedimented protein
G-sepharose beads were washed (five times) with buffer and supernatants were

precipitated with cold methanol. Proteins were then processed for SDS–PAGE
electrophoresis and WB analysis.

For mass spectrometry analysis, the protein spots were excised from the gel
after coloration with colloidal Coomassie blue (G250; Bio-Rad), reduced using
dithiothreitol and alkylated using iodoacetamide. The proteins were subjected to
digestion with trypsin (Sigma). The extracted peptides were analysed by matrix-
assisted laser desorption-ionization–time of flight mass spectrometry (Voyager-
DETM PRO, Applied Biosystems). Peptide masses obtained by this analysis were
used to search the National Center for Biotechnology Information database to
identify the full-length proteins.

Scanning electron microscopy. Tracheas were dissected from embryos at
embryonic day 18.5 (E18.5), fixed overnight in 2.5% glutaraldehyde/2% paraf-
ormaldehyde in 0.1M sodium cacodylate buffer pH 7.2 and post-fixed with 2%
osmium tetroxide (Electron Microscopy Sciences). Samples were dehydrated in a
graded ethanol series and dried with hexamethyldisilazane (HMDS) or the CO2

critical point dryer Leica CPD-030. Specimens were coated with 10 nm gold/pal-
ladium in a Gatan Ion Beam Coater 681 and observed in a field emission scanning
electron microscope JSM-6700f (JEOL, Japan). Image processing and analyses were
performed with ImageJ software.

Transmission electron microscopy. Tracheas were dissected from embryos at
E18.5, fixed overnight in 2.5% glutaraldehyde/2% paraformaldehyde in 0.1M
sodium cacodylate buffer pH 7.2 and post-fixed with 2% osmium tetroxide.
Samples were dehydrated in a graded ethanol series and embedded in Epon
(Electron Microscopy Science). Longitudinal 200-nm-thick sections were prepared
with an ultramicrotome (Leica) and mounted on copper grids (200mesh). The
samples were observed in a 200-kV field emission gun electron microscope with an
in-column energy filter (omega filter) JEM 2200 FS (JEOL, Japan).

Cilia counting and statistics. As ciliated cells in the trachea differentiate prox-
imo-distally, we counted the cells in a series of jointed pictures taken from the
larynx to the main bronchi to avoid any bias based on differentiation time. For a
better visualization, results were normalized. This was achieved by taking the
number of ciliated cells of WT embryos as 100%. In MEF cell cultures, primary
cilia formation is not always homogeneous. Therefore, we took the pictures for
counting in a randomized manner, observing the centrosome. The same field was
then examined for the presence of cilia.

Most of the experiments needing statistical validation involved paired
observations on two variables for which we wanted to assess the independence of
two populations. In those cases, the events being considered were mutually
exclusive and the total probability was one. All observations were independent.
Therefore, we used Fisher’s exact test or, when the sample sizes were large enough
to avoid a type II error following Cochran’s rules, we performed Pearson’s w2-test
without Yates’ correction. All calculations were made with GraphPad Prism 5.
Statistical significance in the fluorescence intensity experiment (Fig. 8) was assessed
via a Mann–Whitney test. The P-value is ranked based on the exact value given by
the software. All error bars show s.d.

In one experiment, it was not possible to run any statistical test because of the
nature of the data. To count ciliated cells in the tracheas of embryos, we had to
compare individuals within the same litter to avoid bias arising from possible
developmental differences between two litters. Consequently, there were too few
embryos in each litter to perform statistical testing.

FACS analysis. Cell cycle profiles of cycling as well as serum-starved WT or
CyldD932 MEFs were determined by analysing total DNA content using propidium
iodide staining (1 h incubation of ethanol-fixed cells in PBS containing 20 mgml� 1

propidium iodide, 100 mgml� 1 RNase A, and 0.1% Triton X-100). Cells were
subjected to flow cytometry by using a FACSCalibur analyser (BD Biosciences) and
the results were analysed with FlowJo.

NF-jB inhibition by IjBa-SR. RPE1 cells were transfected by GFP-PACT-
CYLDWT, GFP-PACT-CYLDH/N or GFP-PACT-CYLDD932 plasmids in the pre-
sence of an Ig-kB-Luc reporter plasmid with or without a plasmid expressing a
non-degradable form of IkBa (IkBa-SR)41. Cells were serum starved 24 h after
transfection to induce cilia formation and fixed 48 h after serum depletion for cilia
analysis. To measure the effect of IkBa-SR, cells were stimulated with 10 ngml� 1

of TNF-a just before removing the serum (24 h after transfection) or 3 h before
completing the experiment. Cell extracts were prepared and Ig-kB-Luciferase-
derived activity measured using a LB 9507 Berthold Luminometer.
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