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Abstract

In Reinforcement Learning (RL), regret guarantees scaling with the square root of the
time horizon have been shown to hold only for communicating Markov decision processes
(MDPs) where any two states are connected. This essentially means that an algorithm can
eventually recover from any mistake. However, real-world tasks usually include situations
where taking a single “bad” action can permanently trap a learner in a suboptimal region of
the state-space. Since it is provably impossible to achieve sub-linear regret in general multi-
chain MDPs, we assume a weak mechanism that allows the learner to request additional
information. Our main contribution is to address: (i) how much external information is
needed, (ii) how and when to use it, and (iii) how much regret is incurred. We design
an algorithm that minimizes requests for external information in the form of rollouts of a
policy specified by the learner by actively requesting it only when needed. The algorithm
provably achieves O(

√
T ) active regret after T steps in a large class of multi-chain MDPs, by

only requesting O(log(T )) rollout transitions. The superiority of our algorithm to standard
algorithms such as R-Max and UCRL is demonstrated in experiments on some illustrative
grid-world examples.

Keywords: Reinforcement learning, Regret analysis, Multi-chain, MDP, Recoverability.
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Figure 1: Example of (a) a communicating MDP, (b) a unichain MDP with a single recur-
rent class, and (c) a multi-chain MDP with two recurrent classes. The circles
represent states while the labeled edges represent transitions due to executing
actions {a, b, c}.

1. Introduction

In Reinforcement Learning (RL), an agent interacts with an environment by sequentially
playing an action and then receiving an observation and a reward for that action. The
goal of the agent is to maximize its accumulated reward, and the most popular model for
representing RL problems is the Markov decision process (MDP) model.

In this paper, we consider an agent that interacts with a multi-chain MDP, in a single
stream of observations-actions-rewards, with no reset. In a multi-chain MDP, there does
not always exist a state-action path with positive probability between any two states. This
is in stark contrast with the more common and restrictive assumption that the MDP is
communicating (that is, between any two states, there always exist a finite path of positive
probability that connects the two states). For illustration, we depict in Figure 1 an example
of a communicating MDP, an example of a unichain MDP with one recurrent class, and an
example of a multi-chain MDP with two recurrent classes. Note that without a special reset
action that takes the learner back to an initial state, the learning problem is difficult. In
fact, it is provably impossible to achieve sub-linear regret performance by only interacting
with the environment and without prior information. This can be shown easily by looking
at a so-called Heaven-or-Hell MDP depicted in Figure 2. In such an MDP, one action leads
to an absorbing state giving reward 0 (Hell), and another action leads to an absorbing state
giving reward 1 (Heaven). Without knowing which action leads to hell and which to heaven,
an algorithm must incur linear regret in such MDPs (in a minimax sense). Thus, the only
way to hope for sub-linear regret is to access an external source of information (in the sense
that it does not result from an interaction between the learner and the MDP). We discuss
later in the second next paragraph what type of external information does not trivialize the
problem.

Motivation In this paper, we want to provide an answer to the open theoretical question:
How to achieve near-optimal learning guarantees in this setting? Since learning without
external information is not possible, the answer mainly deals with the external information
used by the learner. That is, our contribution is three-fold, addressing:

(i) how much external information is needed,

(ii) how and when to use it, and
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Figure 2: The Heaven-or-Hell MDP. The agent’s choice from the initial state either sends it
to the Heaven state where it receives a reward of +1 forever, or to the Hell state
where it receives a reward of 0 forever. Once the agent is in either the Heaven or
Hell state it cannot return to the initial state.

(iii) how much (active) regret is incurred.

More precisely, we introduce a setting where the learner is allowed to —instead of taking
an action in the current state st— ask for a rollout (starting in st) of a policy under
a stopping condition both to be specified by the learner. For this setting we propose A-
ROGUE (for Active RollOut-GUided Exploration), a learning algorithm that, using only
O(log(T )) rollout transitions, achieves a O(

√
T ) regret bound in multi-chain MDPs under

some modest technical assumptions, see Theorem 7 in Section 4. This regret is optimal
in T , as it matches the known lower bounds for communicating MDPs (see Jaksch et al.,
2010). The performance of the algorithm is supported by illustrative numerical experiments
in Section 6.

Other types of external information In practice, one may sometimes have access to
additional elements that help, or even trivialize the multi-chain MDP problem, such as a
simulator, a harness, an expert, or a teacher. For instance, under the assumption that one
has access to a harness designed by an expert that prevents a learner from accessing certain
regions of the state space, then the initial multi-chain MDP can simply be reduced to a
communicating MDP. Likewise, if one has a “rescue/repair” action that sets the learner back
to an initial state, at the price of a large negative reward, then the initial MDP can again
be reduced to an equivalent communicating MDP. Third, under the assumption that an
inexpensive and accurate simulator is available, there is no need for learning in the real-world
and the problem reduces to a planning problem. Thus, the multi-chain MDP formulation
becomes potentially interesting when no harness, rescue/repair action is available, and when
the only available simulators are either expensive or inaccurate. Finally, assuming that a
good teacher is available, who provides examples of actions/policies to follow at various
steps may also trivialize the problem. However, a good teacher has to know both the
environment and what the learner has learned about the environment, and must monitor
the learner to provide the right advice at the right moment. Note also that a teacher must
be accurate. Such an assumption is however rarely met in practice, and designing a good
teacher is difficult. Instead of assuming a teacher that constantly monitors the learner, we
are interested in an active learner who can detect when it requires external information
and can specify which kind of information she wants to get feedback on. Thus, we propose
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a setting where the learner can actively ask for rollouts of a policy with a stopping time
criterion that are both designed by the learner.

Setting We target the challenging goal of learning in a single stream of state-action-
rewards with no reset in a possibly non-recoverable multi-chain MDP, in the strong sense
of regret minimization by combining standard MDP algorithms with active information
retrieval : The learner can decide at any time not to act in the MDP but instead to propose
a policy and a stopping condition and ask for a rollout of the policy until the stopping
condition is met. To keep it simple, each rollout transition counts the same as a time
step in which the learner executes an action and gives no reward. We capture this with
the convenient notion of active regret that combines both the regret and the amount of
rollout transition asked; see Section 2 for details. However, since our proof actually bounds
the standard regret term and the extra information term separately, it is straightforward
to adapt our approach to handle the case when different costs for rollout transitions and
time-steps are used.

Previous work Previous work has mostly considered two types of performance guaran-
tees: (1) regret and (2) sample complexity. Regret measures the difference between the
sum of rewards received by the learning algorithm and the sum of rewards received by the
optimal policy over a finite or infinite time horizon (Jaksch et al., 2010). Sample complexity
measures the number of time steps the learning algorithm acts suboptimally from its cur-
rent state (Kakade, 2003). Mostly, it is assumed that the underlying MDP has no transient
region (Jaksch et al., 2010; Maillard et al., 2013) or exactly one recurrent class (Bartlett
and Tewari, 2009), meaning that their guarantees do not hold in general multi-chain MDPs
(such as the one given in Figure 2). Sometimes alternative guarantees are given that have
the unintuitive property that if the learner is trapped in a region with low rewards, it can
still learn to act “optimally” with respect to that region of the state-space.

With the goal of preventing the learner to take irreversible actions, various notions of
“safety”have been discussed in the literature. Thus, Moldovan and Abbeel (2012) constrain
the class of policies to satisfy a safety constraint. Although they provide some theoretical
support for the resulting algorithm, they do not compare to the optimal policy (which may
be considered as unsafe), and assume a prior that essentially tells where it is unsafe to
go. Also, their formulation of the safety constraint makes the learning problem NP-hard,
contrary to our approach. Further, note that in contrast to notions of safety (Moldovan
and Abbeel, 2012; Garćıa and Fernández, 2012), executing an irreversible action should
not necessarily be avoided if it is the optimal thing to do. Indeed, if the region contains
an optimal cycle the algorithm should enter it (but it first needs to be confident since the
action is irreversible). Our approach is reminiscent of the earlier work of Clouse (1997),
Hailu and Sommer (1998), Hans et al. (2008) and more recently of Geramifard et al. (2011)
and Garćıa and Fernández (2012), in which the agent explicitly asks for advice when it
encounters specific situations. There, advice is generally an action proposed by a teacher,
assumed to be good, or (in some sense) safe. Chernova and Veloso (2009) further propose
to ask for a demonstration (rollout) from a teacher, who also chooses which policy to
demonstrate. Unlike this, in our setting the learner proposes policies by herself.

In the planning community, some recent related work has shown how to plan efficiently
in goal-oriented MDPs with traps, see (Teichteil-Königsbuch et al., 2011; Kolobov et al.,
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2012). However, none of these approaches provides any theoretical analysis but only gives
experimental results. A notable exception, though in the different universal knowledge
seeking framework, is (Orseau et al., 2013), which provides a Bayesian algorithm that,
given a set of models of the environment, tries to identify the right one by acting so as to
maximize the information gain at each step.

The intuitive difficulty of dealing with many recurrent classes Regarding the
amount of extra information asked by the learner (rollout transitions), our findings show
that detecting whether an action is irreversible (enters a recurrent class) is generally not
too costly, while deciding whether to execute a irreversible action is much more expensive.
The reason is that since an optimal cycle may consist only of a single state, in the worst
case every state-action pair inside a recurrent region reachable from the current state must
be visited sufficiently often to decide whether to enter this class. Also, rollouts must be
sufficiently long to reach any state in the class, which means that dealing with large traps
(recurrent regions with large diameter) is intrinsically hard. Fortunately, in most applica-
tions, recurrent classes correspond to “traps” that —almost by definition— only consist of
a few states. They typically model a physical component failure, where no (sensible) action
can be performed from that point.

Contribution and outline We consider finite (multi-chain) MDPs where some actions
have (potentially) irreversible consequences that may cause high regret in the long-run. In
Section 2, we introduce the convenient notion of active regret as well as two new quantities
that capture the difficulty of learning optimal behavior in an MDP (as indicated in the
previous paragraph): the local diameter d? of an MDP intuitively measuring the “size” of a
recurrent class and the sharpness of action-gaps γ? that quantifies how bad an irreversible
action can be. In Section 3, we introduce the A-ROGUE algorithm, that can handle
multi-chain MDPs with possibly irreversible actions, by precisely deciding when and for
which policy to ask for a rollout. A-ROGUE can be seen as a natural generalization of
UCRL to the case of multi-chain MDPs, and indeed coincides with UCRL when one of
its parameters (diameter guess) is set to ∞. Our main result Theorem 7 in Section 4 shows

that A-ROGUE enjoys strong finite-time regret guarantees scaling as Õ
((√

d?

γ? +d?
)√
T
)

,

by only resorting to O( 1
γ?5

log(T )) rollout transitions. Section 5 provides a detailed analysis
of the regret performance, including some innovations of independent interest. Thus, we
demonstrate how to estimate the return time to some state and give respective upper and
lower bounds. Further, we obtain a bound on the number of rollouts needed to cover a
subset of states from a given reference state. In the final Section 6, we present the results
of some experiments in illustrative gridworlds. They show that popular algorithms driven
by the “optimism in the face of uncertainty” principle such as UCRL and R-Max, and
which enjoy strong performance guarantees in MDPs with strong recurrence properties, are
clearly outperformed by A-ROGUE.

Contents

1 Introduction 2

2 Setup and Notations 6
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2. Setup and Notations

Setting Let Γ(X ) denote the set of all probability distributions over a non-empty set
X . We consider an undiscounted Markov decision processes (MDP) M = 〈S,A, p, ν〉 with
horizon T , finite state space S of size S, finite action space A of size A, transition kernel
p : S × A → Γ(S) that maps each state-action pair to a distribution over next states,
and reward function ν : S × A → Γ([0, 1]) that maps each state-action pair (s, a) to a
real-value distribution over [0, 1] with mean µ(s, a). If the state and action spaces are clear
from context and we are only interested in the mean rewards µ(s, a), we often write MDPs
abbreviated as M = (µ, p).

In any state s of the MDP, a learner is allowed to either

1. execute some action a, then receive a reward r(s, a) ∼ ν(s, a) and move to a next
state according to p(·|s, a), or

2. ask for a rollout from the current state s for a policy π and a stopping criterion (both
provided by the learner herself), until the stopping criterion is met.

All states visited and rewards generated during the rollout execution are reported to the
learner, but the learner receives no rewards. After the rollout the learner is in the same
state as before it, however each time-step in the rollout counts like a time-step in which an
action is executed, cf. the definition of active regret below.

2.1 Regret Definition

We measure the regret of an algorithm A starting in state s1 and interacting during T =
T1 + T2 time steps with the MDP, where T1 is the total number of actions executed in
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the MDP and T2 is the total number of transitions of all requested rollouts. The regret is
defined as the difference between the rewards accumulated by an optimal T -step policy π∗

run from s1 during T time steps and the rewards accumulated by the algorithm A from
s1 (during the T1 steps that A executed an action in the MDP). That is, we define the
(expected) active regret by E

[
RT

]
, where

RT =

T∑
t=1

r(s?t , a
?
t )−

T∑
t=1

r(st, at) (1)

with r(s, a) ∼ ν(s, a), and where (s?t , a
?
t ) is the state-action pair visited at time step t when

following π?, and at is the action executed by the algorithm A in the state st visited by A at
time step t. Note that counting the rollout transitions against the horizon is equivalent to
putting an implicit cost on each rollout transition (the reward that an optimal policy would
receive at the same time). Note also that the (expected) active regret is never smaller than
the (expected) “traditional” regret (Jaksch et al., 2010).

Note that access to rollouts does not eliminate the exploration-exploitation dilemma.
Time increases independent of whether the learner is acting in the MDP or rather observing
one step in a simulated rollout. Since the algorithm only receives reward when it is acting
in the MDP, it must balance the number of time steps spent on observing rollouts with
acting in the environment to obtain maximize rewards. As already mentioned, for the
sake of simplicity we use the simplifying assumption that observing a rollout transition
has the same cost as executing an action, while extensions to different cost functions are
straightforward.

2.2 Measures of Complexity

For any two states s, s′ ∈ S and a policy π, let T Mπ (s, s′) be the (possibly infinite) ex-
pected number of steps needed to reach s′ starting from state s when following policy π in
the MDP M . Further, let T M (s, s′) = minπ T Mπ (s, s′) be the minimal transition time
between s and s′. Classically, the (global) diameter of an MDP M is defined to be
DM = maxs,s′ T M (s, s′) (Jaksch et al., 2010), however in multi-chain MDPs, this quan-
tity may be infinite. For a subset S ⊂ S, we also define DM

S = maxs,s′∈S T M (s, s′).

Another standard notion is the action gap (Farahmand, 2011). For horizon T , let
QMT−t(s, a) be the optimal action-value of the state-action pair (s, a) at time t for the MDPM
(thus following an optimal policy), see Szepesvári (2010). The action gap of (s, a) then is
defined as

∆M
T−t(s, a) = max

a′∈A
QMT−t(s, a

′)−QMT−t(s, a) .

Note that ∆M
T−t(s, a) > d implies that it is not possible to reach s from a successor state

of (s, a) in d steps on average (since otherwise the difference of value would be less than d),
that is T M (s′, s) > d. Similarly, a (global) diameter DM 6 d as assumed in (Jaksch et al.,
2010; Brafman and Tennenholtz, 2003) implies that for all states and time steps every action
is d-optimal, that is, ∆M

T−t(s, a) 6 d.
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Figure 3: Coverings of a 4 × 4-gridworld MDP: (a) a non-maximal set of maximally large
regions with diameter not larger than 2; (b) the unique 2-covering of the MDP;
(c) the unique 4-covering of the MDP, with partition {S?

1} where S?
1 = S.

Local diameter We now introduce the new notion of local diameter. First, the d-covering
of an MDP M is a maximal set {Si ⊂ S|DM

Si
6 d} of maximally large state regions {Si}i6I

with Si ⊂ S that all satisfy DM
Si
6 d. That is, each Si cannot be extended without

increasing its diameter beyond d. We provide in Figure 3 an illustration of three coverings
of a 4×4-gridworld MDP: The first covering corresponds to a partition with sets of diameter
not larger than 2, but it is not a 2-covering, since it is a non-maximal set of maximally large
regions with diameter not larger than 2. The second and third coverings are the unique 2-
covering and 4-covering of the MDP. The former one happens to be also a (trivial) partition
of the state space. Note that if there is an overlap between Si and Si′ , then DM

Si∪Si′
6 2d.

In general, the Si of a d-covering will be multiply overlapping. Only in particular cases a
d-covering will be a partition (non-overlapping covering) of the state space.

Definition 1 The local diameter d? is the smallest d such that its d-covering is a partition
of the state space. We denote the corresponding partition by {S?

i }i6I .

For two sets S?
1,S

?
2 of this partition, and states s1 ∈ S?

1, s2 ∈ S?
2, we cannot have

simultaneously T (s1, s2) 6 d? and T (s2, s1) 6 d?, since otherwise it would be possible to
create a new set S?

I+1 with diameter less than d? that overlaps the existing partition, which
is not allowed by definition of d?. Likewise, it is obvious that {S?

i }i6I is unique. In the
sequel, we will informally use the word “trap” to refer to regions S?

i from which it is difficult
to escape, that is, such that mins′ /∈S?

i
mins∈S?

i
T (s, s′) is “large”.

Example 1 Consider the gridworld MDPs depicted in Figure 4, and assume for simplicity
that all transitions are deterministic. For the MDP (a), one can easily observe that the
local diameter d? = 6 with two regions (the trap, and the other states). For the MDP (b),
we have d? = 5 with three regions, and for (c), d? = 6 with six regions.
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Figure 4: Some gridworld environments. The letter I denotes the agent’s initial state, T
an absorbing trap, and G a goal state. Arrows leaving a goal state indicate that
it is not absorbing. Arrows entering a goal state indicate that it is absorbing.

Sharpness of action-gaps In terms of rewards, inside a region S?
i , the action gaps

cannot be too big: If s ∈ S?
i and a ∈ A are such that all possible successor states (i.e.,

supp(p(·|s, a))) are contained in S?
i , then for all t, we must have ∆M

T−t(s, a) 6 d?. Thus,
only if a leads to a different region S?

i′ , the action gap can be bigger than d?. We capture
the size of the action gap at such frontiers by the following definition.

Definition 2 An MDP M with local diameter d? is said to have γ?-sharp action-gaps if
γ? is the largest γ such that for all (s, a) ∈ S × A, either ∆M

T−t(s, a) 6 d? or ∆M
T−t(s, a) >

γ(T − t) for all t 6 T . In the latter case, we say action a is irreversible at state s.

Recalling that inside a region Si one can reach any state from any other state in no more
then d? steps on average, this definition immediately implies the following observation.

Observation 1 If s ∈ S?
i and (s, a) leads to S?

i′ with ∆M
T−t(s, a) > γ?(T − t), then the

average number of steps needed to go from S?
i′ to S?

i cannot be less than γ?(T − t)− 2d?.

Thus, in an MDP with large γ? recovering from an action that enters a new region takes
more time (actions are less “recoverable”). One needs to be more cautious, but at the same
time such actions are easier to detect. In an MDP with small γ?, recovering from an action
that enters a new region takes less time. One need not be that cautious, but detecting such
actions is more difficult.

To give further intuition about γ?, we now consider a simple illustrative example that
shows how it can be bounded.

Example 2 Consider an MDP with three disjoint regions A,B,C each with diameter d?.
Starting in A, one can only reach C from a state-action pair (s1, a1) with deterministic
transition, and B from (s2, a2) with a transition that goes back to s2 with probability 1− p,
and such that s2 is d? expected steps from s1. There are no other transitions between A,B
and C. The learner always receives reward 0.5 in region A, 0.1 in B, and 0.9 in C. To
compute γ?, we look at ∆M

T−t(s2, a2). We have V ?(s2) = 0.5d? + 0.9(T − t + 1 − d?),
and Q(s2, a2) 6 p(T − t)0.1 + (1 − p)(0.5d? + 0.9(T − t − d?)), that is, ∆M

T−t(s2, a2) >
0.8p(T − t) − p(0.4d? − 0.9). Now, if T − t > d?, then ∆M

T−t(s2, a2) > 0.4p(T − t), and

9
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Figure 5: The MDP considered in Example 2.

otherwise ∆M
T−t(s2, a2) 6 d?. Thus we deduce that γ? > 0.4p. In this example, the larger p,

the less recoverable is action a2 and we thus need to be confident when executing it. More
generally, the larger γ, the less recoverable are actions and the more confident the learner
needs to be.

Mobility assumption In the sequel, we only consider MDPs with local diameter d? and
γ?-sharp action-gaps with non-trivial γ? > 0. This ensures that irreversible actions can be
detected and thus that an algorithm can decide to execute it nor not. To further focus on
interesting cases, we make the following “mobility” assumption:

Assumption 1 There is a p0 > 0 such that for all i, i′ with p(S?
i |S?

i′ ,A) > 0 there is a
(s, a) ∈ S?

i′ ×A such that p(S?
i |s, a) > p0 and p(S?

i ∪S?
i′ |s, a) = 1 .

That is, whenever it is possible to reach a region from another one, it is also possible to
enter it easily (first condition) and without risking entering another region (second condi-
tion). This implies that there is always at least one action that does not lead to two regions
at the same time. To give more intuition, an MDP that does not satisfy Assumption 1
contains a region such that any action leading to this region from another region also leads
to a third one with positive probability. In such a situation, it is easy to design rewards such
that no optimal policy can guarantee avoiding a “bad” region, see e.g. Figure 6. Thus As-
sumption 1 allows us to focus on cases where an optimal policy can achieve high cumulative
reward. Note that this holds in most cases of practical interest, where “bad” regions are
“well-separated” from “good” regions. We believe that Assumption 1 might be weakened
further, for instance by assuming that the restriction only applies to regions S?

i visited by
an optimal policy. However, since the analysis under such a weakened assumption would
become more tedious, we did not investigate this direction in detail.

3. The A-ROGUE Algorithm

We now present the A-ROGUE algorithm (for Active RollOut-GUided Exploration) to
handle the setting introduced in Section 2. We start with a high-level description as given
in Algorithm 1, the full algorithm with all the technical details can be found below as
Algorithm 2.
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Figure 6: An example of MDP that does not satisfy Assumption 1. Here, when in region
B or D, the optimal policy will try to reach region A, which risks entering the
bad regions C and E with high probability.

A-ROGUE is an extension of UCRL (Jaksch et al., 2010) designed to handle irre-
versible actions. As UCRL, A-ROGUE computes an optimistic policy, but before being
executed, each optimistic action is first tested. If necessary, A-ROGUE asks for external
information in an active way via rollouts. A-ROGUE tries to minimize the number of
rollouts used and is thus rollout efficient.

3.1 High-level Description of A-ROGUE

Episodes, plausible MDPs, and optimistic policy Similar to UCRL, A-ROGUE
proceeds in episodes1 k = 1, . . . ,K of increasing length. At the start of each episode, a set
of plausible MDPsMk is determined (using confidence intervals for rewards and transition
probabilities, respectively), cf. line 4. The setMk is updated only when confidence intervals
have changed a lot. In this case a new episode begins (line 6). Given the set Mk, an
optimistic policy π+

k that maximizes the reward over all plausible MDPs in Mk and all
policies is computed (line 5).

Checking for irreversibility Unlike UCRL, A-ROGUE does not naively play the
actions suggested by the optimistic policy. Instead, at each time step it is first tested
whether the optimistic action recommended by π+

k is potentially irreversible. Thus, A-
ROGUE estimates the time needed to recover from this action (line 9), that is, to come
back to the current state on a shortest trajectory after executing the action. The respective
backup policy computed uses a pessimistic estimate in order to make sure that we can indeed
come back to the reference state. An optimistic policy would obviously underestimate the
real time to reach the reference state and may not be able to avoid traps. If the estimate
of the recovery time is small enough (line 10), A-ROGUE plays the optimistic action, as
there is a reliable way to get back to the reference state.

1. Note that the word “episode” her comes from Jaksch et al. (2010) and only refers to internal stages
of the algorithm. It has nothing to do with episodic learning, and does not involve any reset to an
initial state. As already stated, our algorithm interacts with the environment in a single stream of
state-action-rewards with no reset.

11
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Testing for optimality If the estimate of the recovery time is large, the optimistic
action is considered irreversible, and A-ROGUE evaluates whether the action is optimal
(lines 12f). If A-ROGUE decides that the action is optimal (considering the optimality
gap of the optimistic action), it is executed. In this case also the reference state is updated.
Indeed, in the analysis it turns out to be important that the reference state is only updated
after playing a near-optimal action with large return time. Indeed, updating the reference
state at each time step to be the current state and thus computing a return path to the
last visited state at each time step is not safe: Say each return path is guaranteed to be at
most c-steps long, after executing m actions, one could only ensure a return path of at most
cm-steps, that is linear in the number of executed steps. This is not enough to ensure sub-
linear regret guarantee in a worst case scenario. In contrast, updating the reference state
and computing a return path to the last visited state reached after playing a near-optimal
action with large return time enables to get a controlled regret.

Asking for rollouts Otherwise, if the optimistic action could not be identified as optimal,
the algorithm needs more information and asks for a rollout (line 16). The policy that the
algorithm asks the rollout for is not always the same. Alternatingly, the rollout is either
asked for the optimistic policy π+

k (which helps to decide whether the algorithm shall enter a
transient region), or for the policy that plays the optimistic action suggested by π+

k followed
by the pessimistic backup policy (which helps improving the estimate of the return time to
the reference state). The length of the rollout is of the order of the local diameter. However,
the rollout is also stopped when the reference state is reached (indicating that the return
time needs to be updated), or when the episode termination criterion is met, that is, when
confidence intervals have changed a lot.

Remark 3 The choice of UCRL as base algorithm that is modified to work for multi-chain
MDPs is to a certain extent arbitrary. We think that the presented methods could be adapted
to work with different algorithms such as R-Max as well. However, for UCRL we have
access to regret analysis that results in bounds nearly matching the known lower bounds.
Thus, UCRL is a natural choice.

3.2 Details of A-ROGUE

After giving the high-level description, we are now ready to give the full technical details
of A-ROGUE, cf. Algorithm 2.

Parameters Beside the horizon T and a confidence parameter δ, the algorithm uses a
parameter ε > 0 and a function d : N→ R in order to control the length of rollouts. That
is, the length of a rollout is bounded by (1 + 1

ε )Dk, where Dk = d(tk) is an estimate for an
upper bound on the local diameter of the MDP. Obviously, ε needs to be sufficiently small
to guarantee that rollouts are long enough to provide the necessary information, but not
too small to avoid incurring large regret for the steps of the rollout.

The parameter γ controls how conservative the algorithm behaves. Thus, for γ =
0, A-ROGUE won’t execute any irreversible action with high-probability. This can be
interesting if we know that all irreversible actions are bad. As γ gets larger, A-ROGUE
behaves more and more like UCRL.

12
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Algorithm 1 A high-level description of A-ROGUE

1: Set current time step t := 1.
2: for episodes k = 1, 2, . . . do
3: Let the reference backup state sk be the current state st.
4: Define set of plausible MDPs Mk based on past observations.
5: Compute optimistic policy π+

k that maximizes the reward over all MDPs in Mk.
6:

7: while confidence intervals haven’t changed too much do
8: Compute a pessimistic backup policy π	k

−
that tries to reach the reference state sk

after playing the optimistic action a+
t = π+

k (st).
9: Compute the expected pessimistic recovery time to reach sk.

10: if the expected time to reach sk after playing a+
t is small enough then

11: Phase I: Execute a+
t , get reward rt and next state st+1. Set t := t+ 1.

12: else
13: if the estimated optimality gap of a+

t is small enough then
14: Phase II: Execute a+

t , get reward rt and next state st+1.
15: Update the reference state sk = st+1. Set t := t+ 1.
16: else
17: Phase III: Depending on the last rollout, ask either for a rollout of the opti-

mistic policy π+
k (if the last rollout was for the backup policy), or for a rollout

that first plays a+
t and then the backup policy π	k

−
(if the last rollout was for

the optimistic policy). Stop when the confidence intervals have changed a lot,
or sk is reached, or the rollout is too long. Set t := t+ 1 for each transition.

18: end if
19: end if
20: end while
21: end for
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Algorithm 2 The A-ROGUE algorithm

Require: Horizon T , confidence δ, lower bound γ on sharpness γ?, function d : N→ R for
guessing the diameter, parameter ε ∈ (0, 1) for control of length of rollouts, initial state
s1.

1: Set t := 1.
2: for k = 1, 2, . . . do
3: Let tk := t (starting time of episode k) and set the reference backup state sk = stk .
4: Let Mk :=Mtk(δ/T 2).

5: Compute M̂+
k = (r+

k , p
+
k ) that satisfies V

M+
k

T−tk(stk) = supM∈Mk
VM
T−tk(stk) as well as

respective value Q+
k and policy π+

k .
6: Let Stopk(t) :={∃s, a : Nt(s, a)> 2Ntk(s, a)∨1}.
7: while not Stopk(t) do

8: Compute backup MDP M	
k
−

= (r	k , p
	
k
−

) with reference state sk, horizon 2
γ (1 +

1
ε )Dk, backup values Q	k

−
and policy π	k

−
, and Dk = d(tk).

9: Compute the expected pessimistic recovery time T −t = |Q	k
−

(st, π
+
k (st))|.

10: if T −t < 2Dk then
11: Phase I: Execute a+

t = π+
k (st), get reward rt and next state st+1. Set t := t+ 1.

12: else
13: if ∆−T−t(st, a

+
t ) < γ(T − t) then

14: Phase II: Execute a+
t , get reward rt and next state st+1.

15: Update the reference backup state sk = st+1, t := t+ 1.
16: else
17: Phase III: Depending on the last rollout, ask either for a rollout of π+

k (if the
last rollout was for a backup policy π	), or for a rollout that first plays a+

t and

then the backup policy π	k
−

(if the last rollout was for an optimistic policy
π+). The rollout is stopped when either Stopk(t) happens, or sk is reached, or
its length is more than (1 + 1

ε )Dk. Set t := t+ 1 for each observed transition.
18: end if
19: end if
20: end while
21: end for
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Plausible MDPs (line 4). In episode k starting at time tk, A-ROGUE defines, us-
ing the past observations, the empirical reward function r̂tk and the empirical transition
kernel p̂tk . They are used to define the set Mk of plausible MDPs as follows:

Definition 4 The set Mt(δ) of δ-plausible MDPs at step t compatible with the empirical
reward function r̂t and empirical transition kernel p̂t is the set of all MDPs 〈S,A, p̃, ν̃〉 with
mean reward function µ̃ : S × A → [0, 1] and transition kernel p̃ : S × A → Γ(S) such that
for all (s, a) ∈ S ×A, ∣∣∣r̂t(s, a)− µ̃(s, a)

∣∣∣ 6 Cµt (s, a) :=
√

log(2SA/δ)
2Nt(s,a) , (2)∥∥∥p̂t(·|s,a)− p̃(·|s,a)

∥∥∥
1
6 Cpt (s, a):=

√
log(2S+1SA/δ)

2Nt(s,a) , (3)

where Nt(s, a) :=

t∑
i=1

I{si = s, ai = a} is the number of visits of the pair (s, a) up to time t.

2

We prove later in Section 5.1.2 that the true MDP is plausible with high probability:

Lemma 5 With probability higher than 1−2δ/T , the true model is plausible simultaneously
for all episodes k. That is, M? ∈Mtk(δ/T 2) for all k.

Remark 6 Both quantities Cµt (s, a) and Cpt (s, a) could be sharpened if some further knowl-
edge is given about the reward and transitions. Also, following Filippi et al. (2010) we
recommend to use KL-based confidence-bounds instead of (3) for practical applications.

Extended Value Iteration (line 5). The so-called optimistic MDP M̂+
k = (r+

k , p
+
k ) ∈

Mk maximizes the optimal value VM
T−tk(stk) among all plausible MDPs M and can be

computed e.g. by Extended Value Iteration, see Jaksch et al. (2010) via an augmented
MDP which we denote M+

k . Q+
k is the associated optimistic Q-function (with horizon

T − tk), and π+
k the respective optimistic policy (that is, the greedy policy w.r.t. Q+

k ). We
also use QT−t to denote the Q-value function for the true MDP M? and horizon T − t.

Estimating the return time (line 8–9). Before executing the optimistic action a+
t =

π+
k (s) in some state s, A-ROGUE tests if there is a short path back to the reference

backup state sk after playing a+
t . That is, it tests if the action is reversible. This is a

simple stochastic shortest path (SSP) problem: Defining a deterministic reward function by
r	k (s) = −1 if s 6= sk, and 0 else, consider the set of δ/T 2-plausible backup MDPs M	

k =

{M̃ = (r	k , p̃) : p̃ satisfies (3)}. Any SSP algorithm (or also Extended Value Iteration) can

be used to compute the pessimistic return policy π	k
−

to the backup state sk, together with

the pessimistic backup values Q	k
−

. Both quantities are defined similarly to Q+
k and π+

k ,
but using the set of MDPs M	

k instead of Mk. Since r	k is negative, the Q-values are also

negative, and T −t = |Q	k
−

(st, a
+
t )| represents the minimal expected return time from st

2. Further, in case it is known that each state has only L successor states, one can replace 2S with 2L in
the definition of Cp

t (s, a).
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back to sk after playing action a+
t

def
= π+

k (st), in the least favorable plausible backup MDP.

Importantly, Q	k
−

is computed with time horizon 2
γ (1 + 1

ε )Dk (as opposed to T − tk for

Q+
k ), which implies that T −t is also less than 2

γ (1 + 1
ε )Dk. Note that we do not want to run

rollouts for too long since we incur a linear regret along each rollout.

Deciding whether to act or to ask for a rollout (lines 10–13). If the estimated
return time T −t is < 2Dk,

3 where Dk is an estimate of the local diameter of the MDP,
A-ROGUE executes the optimistic action a+

t = π+
k (st). Otherwise, if T −t > 2Dk, a

+
t

is considered to be an irreversible action, since executing this action may lead to suffer a
higher regret than the worst-case regret one would suffer for playing an action in a MDP
with diameter Dk. Thus, in the following we will refer to the test in line 10 of the algorithm
as the recovery test and say that the test is passed, if T −t < 2Dk.

To decide if playing a+
t is good or not, A-ROGUE computes a pessimistic estimate

for the action gap. Intuitively, we want to test whether the quantity maxaQT−t(s, a) −
QT−t(s, a

+
t ) is small. If it is smaller than the minimal action gap mina:∆T−t(s,a)>0 ∆T−t(s, a)

of s, then the action a+
t must be optimal. Since we do not have direct access to QT−t, the

used optimality test uses the set of plausible models Mk instead to compare to the action
gap in the worst case plausible MDP:

∆−T−t(st, a
+
t ) , sup

M∈Mk

(
max
a

QMT−t(st, a)−QMT−t(st, a+
t )
)
.

(The supremum is actually a maximum, as it is enough to optimize over the simplex.) When
∆−T−t(st, a

+
t ) < γ(T − t), this means that the action gap is indeed small, thus action a+

t is
considered to be optimal and hence played. In the following, we refer to the test in line 13
as the optimality test and say that an action a+

t passes the test, if ∆−T−t(st, a
+
t ) < γ(T − t).

Asking for a rollout (line 17). In case a+
t does not pass the optimality test, A-

ROGUE asks for an exploratory rollout from st. As already explained, the algorithm
alternates the policy for which a rollout is requested. Either A-ROGUE requests a rollout
of the optimistic policy π+

k , or (if the last rollout has been requested for the optimistic
policy) a rollout of the non-stationary policy that first executes a+

t = π+
k (st) and then pol-

icy π	k
−

, the pessimistic policy that tries to come back as fast as possible to the backup
state sk. The rollout is stopped if either (i) the number of visits in some state-action pair
has doubled (when also the episode terminates), (ii) the backup state sk is reached, or (iii)
the length of the rollout exceeds

(
1 + 1

ε

)
Dk.

4. Performance Guarantees

The following theorem is, to the best of our knowledge, the first sublinear regret guarantee
that holds for a large class of multi-chain MDPs with possibly infinite diameter. For con-
venience, it is stated and proved assuming that all regions are directly reachable from the
region S?

i0
where the learner starts. This assumption is relaxed below, see Remark 8.

3. To account for estimation errors of the return time, the algorithm tests if the return time is less than
2Dk (and not simply Dk).
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Theorem 7 (Bound on active regret) Let M? be an MDP with local diameter d? and
γ?-sharp action-gaps that satisfies Assumption 1 with access probability > p0. Assume
also that all transition probabilities are either 0 or > pmin > 0. Given an upper bound
D > d?, the active regret of A-ROGUE with parameters δ, d(t) = D, γ 6 γ?, and

ε < min
{

p0d?

p0d?+p0+d? ,
p0

1+p0

}
after T steps is upper bounded by

E
[
RT

]
6

(
5 + 1

p0

)√
8d?

γ?

(
T + 2d?

γ?

)
+
(

4 + 1
p0

)
d?SA log2

(
8T
SA

)
+6(
√

2+1)
(

2 + 1
p0

+ 1
pmin

)
d?
√

log(2S/2+1AST 2/δ)
√
SAT

+ 16
SD3(1 + ε)4

γ2ε3(1− ε)
log(2S+1SAT 2/δ)︸ ︷︷ ︸

Bound on number of asked rollout transitions

+1+ε
γε D + 2δ .

Simplified, the regret is of order

E
[
RT

]
= O

(
d?S

√
A log(TAS/δ) +

√
d?

γ?

p0 ∧ pmin

√
T + d?SA

p0
log
(

T
SA

)
︸ ︷︷ ︸

Regret when acting

+ D3S2

γ2ε3
log
(
TAS
δ

)︸ ︷︷ ︸
Extra information asked

)
.

This bound captures the essential behavior of the algorithm: The first term is basically
of the same order as the regret of UCRL (Jaksch et al., 2010). This term also gives the
long-term regime of the algorithm (after it identified irreversible actions). The remaining
term gives the number of transitions in rollouts the algorithm asked for. This happens in
two situations: first when the algorithm wants to find out whether an action is irreversible,
and second when it needs to know whether an action identified as irreversible is optimal.
While the irreversibility of an action is rather cheap to identify and can be accomplished
by rollouts of length O(Dk), the second case needs much more information, as it depends
on the action-gap of the current state. Indeed, before playing an irreversible action the
algorithm needs an accurate estimate not only of the value inside the region it intends to
enter, but also of the value of states outside the region. Note that the algorithm not only
suffers big loss when entering a bad region, it also incurs some regret when not entering an
optimal region.

Remark 8 If no bound on d? is available, one can use d(t) = log(t) instead. We get a
similar bound, where one needs to replace D2 in the first operand of the max by ed

?
, and D

in the second operand of the max by log(T ).

Remark 9 If all regions except the initial one cannot be escaped a.s., then one can replace

the term
√

8d?

γ?

√
T + 2d?

γ? in Theorem 7 with a constant. This term is indeed due to the

possibility of escaping a region and re-entering it possibly several times, which in a worst
case produces this additional regret term.

Remark 10 If not all regions are directly reachable from S?
i0

but some are only reachable
by crossing, say, ` intermediate regions, then the bound of Theorem 7 holds with d? replaced
with (`+ 1)d? and D replaced with (`+ 1)D.
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Remark 11 As a special case, the result holds as well in the case when the MDP is indeed
weakly communicating and has small diameter D. Then d? = D, γ? = ∞, and p0 = 1.
Note that in this case A-ROGUE with parameter γ =∞ coincides with UCRL.

Overview of the proof Before providing a fully detailed proof in Section 5, let us give
some high-level sketches in order to highlight the main steps of the proof. The proof is based
on ideas similar to those for showing the regret bound for UCRL in Jaksch et al. (2010).
However, we need to handle four additional difficulties: 1) the different behavior of A-
ROGUE in each episode (cf. phases I, II, and III in lines 10, 13, and 15 of the algorithm),
2) the accurate estimation of the return time T −t to identify irreversible actions, 3) the
decisions to play irreversible actions or not, and 4) the total number of roll-out transitions
asked by the algorithm.
First, the case when no irreversible action is played by the algorithm nor the optimal policy
can be handled by standard concentration bounds and using the local diameter d?, similar
to the already mentioned proof in Jaksch et al. (2010).
When irreversible actions come into play, regret is incurred in two cases: when we play an
irreversible action that leads to a bad region, or when we do not play an irreversible action
that leads to a good region early enough. For the first case, we show that an action that
passes the test of line 13 must be d?-optimal with high probability, and that the estimated
return time T −t for an irreversible action must be larger than 2Dk with high probability.
This prevents the algorithm from playing bad irreversible actions. For the second case, we
show that any d?-optimal action will pass the test of line 13 for small enough confidence
bounds, depending on the γ-sharpness of the MDP. The last part of the proof is to show
that the confidence bounds indeed shrink fast enough, and to handle the number of roll-out
transition requested by A-ROGUE. This is a tricky part of the proof, where the length of
the roll-outs as well as the policy chosen to be executed must be chosen carefully. Here, we
first show that when the optimal return time in the true MDP Tt = |Q	k

?
(st, at)|is small, so

is T −t = |Q	k
−

(st, at)|, so that the algorithm executes the optimistic policy (and does not ask
for a roll-out). Then, we use the observation that by definition of d?, and by Assumption 1,
each region can be explored from its boundary by O(d?)-long roll-outs. We show that a
controlled number of roll-outs of length (1 + 1

ε )Dk of the policies π	− and π+
k is enough to

shrink the confidence bounds fast enough, leading to the final sub-linear regret.

5. Regret Analysis (Proof of Theorem 7)

In this section, we now provide a complete proof of Theorem 7. As the proof is a bit long,
it is divided into several parts. At the core the proof follows the lines of proof of the regret
bound of the regret bound for UCRL (Jaksch et al., 2010) However, there are several
additional difficulties we need to take care of: 1) the different behavior of A-ROGUE in
each episode (lines 10, 13, and 15 of the algorithm), 2) the accurate estimation of the return
time T −t , 3) dealing with irreversible actions and 4) the total number of roll-out transitions
asked by the algorithm. The proof provides a few innovations in order to handle these
difficulties. Each of them may be of independent interest. We first give a brief overview of
the single parts of the proof.
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• Sections 5.1.1 and 5.4: Decomposing the cumulated reward / Bellman equation /
confidence bounds.

In these first two sections, we provide an initial decomposition of the cumulative
reward, disregarding regret due to entering another region, so as to provide the main
picture of the proof. We use a new decomposition in Section 5.1.1 and control the
regret backward from the last episode to earlier episodes, as opposed to standard
proofs. A second innovation is that, when introducing the Bellman equation, following
the proof technique from Jaksch et al. (2010) (see Section 5.4), we replace the span
of the optimistic value function by a more accurate local span over the immediate
successor of the current state, and control it using the local diameter of Definition 1.

• Section ??: Dealing with irreversible transitions.

We modify the decomposition from Sections 5.1.1 and 5.4, to control what happens
when the optimal policy plays an irreversible action. One specific difficulty is to handle
the case when we need to play an irreversible action to enter an optimal region but
we do not play it for lack of confidence, thus causing possibly linear regret during this
time lapse. We show in Lemma 12 that an action that passes the test in l.13 must
be d?-optimal (if the model M? is plausible), and that every d?-optimal action will
pass the test in l.13 when confidence intervals become small enough. Here the notion
of local diameter and γ-sharpness play an important role in defining the tests used
in A-ROGUE. This result enables us to ensure that, provided that some states are
visited often enough (so that confidence intervals become small), we eventually enter
the optimal region after a controlled number of steps, and thus can control the regret.

• Section 5.1.2: Confidence intervals and high probability events.

We derive simple confidence bounds that characterize the uncertainty in our estimates
of the reward and transition probability distributions as a function of the number of
samples observed from each state-action pair and other relevant factors. In addition
to showing how the learned model improves with samples (as is necessary in the
regret analysis of UCRL), these confidence intervals also allow us to bound the
minimum number of steps to return to the current backup state (which is unique
to A-ROGUE). Specifically, we provide in Section 5.1.4 a bound on the estimated
return time, by seeing it as a value function. We thus use the definition of the backup
MDP and a Bellman decomposition similar to the one used for the MDP model in
order to control the estimation error.

• Section 5.5: Total number of roll-outs.

In Section 5.5, we bound the number of episodes and the number of simulated roll-outs
requested by A-ROGUE. This is a tricky part of the proof, where we have to show
that the length of the roll-outs as well as the roll-out policy are well chosen by the
algorithm. This is an important innovation of the proof, where we study in detail the
number of roll-outs of some length d from some policy π needed to ensure that a state-
action that is reachable in d steps is visited a certain number of n times on average.
We then use this to control the total number of roll-outs from such a policy π that
are needed in order to visit often enough the set of all states reachable in d steps from

19



Maillard, Mann, Ortner and Mannor

one point, and apply it to π	−. We believe that such results (as given in Section ??)
are of independent interest. We then show that the backup-policy satisfies the desired
property, and thus get a control on the number of roll-out transitions needed so that
we have an accurate estimation of the back-up time.

• Section 5.6: Regret.

In this last section, we bound the regret of A-ROGUE first when the diameter is
unknown and second when an upper bound for the diameter is known. This section,
ties together the findings in the previous sections of the appendix and provides the
main proof of Theorem 7.

1

K

...

π?

π?

Inside trap

Figure 7: A high over-view of the algorithm and of the proof: In black, the trajectory
followed by one execution of A-ROGUE divided into K episodes (internal to
the algorithm). In blue, optimal policies starting from the starting point of each
A-ROGUE-episode. We consider a case in which it is optimal to enter a trap:
the blue cross indicates when the optimal policy enters it, the red cross when
A-ROGUE enters it. Finally, the green loops symbolize parts of episodes when
roll-outs are asked and during which we accumulate regret for not acting. The
proof starts by capturing what happens in the last episode K (Section 5.2.1),
and progressively compares the algorithm to an optimal policy run from earlier
and earlier starting points (Section 5.2.2). The special point when A-ROGUE
enters the trap is dealt with separately in section ??. The total number of roll-out
transitions (green parts) is handled in Section 5.5.

Let us start by introducing notations. The algorithm proceed in T time-steps t ∈
{1, . . . , T}. We denote this set TT , and introduce more generally for all t ∈ N the notation
Tt = {1, . . . , t}, with the convention that T0 = ∅. We make a distinction between the time-
steps when an action is output, which is called a decision-step, and the time-steps when
an roll-out transition is observed, which we call a roll-out step. We denote TDt ⊂ Tt the
subset of time-steps corresponding to decision-steps until time-step t, and TRt = Tt \TDt the
corresponding subset of roll-out steps.

20



Active Roll-outs in MDP with Irreversible Dynamics

The algorithm proceed in successive episodes. The number of episodes until time T is a
random variable that we denote KT . For k ∈ {1, . . . ,KT }, episode k starts at tk ∈ TT . Thus
t1 = 1, tk+1 − tk is the length of episode k, and we denote by convention tKT +1 = T + 1.
Thus, the last episode starts at tKT

∈ TT , and stops at time T = tKT +1 − 1. With this
convention, we write T(k) = Ttk+1−1\Ttk−1 the time-steps corresponding to episode k, for k ∈
{1, . . . ,KT }, and similarly, define TD(k) = TDtk+1−1\TDtk−1 and TR(k) = TRtk+1−1\TRtk−1. We also

introduce Tk,t = T(k)∩Tt, the set of time-steps between tk and t (that is Tk,t = {tk, . . . , t}),
as well as the corresponding set TDk,t = TD(k) ∩ TDt of decision-steps and TRk,t = TR(k) ∩ TRt
of roll-out steps in between steps tk and t. Finally, we use a specific notation for special
time-steps in an episode: tDk = argmint∈TD

(k)
t and t

D
k = argmaxt∈TD

(k)
t are the first and last

decision-steps in episode k. Likewise, tRk = argmint∈TR
(k)
t and t

R
k = argmaxt∈TR

(k)
t are the

first and last roll-out-steps in episode k. We also introduce the first and last time-steps of
T(k), tk = argmint∈T(k)

t = tk and tk = argmint∈T(k)
t = tk+1 − 1, for coherence.

Regarding states, starting from the same initial state s1, st denotes a state reached by
A-ROGUE at time-step t, and s?t one reached by the optimal policy π?T with horizon T at
the same time-step. We say that the algorithm enters a region S?

i at time-step t if st−1 /∈ S?
i

and st ∈ S?
i . We say it leaves region S?

i at time-step t if st−1 ∈ S?
i and st /∈ S?

i . In the
sequel, we denote by tmi ∈ [−∞,+∞] the m-th smallest time-steps when the algorithm
enters region S?

i , and t
m
i ∈ [−∞,+∞] the m-th smallest time-steps when it leaves region

S?
i . We also denote t the first time-step when the algorithm leaves the initial region, and t

the last time-steps when the algorithm leaves any region. Finally, we denote k the episode
that contains t, that is such that t ∈ T(k).

5.1 Preliminary results

Before presenting the core of the proof of Theorem 7, we start by introducing a few useful
results ans lemmas.

5.1.1 Decomposing the cumulated reward.

The expected active regret E
[
RT

]
of A-ROGUE at time T can be decomposed using the

cumulative rewards received during each episode k ∈ N until the last episode KT .
In the sequel, if a (possibly non-stationary) policy π = (πt)t>1 is executed in an MDP

M at (not necessarily consecutive) times t′ ∈ T̃ = {t1, . . . , tτ}, starting from state s at time
t1 then we define its accumulated reward by RπM (T|s). Its is defined by

RπM (T̃|s) =
∑
t′∈T̃

r(st′ , πt′(st′)) ,

where πt′ refers to the policy π at time t′. Note that the time matters since the policy π
needs not be stationary. Typically, an optimal strategy executes π? at each time step in
true MDP M?, whereas A-ROGUE executes an optimistic policy πk in episode k in M?

only when it does not ask for roll-out transitions, that is when t ∈ T̃ = TD(k). Since A-
ROGUE receives no rewards during the execution of a roll-out, the reward accumulated
during episode k, from tk up to tk+1 − 1, is

RA
M?,k = RπkM?(TD(k)|stk) .
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Then, using these notations, we can rewrite the regret as

E
[
RT

]
= E

[ T∑
t=1

r(s?t , a
?
t )
]
− E

[ T∑
t=1

r(st, at)
]

= E
[
Rπ

?

M?(T|s1)−
KT∑
k=1

( ∑
t∈TD

(k)

r(st, at) +
∑
t∈TR

(k)

0

)]

= E
[ KT∑
k=1

(
Rπ

?

M?(T(k)|s?tk)−RπkM?(TD(k)|stk)
)]

= E
[ KT∑
k=1

(
Rπ

?

M?(T(k)|s?tk)−RA
M?,k

)]
. (4)

5.1.2 Confidence intervals and high probability events

In this section, we derive confidence intervals for the reward and transition kernel estimates.
Let us introduce

r̂t(s, a) =
1

Nt−1(s, a)

t−1∑
t′=1

r(st′ , at′)I[st′ = s, at′ = a] ,

where we recall that Nt−1(s, a) =
∑t−1

t′=1 I[st′ = s, at′ = a].

Since the reward function rM+
k

is a plausible reward function according to Definition 4,

rM+
k

(s, a) is close to r̂tk(s, a) by construction. On the other hand, r̂tk(s, a) is close to the

mean µ(s, a) by concentration of measure. We use Hoeffding’s inequality together with a
union bound over all (s, a) ∈ S × A and all possible values of Ntk(s, a) 6 tk 6 T , and
deduce that with probability higher than 1− δ/T , simultaneously for all (s, a) ∈ S ×A and
all episodes k 6 KT ,

|rM+
k

(s, a)− µ(s, a)|

=
∣∣rM+

k
(s, a)− r̂tk(s, a)

∣∣+
∣∣r̂tk(s, a)− µ(s, a)

∣∣
6 2

√
log(2AST 2/δ)

2Ntk(s, a)
= 2Cµk (s, a) , (5)

provided that the set of plausible MDPs chosen in A-ROGUE is Mt(δ/T
2).

Following a similar argument but with specific inequality for the ‖·‖1 control (Weissman
et al., 2003), we obtain that with probability higher than 1 − δ/T , simultaneously for all
(s, a) ∈ S ×A, and all episodes k 6 KT ,

‖pM+
k

(·|s, a)− p(·|s, a)‖1 6 2

√
log(2S+1AST 2/δ)

2Ntk(s, a)
= 2Cpk(s, a) . (6)

Thus, combining (5) and (6) together with a union bound over all episodes, we obtain
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Lemma 5 On an event Ω of probability higher than 1−2δ/T , the true model is plausible
(that is M? ∈Mtk(δ/T 2)) simultaneously for all episodes k.

This Lemma will help us show that A-ROGUE avoids entering a bad region with high
probability. Now, on the complement of this event, Ωc, the regret is uncontrolled, and A-
ROGUE incurs a possible linear regret, leading to an error term 2δ

T T = 2δ. In the sequel,

we introduce the notation EΩ[·] def
= E[·I{Ω}]. Thus, by Lemma 5, it holds

E
[
RT

]
6 E

[
RT I{Ω}

]
+

2δ

T
T = EΩ

[
RT

]
+ 2δ . (7)

5.1.3 Sub-optimality test

In this section we consider the test on the sub-optimality gaps (Line 13). Without such a
test, with high probability the algorithm would never decide to play an irreversible action
even if this is the optimal thing to do. Indeed, since with high probability all played actions
would not be irreversible due to test of Line 10 (See section 5.1.4), the algorithm would
not enter another region. The regret can be linear in difference between the time t? when
the optimal policy would have entered an optimal region to the time t the algorithm enters
the same region. The test of line 13 on sub-optimality gaps prevents t − t? (and thus the
regret) to be too large. Note that in case when it is optimal to say in the initial region,
t? =∞ and the difference is trivially bounded.

Lemma 12 On the event Ω that M? is plausible, an action at that passes the sub-optimality
test in l.13 is d?-optimal:

QT−t(s, a
?)−QT−t(s, at) 6 d? .

Further, if at is d?-optimal, then it passes the sub-optimality test in l.13 as soon as

‖Cµk ‖∞ +

(
2 +

1

p0

)
d?‖Cpk‖∞ <

γ

4
. (8)

Note that if the test in l.13 is passed for at, this implies that no roll-out is asked at that
time.

Recall that QT−t denotes the value function for the true model M? at time t. Intu-
itively, we want to test at time t whether the quantity maxa:QT−t(s,at) 6=QT−t(s,a)QT−t(s, a)−
QT−t(s, at) is small enough. If it is smaller than mina:QT−t(s,a?) 6=QT−t(s,a) ∆t(s, a), that is,
the action gap of s, then the optimistic action must be actually optimal. Since we do not
have access to QT−t, the test of line 13 uses the plausible models Mk in episode k instead.

Step 1: We first show that if at is a bad action, that is ∆T−t(s, at) = QT−t(s, a
?) −

QT−t(s, at) > d? then ∆−T−t(s, at) is big. Indeed, in this case and under the event M? ∈Mk
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we have

∆−T−t(s, at) = sup
M∈Mk

(
max
a6=at

QMT−t(s, a)−QMT−t(s, at)
)

> sup
M∈Mk

(
QMT−t(s, a

?)−QT−t(s, a?) +QT−t(s, a
?)

−QT−t(s, at) +QT−t(s, at)−QMT−t(s, at)
)

> ∆T−t(s, at) + sup
M∈Mk

(
QMT−t(s, a

?)−QT−t(s, a?) +QT−t(s, at)−QMT−t(s, at)
)

> ∆T−t(s, at)

> γ?(T − t) ,

where in the third line, we used the fact that since M? ∈ Mk by assumption, then the
supremum term is non-negative, and where in the last line, we used the property that since
for all s, a either ∆T−t(s, a) 6 d?, or ∆T−t(s, a) > γ(T − t), then ∆T−t(s, at) must be larger
than γ(T − t). Thus, provided that γ 6 γ?, an action at that leads to a bad region must
satisfy ∆−T−t(s, at) > γ(T −t). We deduce that it is enough to test if ∆−T−t(s, a

+
t ) < γ(T −t)

holds to ensure that an optimistic action a+
t entering a bad region is discarded (with high

probability). Other actions that pass this test (satisfy ∆−T−t(s, a
+
t ) < γ(T − t)) cannot enter

a bad region, and are thus d?-optimal. In other words, if we play an action that passes this
test, it must satisfy QT−t(s, a

?)−QT−t(s, a+
t ) 6 d?. This proves the first part of Lemma 12.

Step 2: Now, we show that when an optimistic action at is d?-optimal, it passes the
test after not too many time steps. To that end, we derive the following inequalities

sup
M∈Mk

(
max
a6=at

QMT−t(st, a)−QMT−t(st, at)
)

= sup
M∈Mk

(
QMT−t(st, aM )−Q+

T−t(st, at) +Q+
T−t(st, at)−Q

M
T−t(st, at)

)
6 sup

M∈Mk

(
QMT−t(st, aM )−Q+

T−t(st, aM ) +Q+
T−t(st, at)−Q

M
T−t(st, at)

)
6 sup

M∈Mk

(
Q+
T−t(st, at)−Q

M
T−t(st, at)

)
, (9)

where we introduced aM = argmaxa6=at Q
M
T−t(st, a). In the second line we used the fact that

Q+
T−t(st, at) > Q+

T−t(st, aM ) since at is optimistic. In the third line, we used the fact that
Q+ is the optimistic Q-function. Note that there is no reason that at be the best action for
a plausible MDP M .

Now, we want to control the difference of value between the successor states of at. If
st ∈ Si0 and at is at the frontier of a region Si, then several situations may occur: First,
if all the successor states of at are inside the same communicating region Si, then the
difference of value between the successor states must be less than the diameter d? of the
region. Second, in other cases two successor states of at belong to different regions, say Si

and Sj . Since at is d?-optimal by assumption, the difference of values between its successor
states cannot exceed d? plus the difference of values between the successor states of st, a

?,
where a? is an optimal action in state st. Now the difference of values between successor
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states s ∈ Si, s
′ ∈ Sj of st, a

? cannot be larger than d?/p0 + d? = (1 + 1/p0)d?: Indeed by
assumption 1, at least one state-action pair (s̃, a) in the region Si satisfies p(Sj |s̃, a) > p0

without risking entering a third region. Now, it requires at most d? steps to reach s̃ from
a point in Si, and thus at most d?/p0 steps to enter Sj . On the other hand, it requires
at most d? steps to reach this point from s′ ∈ Sj , and thus the difference of value is at
most max{(1 + 1/p0)d?, d?}. Thus, in this second case, the difference of values between the
successor states of at is bounded by (2 + 1

p0
)d?. We can now resort to a simple Bellman

propagation error analysis to get the following inequality for all M ∈Mk

Q+
T−t(st, at)−Q

M
T−t(st, at) 6

T−t∑
j=1

4
∥∥δsP atP π?T−t−j∥∥

1

(∥∥Cµk ∥∥∞+(2 +
1

p0
)d?
∥∥Cpk∥∥∞)

6 4(T − t)
(∥∥Cµk ∥∥∞ + (2 +

1

p0
)d?
∥∥Cpk∥∥∞) , (10)

where Cµk (s, a) and Cpk(s, a) are the confidence bounds on the reward (2) and transition
kernel (3), respectively. Here P a denotes the S × S transition matrix with (s, s′) entry
p(s′|s, a) (from the true MDP M?), and δs the vector of size S with sth component equal to
1 and others equal to 0. Equation (10) is obtained by first expanding the Q-values using the
Bellman equation, second inserting the true M?, third controlling the error on the reward
and on the probability distributions with the confidence bounds (5), (6) and fourth using
the above discussion to control the range of the value function by (2 + 1

p0
)d?. Note that in

case a leads to an absorbing state, ‖δsP aP π
?T−t−j‖1 may be equal to one for each j.

An action at passes the test if ∆−T−t(st, at) 6 γ(T − t). Now combining (9) and (10),
we have shown that on the event that M? is plausible, an optimistic action at that is d?

optimal must satisfy

∆−T−t(st, at) 6 4(T − t)
(∥∥Cµk ∥∥∞ +

(
2 +

1

p0

)
d?
∥∥Cpk∥∥∞)

Thus, we deduce that in order that such an action passes the test of line 13 it is enough
that ∥∥Cµk ∥∥∞ +

(
2 +

1

p0

)
d?
∥∥Cpk∥∥∞ <

γ

4
, (11)

which concludes the proof of Lemma 12. �

5.1.4 Estimate of the return time

In this subsection, we relate T −t = −Q	k
−

(st, at) to the return time Tt = −Q	k
?
(st, at) in

the true MDP. We want to show that T −t is not too small when Tt is large (the action at
is irreversible), to avoid executing actions that we are not sure of. We also want that T −t
is not much larger than Tt when Tt is small, to ensure that an optimistic action with low
recovery time passes the test. Note that if T −t is too large, we may ask for more roll-outs
and thus incur a regret fro each additional roll-out.

We study the recovery test of line 10. First, we want to show that if at is a bad action,
that is, ∆T−t(st, at) > γ?(T − t) (see Definition 2), then at does not pass the test. Indeed
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in that case, it must be that Tt > γ?(T − t) as well. Now T −t is computed using the
(pessimistic) extended value iteration algorithm. It does not use the horizon T − t but
instead c(1 + 1

ε )Dk, where the value c = 2
γ is chosen in the algorithm. Thus, for any not

too large t 6 T − c(1 + 1
ε )Dk, provided that M? is plausible it must be the case that

T −t > γ
?c(1 +

1

ε
)Dk ,

which is bigger than 2Dk if ε < 1 and c > 1/γ? (We can further discard the case when
t > T − c(1 + 1

ε )Dk at the price of loosing at most a constant regret c(1 + 1
ε )Dk). In this

case, a non recoverable action does not pass the recovery test (on the event that M? is
plausible). Thus, it holds that

Lemma 13 Assuming that T −t is computed with horizon c(1+ 1
ε )Dk, for t 6 T−c(1+ 1

ε )Dk,
where ε < 1 and c > 1/γ?, then on the event that M? is plausible, then an action at such
that ∆T−t(st, at) > γ?(T − t) does not pass the recovery test, that is T −t > 2Dk.

Now, two cases can happen when at is a good action ∆T−t(st, at) 6 d?: The recovery
time Tt is either small or big. It is not a problem if the return time is big but at still passes
the test. We want to prevent that when the return time Tt is small and at is not a bad
action, then at does not pass the test. To that end, we show a bound on T −t when Tt 6 Dk:

Lemma 14 Under the event that M? is plausible, if Tt 6 Dk, then it holds

T −t 6 Dk

[
1 + 2Cpk,tc

(
1 +

1

ε

)
Dk

]
, (12)

where

Cpk,t = max
s∈S(st,Dk),a∈A

Cpk(s, a) ,

and S(s, `) denotes the set of all states that are reachable from s in ` steps.

This result implies that if 2Cpk,tc
(
1 + 1

ε

)
Dk < 1 then T −t < 2Dk holds (on the event that

M? is plausible), that is the recovery test of line 10 is passed in this case. In Section 5.5,
we bound the number of episodes that ensures that 2Cpk,tc

(
1 + 1

ε

)
Dk 6 α, for some α < 1.

Proof Let p	k
−

be the kernel corresponding to the worst plausible backup MDP, that is one

associated to Q	k
−

. Then let π	k
?

be the optimal backup policy in the true MDP (that is

with transition kernel p), and π	k
−

the optimal backup policy in the worst plausible backup
MDP. By construction of the backup MDPs, it holds that Q	k

?
(s, a) = 0 if s = stk and

otherwise

Q	k
?
(s, a) = −1 +

∑
s′∈S

p(s′|s, a)Q	k
?
(s′, π	k

?
(s′)) . (13)

On the other hand, since Q	k
−

is computed by the algorithm with look-ahead horizon

c(1 + 1
ε )Dk, we get that Q	k

−
(s, a) = 0 if s = stk and otherwise

Q	k
−

(s, a)>max
{
−1 +

∑
s′∈S

p	k
−

(s′|s, a)Q	k
−

(s′, π	k
−

(s′)),−c
(

1 +
1

ε

)
Dk

}
.
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Now let us compare these two values for the chosen action at. It holds that

Q	k
?
(st, at)−Q	k

−
(st, at) =

∑
s′∈S

p(s′|st, at)
(
Q	k

?
(s′, π	k

?
(s′))−Q	k

−
(s′, π	k

−
(s′))

)
6
∑
s′∈S

p(s′|st, at)
(
Q	k

?
(s′, π	k

?
(s′))−Q	k

−
(s′, π	k

?
(s′))

)
+
∑
s′∈S

p(s′|st, at)
(
Q	k
−

(s′, π	k
?
(s′))−Q	k

−
(s′, π	k

−
(s′))

)
+
∑
s′∈S

(
p(s′|st, at)− p	k

−
(s′|st, at)

)
Q	k
−

(s′, π	k
−

(s′)) . (14)

The second sum is negative since Q	k
−

(s′, π	k
?
(s′)) 6 Q	k

−
(s′, π	k

−
(s′)) by construction of

the pessimistic π	k
−

, and the third sum is less than
∥∥p(·|st, at)− p	k −(·|st, at)

∥∥
1
c(1 + 1

ε )Dk

since |Q	k
−

(s′, π	k
−

(s′))| 6 c(1+ 1
ε )Dk by construction. Thus, we make appear the confidence

bound Cpk from Lemma 5. More precisely, we consider the set S(s, `) of all states that are
reachable from s in ` steps and introduce the quantity

Cpk,t = max
s∈S(st,Dk),a∈A

Cpk(s, a) .

Indeed, we are interested specifically in states that are reachable in less than Tt 6 Dk steps
from st (when following π	k

?
). Using this notation, and since the pessimistic backup MDP

and M? are plausible by assumption, it holds that

Q	k
?
(st, at)−Q	k

−
(st, at) 6∑

s′∈S
p(s′|st, at)

(
Q	k

?
(s′, π	k

?
(s′))−Q	k

−
(s′, π	k

?
(s′))

)
+ 2Cpk(st, at)c

(
1 +

1

ε

)
Dk

6 2Cpk,tc
(

1 +
1

ε

)
Dk +

∑
s′∈S

p(s′|st, at)
(
Q	k

?
(s′, π	k

?
(s′))−Q	k

−
(s′, π	k

?
(s′))

)
.

We now apply the same decomposition as equation (14) to the term Q	k
?
(s′, π	k

?
(s′))−

Q	k
−

(s′, π	k
?
(s′)), that is, following the path of π	k

?
starting from st. Propagating this

decomposition j ∈ N times we get

Q	k
?
(st, at)−Q	k

−
(st, at) 6 E

[
2Cpk,tc

(
1 +

1

ε

)
Dkj

+
∑
s′∈S

p(s′|sjt, a
j
t)
(
Q	k

?
(s′, π	k

?
(s′))−Q	k

−
(s′, π	k

?
(s′))

)]
, (15)

where the expectation is over the trajectory {sjt, a
j
t}j , where sjt, a

j
t denotes the state-action

pair reached after j steps when following π	k
?

from st, and when we consider stk to be

absorbing, that is sjt is set to stk for all j > j0 where j0 is the first (random) time when

sjt = stk .

27



Maillard, Mann, Ortner and Mannor

Now, since it holds that Q	k
?
(stk , atk)−Q	k

−
(stk , atk) = 0 by construction, the term on

the second line in (15) vanishes when π	k
?

reaches stk , which in the worst case happens after

no more than Tt steps on average over the trajectory {sjt, a
j
t}j . Thus, we deduce that

Q	k
?
(st, at)−Q	k

−
(st, at) 6 2Cpk,tc

(
1 +

1

ε

)
DkE[j0]

6 2Cpk,tc

(
1 +

1

ε

)
DkTt .

Now, using the assumption that Tt 6 Dkagain, we obtain

T −t =
(
−Q	k

−
(st, at) +Q	k

?
(st, at)

)
−Q	k

?
(st, at)

6 2Cpk,tc

(
1 +

1

ε

)
DkTt + Tt

6 Dk

[
1 + 2Cpk,tc

(
1 +

1

ε

)
Dk

]
,

which concludes the proof of Lemma 14.

5.1.5 Number of episodes

To conclude this section of preliminary results, let us get a bound on on the number of
episodes. Since the episodes stop only because of a doubling event, that is precisely as for
UCRL we trivially have from Jaksch et al. (2010) the following standard control of the
number of episodes

Lemma 15 The total number of episodes is bounded as in Jaksch et al. (2010) by

KT 6 SA log2

(
8T
SA

)
. (16)

5.2 Dealing with non-irreversible actions

The control of the cumulated reward of A-ROGUE proceeds backward from the last to
the first episodes. We first start in this section by handling what happens during the lasts
episodes k > k following the last entrance to a region S?

i . Then, we progressively unfold
the control back to the first episode in the next sections. Since we want to apply Lemma 13,
we accept to control the regret only up to T̃ = T − c(1 + 1

ε )DKT
at the price of loosing only

a regret of c(1 + 1
ε )DKT

. For notational convenience however, we slightly abuse of notation
and state all sequel results and proofs until section 5.6 with horizon T while they hold for
T̃ instead.

We first show the following result, discarding what happens due to irreversible actions.
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Lemma 16 The regret between the strategy used by A-ROGUE from time tk+1 (where it
is in state stk+1

), and an optimal strategy starting at the same time in the same state, is

E
[
Rπ

?

M?(
⋃
k>k

T(k)|stk+1
)−

∑
k=k

RA
M?,k

]

6 E
[ KT−1∑
k=k+1

τ+(s̃tk+1
, s+
tk+1

) + τπ
	

(stk+1
, stk) + τπ

y?
(stk , s̃

?
tk+1

)
]

+ E
[ KT∑
k=k+1

|TR(k)|
]
− E

[ KT−1∑
k=k+1

(23)k + (30)k

]
− (17) ,

where all quantities are introduced in Sections 5.2.1-5.2.4.

The proof is in several steps that are detailed below (Section 5.2.1) In all these steps,
we assume that KT > k (otherwise the sums are trivial).

5.2.1 First step decomposition

Let us start with what happens for one episode k > k. We have

E
[
RA
M?,k

]
= E

[
RπkM?(TD(k)|stk)−Rπk

M+
k

(TD(k)|stk)
]

(17)

+ E
[
Rπk
M+

k

(TD(k)|stk)−Rπk
M+

k

(T(k)|stk)
]

(18)

+ E
[
Rπk
M+

k

(T(k)|stk)
]
. (19)

In this first step, we apply this decomposition specially to k = KT , for which T(KT ) =
[tKT

: T ]. We handle (19) by noting that since πKT
is the optimistic policy computed in

episode KT , in satisfies that

(19) > E
[
Rπ

?

M?([tKT
: T ]|stKT

)
]
.

Since the rewards are bounded in [0, 1], it holds that

(18) > −E
[
|T(KT ) \ TD(KT )|

]
= −E

[
|TR(KT )|

]
.

Thus, so far, combining these three equations together, we have shown that

E
[
RA
M?,KT

]
> E

[
Rπ

?

M?([tKT
: T ]|stKT

)
]

+ (17)− E
[
|TR(KT )|

]
. (20)

5.2.2 Preparing the unfolding step

Equation (20) relates the reward accumulated by the algorithm to that of a trajectory of
an optimal policy starting from stKT

, until the final time T . We now use this in order to
progressively compare to the optimal policy starting from stKT−1 until time T , then from
stKT−2 and so on, proceeding backward in the episodes, until comparing to the optimal
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policy starting from stk+1
up to time T . An important property that we use in the following

is that for all episodes k > k, by definition, the algorithm stays in the same region S?
i , from

tk+1 until the final time T .

Considering that KT − 1 > k for the sake of showing how works the decomposition in
the general case (some terms simplify if KT 6 k + 1), we proceed as follows

E
[∑
k>k

RA
M?,k

]
= E

[ KT−2∑
k=k+1

RA
M?,k +RA

M?,KT−1 +RA
M?,KT

]
(21)

> E
[ KT−2∑
k=k+1

RA
M?,k

]
+ (17)− E

[
|TR(KT )|

]
+E
[
R
πKT−1

M? (TD(KT−1)|stKT−1) +Rπ
?

M?([tKT
: T ]|stKT

)
]
, (22)

where for the first inequality, we applied (20) to control RA
M?,KT−1 as well as the definition

of RA
M?,KT−1. Now, in order to control (22), we use the following decomposition

(22) > E
[
R
πKT−1

M? (TD(KT−1)|stKT−1)−RπKT−1

M+
KT−1

(TD(KT−1)|stKT−1)
]

(23)

+ E
[
R
πKT−1

M+
KT−1

(TD(KT−1)|stKT−1)−Rπ?

M?(TD(KT−1)|stKT−1)
]

(24)

+ E
[
Rπ

?

M?(T(KT−1)|stKT−1)
]
− E

[
TR(KT−1)

]
+ E

[
Rπ

?

M?([tKT
: T ]|stKT

)
]
, (25)

where we used ni the last line the fact that rewards are in [0, 1]. Then, we use the fact that
π? is optimal in order to control the last term of (25)

E
[
Rπ

?

M?([tKT
: T ]|stKT

)
]
> E

[
Rπ

	

M?([tKT
: tKT

+ τ̃ − 1]|stKT
)

+Rπ
y?

M? ([tKT
+ τ̃ : tKT

+ τ̃ + τ? − 1]|stKT−1)

+R
π?
KT−1

M? ([tKT
+ τ̃ + τ? : T ]|s̃?tKT

)
]
. (26)

Here we first introduced the policy π	 that goes from stKT
back to the state stKT−1 visited

at time tKT−1 as fast as possible and the random time τ̃ = τπ
	

(stKT
, stKT−1) ∈ N to reach

it using this policy. Let us remind that for states s, s′ ∈ S and some policy π, τπ(s, s′)
denotes the random time corresponding to the first visit to state s′ when following policy
π from state s (in the current MDP). Then we introduced the state s̃?tKT

that would have

been reached at time tKT
by the optimal policy π? started at state stKT−1 and time tKT−1.

We also introduced the policy πy? that goes from stKT−1 to s̃?tKT
visited at time tKT−1 as

fast as possible, together with its random time τ? = τπ
	?

(stKT−1 , s̃
?
tKT

). In the last term

of equation (26), we denoted π?KT−1 to insist on the fact that we use the optimal policy π?

started from state stKT−1 at time tKT−1, that we follow from state s̃?tKT
(at the time it is

reached) up to time T . Indeed, this is a priori different from the optimal policy that starts
from s̃?tKT

at time tKT
+ τ̃ + τ?.
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Regarding (26), since the rewards are all positive, on the one hand we have

Rπ
	

M?([tKT
: tKT

+ τ̃ − 1]|stKT
) +Rπ

y?

M? ([tKT
+ τ̃ : tKT

+ τ̃ + τ? − 1]|stKT−1) > 0 ,

and on the other hand, it holds that

E
[
R
π?
KT−1

M? ([tKT
+ τ̃ + τ? : T ]|s̃?tKT

)
]
> E

[
R
π?
KT−1

M? ([tKT
: T ]|s̃?tKT

)
]
− E

[
τ̃ + τ?

]
.

Thus, we deduce that (22) is bounded by

(22) > (23) + (24)− E
[
τ̃ + τ?

]
+E
[
Rπ

?

M?([tKT−1 : tKT
− 1]|stKT−1)

]
+ E

[
R
π?
KT−1

M? ([tKT
: T ]|s̃?tKT

)
]

= (23) + (24)− E
[
τ̃ + τ?

]
+ E

[
Rπ

?

M?([tKT−1 : T ]|stKT−1)
]
,

where we used the definition of π?KT−1 and s̃?tKT
in the second line.

Plugging in this back to the first step of this section, we deduce that

E
[∑
k>k

RA
M?,k

]
> E

[ KT−2∑
k=k+1

RA
M?,k

]
+ E

[
Rπ

?

M?([tKT−1 : T ]|stKT−1)
]

(27)

+(17)− E
[
|TR(KT−1)|

]
− E

[
|TR(KT )|

]
+(23)KT−1 + (24)KT−1 − E

[
τπ

	
(stKT

, stKT−1) + τπ
y?

(stKT−1 , s̃
?
tKT

)
]
,

where we put the index of the episode in subscript of the equations for clarity purpose. The
next step is now to handle the term (24)KT−1, and more generally (24)k for k > k.

5.2.3 Optimistic model

We now control, for k > k, the quantity

(24)k = E
[
Rπk
M+

k

(TD(k)|stk)−Rπ?

M?(TD(k)|stk)
]
.

For that purpose, we use that πk is the optimal policy for model M+
k with horizon T , and

reason trajectory wise (that is, following a random trajectory from the policy, as opposed
for instance to a distribution of states). Thus, it holds that

E
[
Rπk
M+

k

([tk : T ]|stk)
]
> max

π
E
[
Rπ
M+

k

([tk : T ]|stk)
]

> E
[
Rπ

?

M+
k

(TD(k)|stk)

+Rπ̃
M+

k

([t
D
k : t

D
k + τ+(s̃

t
D
k
, s+

t
D
k

)− 1]|s̃
t
D
k

)

+Rπk
M+

k

([t
D
k + τ+(s̃

t
D
k
, s+) : T ]|s+

t
D
k

)
]

> E
[
Rπ

?

M+
k

(TD(k)|stk)
]

+ E
[
Rπk
M+

k

([t
D
k : T ]|s+

t
D
k

)
]
− E

[
τ+(s̃

t
D
k
, s+

t
D
k

)
]
, (28)
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where we introduced s̃
t
D
k

the random state reached by π?tk after |TD(k)| steps when (virtually)

acting in M+
k from stk , and s+

t
D
k

the state reached by πk after |TD(k)| steps when (virtu-

ally) acting in M+
k from stk . In the second inequality, π̃ is the policy that minimizes in

expectation, the time τ+(s̃
t
D
k
, s+

t
D
k

) to go from s̃
t
D
k

to s+

t
D
k

in the augmented MDP M+
k .

Thus, since on the other hand, we have the decomposition

E
[
Rπk
M+

k

([tk : T ]|stk)
]

= E
[
Rπk
M+

k

(TD(k)|stk)
]

+ E
[
Rπk
M+

k

([t
D
k : T ]|s+

t
D
k

)
]
,

we deduce from (28) the following bound

(24)k > −E
[
τ+(s̃tk+1

, s+
tk+1

)
]

+ E
[
Rπ

?

M+
k

(TD(k)|stk)− Rπ
?

M?(TD(k)|stk)
]
. (29)

For convenience, let us number the second term that appears in the right hand side of this
inequality;

E
[
Rπ

?

M+
k

(TD(k)|stk)− Rπ
?

M?(TD(k)|stk)
]

(30)

Plugging (29) back into (27), so far we have proved that

E
[∑
k>k

RA
M?,k

]
> E

[ KT−2∑
k=k+1

RA
M?,k

]
+ E

[
Rπ

?

M?([tKT−1 : T ]|stKT−1)
]

+ (17) (31)

+(23)KT−1 + (30)KT−1 − E
[
|TR(KT−1)|

]
− E

[
|TR(KT )|

]
−E
[
τ+(s̃tKT

, s+
tKT

) + τπ
	

(stKT
, stKT−1) + τπ

y?
(stKT−1 , s̃

?
tKT

)
]
,

Now, it is not difficult to see that (17), (23)KT−1 and (30)KT−1 are similar. Indeed, we
have

(23)k = E
[
RπkM?(TD(k)|stk)−Rπk

M+
k

(TD(k)|stk)
]
,

(30)k = E
[
Rπ

?

M+
k

(TD(k)|stk)− Rπ
?

M?(TD(k)|stk)
]
,

(17) = E
[
R
πKT
M? (TD(KT )|stKT

)−RπKT

M+
KT

(TD(KT )|stKT
)
]

= (23)KT
.

5.2.4 Unfolding step within one region

Now, one can recognize in the first two terms of equation (31), the exact same form as what
happens in equation (22). Indeed, it holds (provided that KT − 2 > k + 1) that

E
[ KT−2∑
k=k+1

RA
M?,k

]
+ E

[
Rπ

?

M?([tKT−1 : T ]|stKT−1)
]

= E
[ KT−3∑
k=k+1

RA
M?,k

]
+E
[
R
πKT−2

M? (T(KT−2)|stKT−2) +Rπ
?

M?([tKT−1 : T ]|stKT−1)
]
.

32



Active Roll-outs in MDP with Irreversible Dynamics

and we recognize in the last line equation (22) for episode KT − 1 instead of KT . Thus, we
use the same decomposition (22)-(30) using k = KT − 1, KT − 2, etc. up to k = k + 1, and
we deduce that

E
[∑
k>k

RA
M?,k

]
> E

[
Rπ

?

M?([tk+1 : T ]|stk+1
)
]

+ E
[ KT∑
k=k+1

|TR(k)|
]

+E
[ KT−1∑
k=k+1

(23)k + (30)k

]
+ (23)KT

−E
[ KT−1∑
k=k+1

τ+(s̃tk+1
, s+
tk+1

) + τπ
	

(stk+1
, stk) + τπ

y?
(stk , s̃

?
tk+1

)
]
,

That is, reorganizing the terms, we deduce that

E
[
Rπ

?

M?(
⋃
k>k

T(k)|stk+1
)−

∑
k=k

RA
M?,k

]

6 E
[ KT−1∑
k=k+1

τ+(s̃tk+1
, s+
tk+1

) + τπ
	

(stk+1
, stk) + τπ

y?
(stk , s̃

?
tk+1

)
]

+E
[ KT∑
k=k+1

|TR(k)|
]
− E

[ KT−1∑
k=k+1

(23)k + (30)k

]
− (23)KT

. �

5.3 Continuing the unfolding step

A-ROGUE stays in the same region during all the episodes k > k. Now, the episodes can
be decomposed into two categories. Those during which the A-ROGUE stays in the same
region, and those during which A-ROGUE plays an action that leads to another region
(than the one at the starting time of that episode). We use a generic index k for the first
category, and k for the second category. It is natural to first look at episode k = k where
the last change of region occurs, before continuing backwards up to the first episode.

When entering a different region, the return time suddenly becomes large, and thus
the term τπ

	
(stk+1

, stk) may not be controlled anymore. To handle this difficulty, we use a
slightly different decomposition than the one used for the proof of Lemma 16. We introduce
tk ∈ [tk, tk+1) that corresponds to the time when A-ROGUE plays an irreversible action
in episode k. Further let us split T(k) = T(k),1 ∪ T(k),2 in two parts first corresponding
to time-steps between tk and tk + 1 (excluded) and second to time-steps between tk + 1
(included) and tk+1. Likewise, we introduce TD(k),1,T

D
(k),2,T

R
(k),1 and TR(k),2. Decomposing

the regret before and after the time tk is intuitively equivalent to introducing an additional
episode starting at tk (with the difference that tk is unknown to the algorithm).
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We start with k = k and handle the regret in [tk, T ] by applying the steps of Lemma 16
but replacing tk with tk. That is, it holds

E
[
Rπ

?

M?(T(k),2 ∪
⋃
k>k

T(k)|stk+1)−RπkM?(T(k),2|stk+1)−
∑
k=k

RA
M?,k

]
6 E

[
τ+(s̃tk+1

, s+
tk+1

) + τπ
	

(stk+1
, stk+1) + τπ

y?
(stk+1, s̃

?
tk+1

)
]

+E
[ KT−1∑
k=k+1

τ+(s̃tk+1
, s+
tk+1

) + τπ
	

(stk+1
, stk) + τπ

y?
(stk , s̃

?
tk+1

)
]

+ E
[
|TR(k),2|+

KT∑
k=k+1

|TR(k)|
]
− (23)KT

−E
[
(23)k,2 + (30)k,2 +

KT−1∑
k=k+1

(23)k + (30)k

]
,

where (23)k,2 is similar to (23)k except is uses TD(k),2 instead of TD(k), and likewise (30)k,2 is

similar to (30)k in the same way. That is:

(23)k,2 = E
[
RπkM?(TD(k),2)|stk+1)−Rπk

M+
k

(TD(k),2)|stk+1)
]

(30)k,2 = E
[
Rπ

?

M+
k

(TD(k),2)|stk+1)−Rπ?

M?(TD(k),2)|stk+1)
]
.

We focus on time tk when A-ROGUE plays an irreversible action. Note that the action
played must pass either the test of line 10 or of line 13. Under the event Ω, by Lemma 14,
if the action passes the test of line 10, then it is not irreversible, thus the action must pass
the test of line 13, and is thus d?-optimal by Lemma 12, that is , it holds

E
[
RatM?([t : t + 1]|st) +R

π?
t+1

M? ([t + 1 : T ]|st+1)
]
> E

[
R
π?
t
M?([t : T ]|st)

]
− d? . (32)

Now, assuming this was the only irreversible action played during the episode k, we can
handle the regret on previous steps of the episode T(k),1\{tk} using a similar decomposition
as that for Lemma 16. More generally, if mk denotes the number of irreversible actions
played A-ROGUE in episode k, at times {tk,m}m∈[mk], then by equation (32), the regret

during episode an k looses at most mkd
? compared to an episode k > k (for which mk = 0).

More formally, using for convenience the convention tk,mk+1
def
= tk+1 and tk,0

def
= tk−1, then

we have proved that

Lemma 17 (Main Decomposition) The regret of A-ROGUE is bounded as

E
[
RT

]
= E

[
Rπ

?

M?(

KT⋃
k=1

T(k)|stk)−
KT∑
k=1

RA
M?,k

]

6 E
[ KT∑
k=1

mkd
?
]

+ E
[ KT∑
k=1

mk+1∑
m=1

τ+(s̃tk,m , s
+
tk,m

) + τπ
	

(stk,m , stk,m−1+1) + τπ
y?

(stk,m−1+1, s̃
?
tk,m

]

+E
[ KT∑
k=1

|TR(k)|
]
− E

[ KT∑
k=1

mk+1∑
m=1

(23)k,m + (30)k,m

]
, (33)
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where, introducing the sets T(k),m = [tk,m−1 + 1 : tk,m] (with corresponding TD(k),m,T
R
(k),m)

(23)k,m = E
[
RπkM?(TD(k),m)|stk,m−1+1)−Rπk

M+
k

(TD(k),m)|stk,m−1+1)
]

(30)k,m = E
[
Rπ

?

M+
k

(TD(k),m)|stk,m−1+1)−Rπ?

M?(TD(k),m)|stk,m−1+1)
]
.

Note that equation (33) handles the general case, without assuming that k < KT . Also
Rπ

?

M?(
⋃KT
k=1 T(k)|stk) = Rπ

?

M?(T|s1) is the reward accumulated by an optimal policy π? from
the initial state s1 between time 1 and T . Thus this lemma successfully enables us to
compare our strategy to the optimal policy, and not simply, for instance, to a local optimal
action.

Now, note that controlling the term E
[∑KT

k=1 |T
R
(k)|
]

is a priori not trivial: Indeed, at

time t when A-ROGUE plays an irreversible action might a priori not be close to the time
t? when the optimal policy plays an irreversible action, since the algorithm must decide
that it is ”good” to play an irreversible action and this may require many roll-outs. That
is, in case tk′ 6 t? 6 tk′+1 6 tk 6 t for some episode k′ < k, the optimal policy enters a
region earlier than A-ROGUE, and A-ROGUE may incur a linear regret between t? and
t for not entering an optimal region. We control the number of roll-outs in Section 5.5 and
show that A-ROGUE does not incur too much regret due to this phenomenon.

Bounding the number of irreversible actions We now bound m =
∑KT

k=1mk. First
of all, if all regions except the initial one kSi0 are not escapable with probability 1, then

we simply have E
[
md?

]
6 1. In the other cases let us note that it must take at time t at

least max{γ?(T − t) − 2d?, d?} steps on average to get from one region of the partition to
a neighboring one. Thus in the worst case, we cannot cross more than m times on average,
where m satisfies

∑m
i=1(γ?d?i − 2d?) 6 T : Indeed, let ti be the i-th time when a crossing

occurs. Since the last (m-th) time, at least d? steps are required to transit between regions,
we deduce that T − tm 6 d? on average. Likewise, applying this argument backward from
m to i, we get T − ti 6 (m− i+ 1)d?, and thus γ?(T − ti)− 2d? 6 γ?(m− i+ 1)d? − 2d?.
We then deduce the (rough) bound γ?d?m2 + (γ? − 4)d?m 6 2T from which it follows that

E
[
md?

]
6

√
2Td?

γ?
+

(4− γ?)2d?2

4γ?2 +
(4− γ?)d?

2γ?

6

√
2Td?

γ?
+

4d?2

γ?2 +
2d?

γ?

6 2

√
2d?

γ?

√
T +

2d?

γ?
. (34)

5.4 Bellman equation and local diameter

In this section, we control the terms (17), (23)k and (30)k, by resorting to the Bellman
propagation equation as well as the definition of the confidence sets used by the A-ROGUE
algorithm. Then, we make use of the local diameter d? to handle the τ terms appearing in
Lemma 16. We exhibit in particular the role of the assumption k > k and of the diameter
of the local region S?

i , as well as of the computation of the return time by the algorithm.
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5.4.1 Bellman Propagation equation

For any MDP M = (rM , pM ), and horizon h ∈ N it holds from the Bellman propagation
equation that

E[RπM ([t : t+ h− 1] ∩ TD(k)|st)] = E
[
rM (st, π(st))

+
∑
s′

pM (s′|st, π(st))E[RπM ([t+ 1 : t+ h− 1] ∩ TD(k)|s
′)]
]
. (35)

Now let us focus on (23)k, for k > k. If we denote the episode length to be hk = tk+1 − tk,
we note that [tk + 1 : tk + h − 1] ∩ TD(k) = TD(k) \ {tk}, and deduce by applying (35) to the

two terms of (23)k that

(23)k = E
[
µ(stk , atk)

+
∑
s′

p(s′|stk , atk)E[RπkM?(TD(k) \ {tk}|s
′)]

−rM+
k

(stk , atk)

−
∑
s′∈S

pM+
k

(s′|stk , atk)E[Rπk
M+

k

(TD(k) \ {tk}|s
′)]
]
,

where M+
k = (rM+

k
, pM+

k
) is the augmented MDP and M? = (µ, p) the true MDP. Regroup-

ing the terms to make appear the estimation error of the reward function and transition
kernel, we obtain

(23)k = E
[
µ(stk , atk)− rM+

k
(stk , atk)

+
∑
s′∈S

(
pM+

k
(s′|stk , atk)−p(s′|stk , atk)

)
E[Rπk

M+
k

(TD(k) \ {tk}|s
′)]

+
∑
s′∈S

p(s′|stk, atk)E
[
Rπk
M+

k

(TD(k) \ {tk}|s
′)−RπkM?(TD(k) \ {tk}|s

′)
]]
, (36)

where in the last line, the difference can be decomposed iteratively in the same way. Now,

note that, in the second line, since pM+
k

and p both sum to 1, one can replace V +
TD
(k)
\{tk}

(s′)
def
=

E[Rπk
M+

k

(TD(k) \ {tk}|s
′)] by V +

TD
(k)
\{tk}

(s′)− c for any constant c. In particular, if we introduce

sp(f) = maxs∈S f(s)−mins∈S f(s), then for a specific choice of c we get V +
TD
(k)
\{tk}

(s′)− c 6

sp(V +
TD
(k)
\{tk}

)/2. Now, a standard way to get a bound on (23)k is by unfolding the above

equality, reorganizing the resulting terms according to each state-action pair and bounding
the probability to reach a specific state-action pair in less than tk+1 − tk steps by 1. This
leads to the bound

(23)k > −E
[ ∑

(s,a)∈S×A

vk(s, a)|rM+
k

(s, a)− µ(s, a)|

+
∑

(s,a)∈S×A

vk(s, a)‖pM+
k

(·|s, a)− p(·|s, a)‖1 max
t∈T(k)

sp(V +
[t+1:tk+1−1]∩TD

(k)

)

2

]
,
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where we introduced the total number of visits in episode k (including roll-out transitions)

vk(s, a) =
∑
t∈T(k)

I{st = s, at = a} . (37)

Note that we can proceed in the exact same way in order to derive a bound on (30)k by
replacing πk with π?, and on (17) by replacing TD(k) with TD(KT ).

5.4.2 Span to Local span

However, apart from the special case when there is only one region S?
i , there is in general

no reason that the term maxt∈T(k)
sp(V +

[t+1:tk+1−1]∩TD
(k)

) be small. Indeed, when it is not

possible to reach a common state from two different states, their value can be arbitrarily
different. Thus, we proceed with a different decomposition, that we detail in the next
paragraph.

The second line of (36) satisfies the following, for t = tk and all c ∈ R:

E
[∑
s′∈S

(
pM+

k
(s′|st, at)−p(s′|st, at)

)
V +

[t+1:tk+1−1]∩TD
(k)

(s′)
]

> E
[ ∑
s′∈S:p(s′|st,at)>0

(
pM+

k
(s′|st, at)−p(s′|st, at)

)
V +

[t+1:tk+1−1]∩TD
(k)

(s′)
]

> −E
[
||pM+

k
(·|st, at)− p(·|st, at)||1

(
max

s′∈S:p(s′|st,at)>0
V +

[t+1:tk+1−1]∩TD
(k)

(s′)− c
)]
,

where we used the fact that the value is non negative. Thus, we can restrict our attention to

the set St = {s′ ∈ S : p(s′|st, at) > 0} ⊂ S. By choosing c = 1
2

(
maxs′∈St V

+
[t+1:tk+1−1]∩TD

(k)

(s′)+

mins′∈St V
+

[t+1:tk+1−1]∩TD
(k)

(s′)
)

, and using the notation spS(f) = maxS f −minS f , we get

E
[∑
s′∈S

(
pM+

k
(s′|st, at)−p(s′|st, at)

)
V +

[t+1:tk+1−1]∩TD
(k)

(s′)
]

> −E
[
||pM+

k
(·|st, at)− p(·|st, at)||1

1

2
spSt(V

+
[t+1:tk+1−1]∩TD

(k)

)
]
.

Thus, the main difference compared to the standard derivation is that we get spSt(V
+

[t+1:tk+1−1]∩TD
(k)

)

instead of sp(V +
[t+1:tk+1−1]∩TD

(k)

). Proceeding now with the usual next steps that consist in

rewriting the sums to make appear the number of visits to each state action pair, we thus
get the following bounds:

Lemma 18 For all k > k, it holds that

(23)k = E
[
RπkM?(TD(k)|stk)−Rπk

M+
k

(TD(k)|stk)
]

> −E
[ ∑

(s,a)∈S×A

vk(s, a)|rM+
k

(s, a)− µ(s, a)|

+
∑

(s,a)∈S×A

vk(s, a)‖pM+
k

(·|s, a)− p(·|s, a)‖1 max
t∈T(k)

spSt(V
+

[t+1:tk+1−1]∩TD
(k)

)

2

]
.
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where V +
[t+1:tk+1−1]∩TD

(k)

def
= E[Rπk

M+
k

([t+ 1 : tk+1 − 1] ∩ TD(k)|·)].

(30)k = E
[
Rπ

?

M+
k

(TD(k)|stk)− Rπ
?

M?(TD(k)|stk)
]

> −E
[ ∑

(s,a)∈S×A

vk(s, a)|rM+
k

(s, a)− µ(s, a)|

+
∑

(s,a)∈S×A

vk(s, a)‖pM+
k

(·|s, a)− p(·|s, a)‖1 max
t∈T(k)

spSt(V
+,?

[t+1:tk+1−1]∩TD
(k)

)

2

]
,

where V +,?

[t+1:tk+1−1]∩TD
(k)

def
= E[Rπ

?

M+
k

([t+ 1 : tk+1 − 1] ∩ TD(k)|·)].

The result of Lemma 18 shows that actually only the difference of values between two
possible successor states of a visited state (under M?) matters, and not between two arbi-
trary states: This is especially important in the setting of multi-chain MDPs.

5.4.3 Diameter and local diameter

First, let us bound the quantity τπ
	

(stk,m , stk,m−1+1). By construction, all actions that have
been played on the path from state stk,m−1+1 to state stk,m stay in the same region. Thus,
stk,m−1+1 and stk,m belong to the same region, and thus it holds

E
[
τπ

	
(stk,m , stk,m−1+1)

]
6 d? . (38)

Second, let us focus on τπ
y?

(stk,m−1+1, s̃
?
tk,m

). In order that s̃?tk,m ∈ Sj is reached by

the optimal policy from state stk,m−1+1 ∈ Si (with possibly i = j), then it must be that
p(Sj |Si) > 0. Thus, by assumption 1, at least one state-action pair (s̃, a) in the region Si

satisfies p(Sj |s̃, a) > p0 without risking entering a third region. Now, it requires at most d?

steps on average to reach s̃ from a point in Si, and thus at most d?/p0 steps to enter Sj .
On the other hand, it requires at most d? steps in Si to reach this point from stk,m−1+1,
and then at most d? steps in Sj to reach s̃?tk,m from a successor of s̃ in Sj . Thus, we deduce
that:

E
[
τπ

y?
(stk,m−1+1, s̃

?
tk,m

)
]
6 (2 +

1

p0
)d? . (39)

Third, let us focus on the span of the optimistic value, restricted to successor states of
the visited states. Once again by construction, all actions that have been played on the
path {(st, at)}t∈TD

(k),m
from state stk,m−1+1 to state stk,m stay in the same region (say Si)

and thus satisfy T (st, at; s0) 6 d? for some state s0 ∈ Si. For any successor state s′ 6= s0,
we must then have 1 + p(s′|st, at)T (s′; s0) 6 T (st, at; s0) 6 d?, and thus T (s′; s0) 6 d?−1

pmin
,

assuming that all transitions happen with probability either 0 or at least pmin > 0. Now,
the expected value of π? in state s′ must be at least the value in state s0 plus the value on
the way to reach it (by optimality in M?):

V +
t (s′) > E

[
V +

[t:t+τ(s′,s0)−1](s
′) + V +

t+τ(s′,s0)(s0)
]
> E

[
V +
t+τ(s′,s0)(s0)

]
,
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where the expectation is over the random variable τ(s′, s0) ∈ N. Likewise, V +
t (s′) can be

upper bounded by

E
[
V +
t−τ(s0,s′)

(s0)
]
> E

[
V +

[t−τ(s0,s′):t−1](s0)
]

+ V +
t (s′) > V +

t (s′) .

Thus, we deduce that for any successor s′, s′′ of (st, at) it holds

V +
t (s′)− V +

t (s′′) 6 E
[
V +
t−τ(s0,s′)

(s0)− V +
t+τ(s′′,s0)(s0)

]
6 E

[
τ(s0, s

′) + τ(s′′, s0)
]

6 (2 +
1

p0
)d? +

d? − 1

pmin
.

Thus, the span restricted on St is not greater than
(

2 + 1
p0

+ 1
pmin

)
d?. Following Jaksch

et al. (2010), the same argument applies to the span of the optimistic value (following the
optimistic policy) as well, since the augmented MDP contains at least the transitions of the
true MDP, provided that M? is plausible. Thus, on the event Ω that M? is plausible, it
holds

max
t∈T(k),m

spSt(V
+

[t+1:tk+1−1]∩TD
(k),m

) 6
(

2 +
1

p0
+

1

pmin

)
d? . (40)

Now since the optimistic value of π? in state s′ is larger than the optimal value of π?, which
must be at least the value in state s0 plus the value on the way to reach it, we can follow a
similar argument to show that:

max
t∈T(k),m

spSt(V
+,?

[t+1:tk+1−1]∩TD
(k),m

) 6
(

2 +
1

p0
+

1

pmin

)
d? . (41)

Finally, we focus on the term τ+(s̃tk,m , s
+
tk,m

) that correspond to a shortest visit time

when navigating in the augmented MDP M+
k . The fact that the algorithm does not execute

irreversible actions in M? between time tk,m−1 + 1 and tk,m does not discard, a priori,
the possibility that an optimal policy π? started from stk,m−1+1 executes actions that are

irreversible in the MDP M+
k . Put differently, the time to go τ+(s̃tk,m , stk,m−1+1) from s̃tk,m

back to stk,m−1+1 in M+
k may be huge if stk,m−1+1 ∈ Si and π? enters a different region Sj

when acting in M+
k during T(k),m. Note that if during T(k),m, π? stays in the same region in

M?, then since A-ROGUE does the same, the expected time to reach the state reached by
A-ROGUE from the one reached by π? is bounded by d?. Since times are shorten in the
augmented MDP, τ+(s̃tk,m , s

+
tk,m

) 6 d? in this case. Thus, we deduce the following bound
that holds when π? stays in the same region on T(k),m:

τ+(s̃tk,m , s
+
tk,m

) 6 d? . (42)

Now the regret for not entering an optimal region is due to lack of observations in this
region, and possibly in the current region as well. Lemma 20 proves a worst-case bound
that handles not only the maximum number of roll-outs asked by the A-ROGUE before
it can decide to play an irreversible action, but actually the number of samples (not only
coming from roll-outs) so that every reachable state is well estimated: If A-ROGUE acts
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in the MDP and gathers information, then it may require less roll-outs. Thus, this enables
to capture the maximum regret due to not making an irreversible action when π? does.
That is, the regret due to the case when π? enters another region in M? but A-ROGUE
does not can be handled by the bound on the total number of roll-out transitions from
Lemma 20, and thus we can simply use the same bound.

Combining (42), (38) and (39) together, and slightly abusing notations (the following
only applies to (k,m) such that π? stays in the same region on T(k),m), we deduce that

EΩ

[ KT∑
k=1

mk+1∑
m=1

τ+(s̃tk,m , s
+
tk,m

) + τπ
	

(stk,m , stk,m−1+1) + τπ
y?

(stk,m−1+1, s̃
?
tk,m

]

6 EΩ

[ KT∑
k=1

(mk + 1)

(
4 +

1

p0

)
d?
]

6

(
4 +

1

p0

)
E
[
md? +KTd

?

]
.

Combining the result Lemma 18 with equations (40) and (41) we get an upper bound
that can be extended to all episodes. Then, plugging this in the decomposition of the regret
from Lemma 17 and continuing the unfolding steps, we deduce the following

Corollary 19 Let us introduce the constant cp
def
= 2 + 1

p0
+ 1

pmin
. Then, it holds that

EΩ

[
RT

]
6 E[md?] +

(
4 +

1

p0

)
E
[
md? +KTd

?

]
+ E

[ KT∑
k′=1

|TRk′ |I{Ω}
]

+3EΩ

[ KT∑
k′=k

∑
(s,a)∈S×A

vk(s, a)
∣∣rM+

k′
(s, a)− µ(s, a)

∣∣
+
∑

(s,a)∈S×A

vk(s, a)
∥∥pM+

k
(·|s, a)− p(·|s, a)

∥∥
1
cpd

?

]
,

where m denotes the total number of actions played by A-ROGUE that exit the current
region.

5.4.4 Cumulative estimation error

We can combine the confidence bounds (5) and (6) together with the cumulative estimation
error over K episodes (the expectation term in the last term of (??)) and obtain by Lemma 5
that on an event Ω of probability higher than 1− 2δ/T , it is controlled as

KT∑
k′=1

( ∑
(s,a)∈S×A

vk′(s, a)
∣∣rM+

k′
(s, a)− µ(s, a)

∣∣+
∑

(s,a)∈S×A

vk′(s, a)
∥∥pM+

k
(·|s, a)−p(·|s, a)

∥∥
1
cpd

?

)

6
(

2
√

log(2S/2+1AST 2/δ)cpd
?
) KT∑
k′=1

∑
(s,a)∈S×A

vk′(s, a)N
−1/2
tk′

(s, a)

6 2
√

log(2S/2+1AST 2/δ)cpd
?(
√

2+1)
√
SAT , (43)
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where we used in the second inequality the fact that vk′(s, a) 6 Ntk′ (s, a) due to the criterion
used for stopping episodes, together with an application of equation (20) from Jaksch et al.
(2010) that uses Jensen’s inequality, namely

KT∑
k′=1

∑
(s,a)∈S×A

vk′(s, a)√
Ntk′ (s, a)

6 (
√

2 + 1)
√
SAT .

We now combine (43) and (34) together with (33), reorganize the terms and use the
control on KT from Lemma 15, and obtain that the regret is controlled on an event Ω of
high probability by

EΩ

[
RT

]
6

(
5 +

1

p0

)
2

√
2d?

γ?

√
T +

2d?

γ?
+

(
4 +

1

p0

)
d?SA log2

( 8T

SA

)
+E
[ KT∑
k′=1

|TRk′ |I{Ω}
]

+ 6
√

log(2S/2+1AST 2/δ)cpd
?(
√

2+1)
√
SAT . (44)

The notation EΩ has been introduced in section 5.1.2. Once again, we slightly abuse the

notations, as here in E
[∑KT

k′=1 |T
R
k′ |I{Ω}

]
we incorporate the episodes such that π? exists

the current region.

5.5 Total number of roll-outs

In this section, our goal is to control the cumulative sum of roll-out transitions
∑KT

k=1 |T
R
k |

that remains to be controlled. Note that A-ROGUE stops asking for new roll-out at a
time t such that at each time step t′ > t, at least one of the test of Line 10 and of Line 13 is
passed. We study these two tests in order to derive a round on the total number of roll-out
transitions. We will show that

Lemma 20 Under the assumption that the parameter ε < 1 of A-ROGUE is chosen such
that

ε < min

{
p0d

?

1 + p0 + d?
,

p0

1 + p0

}
,

and if Ω denotes the event that M? is plausible for in all episodes, then it holds that

E
[ KT∑
k=1

|TRk |I{Ω}
]
6 16S

(1 + ε)3

γ2ε2(1− ε)
log(2S+1SAT 2/δ)E

[ ∑
k:Dk−16d?

D2
k

]
.

Part of this bound is obtained by computing the number of roll-outs executed from the
initial region S?

i0
to cover the entire state-space sufficiently often. Actually the same bound

when adding to the number of roll-outs the regret in episodes such that π? exists the current
region. The proof is divided in several steps:

Number of roll-outs and covering times: Our goal is to control the number of
roll-outs needed before we can ensure that in each state st, the pessimistic return time
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satisfies T −t 6 2Dk when Tt 6 Dk. By the bound (12) of Lemma 14 in Section (5.1.4), this
is linked to the number of times each state-action pair (s, a) with s ∈ S(st, Dk) is visited
in total, where S(s, `) is the set of all states that are reachable from s in ` steps. Thus let
s be a state reachable in d steps from st, and let us call a roll-out with maximal number
of steps bounded by d a d-roll-out. We introduce pπ,dst,s, the probability that visiting s for
the first time, starting from st and following policy π after playing at takes no more than
d steps (in total). It is not difficult to show that this probability is given by

pπ,dst,s = δ>st

(
P at +

d−2∑
j=0

P atL,−s

(
P π−s

)j
P πR,−s

)
δs,

where P atL,−s (respectively P πR,−s) is the S − 1 × S transition matrix (S × S − 1) induced
by action at (policy π) with line (row) corresponding to state s removed, and δs is the S
vector with values 1 for state s and 0 else. Note that it also means that with one d-roll-out
of a policy π, s ∈ S(st, d) is visited at least pπ,dst,s times on average. Thus, we deduce that

no more than n/pπ,dst,s number of d-roll-outs of the policy π is needed so that s ∈ S(st, d) is
visited at least n times on average. It is worth noticing at this point that we only target a
control on

∑KT
k=1 |T

R
k | in expectation, as opposed to a high probability bound.4

Now, A-ROGUE uses roll-outs of length d = (1 + 1
ε )Dk in episode k. Note that

2Cpk,tc
(
1 + 1

ε

)
Dk 6 α happens (α = 1 is used in the recovery test l.10) as soon as all

corresponding state-action pairs are visited at least

n0 =
2c2
(
1 + 1

ε

)2
D2
k

α2
log(2S+1SAT 2/δ)

times, and for this to happen, no more than
∑

s∈S(st,Dk) n0/p
π	
k

−
,d

st,s many
(
1 + 1

ε

)
Dk-roll-

outs of π	k
−

(the backup policy to sk) are required on average. Thus, assuming we can show

that 1/p
π	
k

−
,d

st,s 6 β for states s ∈ S(st, Dk) this means that every state in S(st, d) is visited
enough when A-ROGUE has observed at most the following number of transitions from
π	k
−

n(Dk)
def
= 2c2

(
1 +

1

ε

)3
D3
k

∣∣S(st,
(
1 +

1

ε

)
Dk)

∣∣ β
α2

log(2S+1SAT 2/δ) .

Known and unknown local diameter Before determining β, let us discuss the
guessed diameter Dk a little bit. In case an upper bound D on the diameter d? is known in
advance Dk = D, and thus at most n(D) many roll-out transitions from π	k

−
are observed

before the test of line 10 is passed for all states with Tt 6 D.
Now, when no upper bound on the diameter d? is known in advance and Dk < d?, that is

the guessed diameter is smaller than the true local diameter, the states in S(st, d
?)\S(st, Dk)

may not be visited often enough, and thus one cannot ensure accurate estimation. Since
Dk = log(tk) increases with episodes, we eventually get to visit states reachable in S(st, d

?).

4. To derive such a stronger result, we would need, with the current proof, to get a control on the number of
visits of s ∈ S(st, d) in high probability, and not only in expectation, which is more difficult and luckily
not needed for our purpose here.
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However visiting the Dk+1-reachable states may require to revisit all the Dk reachable states
as well and not only the frontier of this set (and this is reward consuming). In all cases,
states are visited enough after the total number of roll-out transitions from π	k

−
, k > 1 is

at most ∑
k:Dk6d?

n(Dk) + n(Dk̃) =
∑

k:Dk−16d?

n(Dk) ,

on average, where k̃ is the smallest episode such that Dk > d?. If k → Dk does not reach
d? fast enough, this potentially causes a large waste of roll-outs (but we do not want that
Dk becomes to large with respect to d? either) and thus a a large active regret. Choosing
Dk = log(tk) ensures the loss is not too important.

Lower bound on the probability of first visit in d-steps at most The next step is

to find β such that β > 1/p
π	
k

−
,d

st,s . First, note that in the case when T
π	
k

−(st, s) 6 (1 +α)Dk

it holds that p
π	
k

−
,d

st,s
d→∞→ 1, and thus

T
π	
k

−(st, s) =
∞∑
d=0

(
p
π	
k

−
,d

st,s − pπ
	
k

−
,d−1

st,s

)
d

>
∞∑

d>b(1+ 1
ε

)Dkc

(
p
π	
k

−
,d

st,s − pπ
	
k

−
,d−1

st,s

)(⌊(
1+1/ε

)
Dk

⌋
+1
)

>
(

1− p
π	
k

−
,
⌊

(1+ 1
ε

)Dk

⌋
st,s

)(
1 +

1

ε

)
Dk , (45)

where in the first inequality we used the fact that p
π	
k

−
,d

st,s is a not decreasing function of d,
and in the second one a telescoping argument. Combining (45) together with T

π	
k

−(st, s) 6

(1 + α)Dk and reorganizing the terms, we deduce that

p
π	
k

−
,b(1+ 1

ε
)Dkc

st,s >
(1 + 1

ε )Dk −Dk(1 + α)

(1 + 1
ε )Dk

=
1− αε
1 + ε

,

which means that, provided that αε < 1, we can use β = 1+ε
1−αε .

Finally, A-ROGUE alternates between roll-outs of the optimistic policy π+
k and roll-

outs of the pessimistic backup policy π	k
−

. We focused here on controlling the number

transitions generated by π	k
−

only (at the price of losing a factor 2). More precisely, since

the roll-outs from π+
k and from π	k

−
are of the same size and we alternate at every roll-out,

by discarding the transitions received using π+
k (as non-informative in the worst case) we at

most double the number of transitions needed before the condition on the pessimistic return
time is satisfied. Thus, we deduce that the backup time is accurately estimated when the
total number of transitions

∑KT
k=1 |T

R
k | is at most

N(d?)
def
= 4

1 + ε

1− αε
c2
(
1 + 1

ε

)3
α2

log(2S+1SAT 2/δ)
∑

k:Dk−16d?

D3
k

∣∣∣S(st, (1 + 1/ε)Dk)
∣∣∣ . (46)
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Thus, far, we have seen that after this number of transitions on average has been ob-
served for all visited states, every return time following an action that is not irreversible
is well estimated, and thus no roll-out is asked for these states, that is, roll-out transitions
may only be asked in case the optimistic action is irreversible.

Sub-optimality test The set
⋃
s∈S?

i0

S(s, (1 + 1/ε)Dk) covers the entire state space S
if it is possible to reach any state from S?

i0
is no more than (1 + 1/ε)Dk steps. Since from

the boundary of a region, we need no more than d? + d?/p0 steps to enter the region and
then d? to reach any state inside the region, this requires at most (2+ 1

p0
)d? steps, and thus,

we want condition on ε so that (1 + 1
ε )Dk > (2 + 1

p0
)d?. If Dk > d?, then this inequality

holds for ε 6 p0
1+p0

. In this case, for the previous number of roll-out transitions (46), we
deduce that each state-action pair is visited at least n0 times and thus it holds

‖Cpk‖∞ 6
α

2c(1 + 1
ε )Dk

. (47)

This of course provides a control on ‖Cµk ‖∞ as well (simply look at the expression for
both terms). Now, we want to ensure that (8) holds so that a d? optimal action does pass
the test of line 13. Indeed in this case, no more roll-out is asked by A-ROGUE. Using
(47) in order to control both ‖Cpk‖∞ and ‖Cµk ‖∞, and reorganizing the terms, we obtain the
inequality

‖Cµk ‖∞ +
(

2 +
1

p0

)
d?‖Cpk‖∞ 6

α

2c(1 + 1
ε )Dk

((
2 +

1

p0

)
d?+

√
log(2AST 2/δ)

log(2S+1AST 2/δ)

)
.

As a result, the condition (11) for a d?-optimal action to pass the sub-optimality test of
A-ROGUE is satisfied when Dk > d?, ε 6

p0
1+p0

and

2α

c(1 + 1
ε )d?

(
(2 +

1

p0
)d? + 1

)
< γ .

since α = 1 and c = 2
γ , then this simplifies to

1 6
1 + 1

ε

2 + 1
p0

+ 1
d?

that is ε 6
1

1 + 1/p0 + 1/d?
. (48)

Thus, we deduce that for the choice

ε 6 min

{
p0d

?

p0d? + p0 + d?
,

p0

1 + p0

}
,

then after at most N(d?) roll-out transitions asked by A-ROGUE for the episodes such
that k such that Dk > d?, the recovering time is well-estimated and d?-optimal actions do
pass the test of line 13, that is at least one of the tests of line 10 and line 13 is passed. Thus
the total number of roll-out transitions asked by the algorithm is upper-bounded by (let us
remind that δ is also a parameter of the algorithm)

E
[ KT∑
k=1

|TRk |I{Ω}
]
6 4S

(1 + ε)4

ε3(1− ε)
c2 log(2S+1SAT 2/δ)E

[ ∑
k:Dk−16d?

D3
k

]
.

This concludes the proof of Lemma 20. �
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5.6 Upper bound on the regret

We now bound the regret of the A-ROGUE first in the case when the diameter d? is
unknown, and then in the case an upper bound D > d? is known. We remind that the
algorithm uses c = 2/γ for the scaling of the planning horizon of backup-up MDPs and
α = 1 for the recovery test.

In this section, we stop using the abuse of notation introduced in section 5.2, that
consists in using horizon T instead of horizon T̃ = T − c(1 + 1

ε )DKT
6 T , which was done

at the price of loosing only a regret of c(1 + 1
ε )DKT

= 1+ε
γε DKt .

5.6.1 Regret when an upper-bound on the diameter is given

In case when a bound D on the diameter is known, the algorithm can use Dk = D for all
episodes. In that case,the bound on the number of roll-out transitions simplifies into

E
[ KT̃∑
k=1

|TRk |I{Ω}
]
6 16S

(1 + ε)4

γ2ε3(1− ε)
log(2S+1SAT 2/δ)D3 . (49)

We plug the previous bound (49) in the decomposition of the regret (44) and of (7),
and deduce (provided that γ 6 γ? and ε is as in Lemma 20) that the expected regret is
bounded by

E
[
RT

]
6

(
5 +

1

p0

)
2

√
2d?

γ?

√
T +

2d?

γ?
+

(
4 +

1

p0

)
d?SA log2

( 8T

SA

)
+6
√

log(2S/2+1AST 2/δ)
(

2 +
1

p0
+

1

pmin

)
d?(
√

2+1)
√
SAT

+16S
(1 + ε)4

γ2ε3(1− ε)
log(2S+1SAT 2/δ)D3 +

1 + ε

γε
D + 2δ .

This concludes the first part of Theorem 7.

5.6.2 Regret when the diameter is unknown

In the case the diameter is unknown, a proxy for the diameter is given by Dk. Using a
slowly increasing diameter Dk = log(tk), it becomes eventually larger than d?. This results
in a regret scaling with

√
T with an additional constant term that is however exponential

in the true diameter d?. One could make this dependency polynomial in d? at the price
of using a Dk polynomial in tk leading to worst dependency in T . More formally, we get,
using the crude lower bound tk > k∑

k:Dk−16d?

D3
k 6 d

?3ed
?
. (50)

Thus, plugging in (50) into (49), and combining the resulting term with the decomposi-
tion of the regret (44) and (7), we deduce (provided that γ 6 γ? and ε is as in Lemma 20)
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Figure 8: Gridworld environments: I is the agent’s initial state, T an absorbing trap, and
G a goal state. Arrows entering (resp. leaving) a goal state indicate that it is
absorbing (resp. not absorbing).

that the expected regret is controlled by

E
[
RT

]
6

(
5 +

1

p0

)
2

√
2d?

γ?

√
T +

2d?

γ?
+

(
4 +

1

p0

)
d?SA log2

( 8T

SA

)
+6
√

log(2S/2+1AST 2/δ)
(

2 +
1

p0
+

1

pmin

)
d?(
√

2+1)
√
SAT

16S
(1 + ε)4

γ2ε3(1− ε)
log(2S+1SAT 2/δ)d?3 min{ed? , SA log2

(
8T
SA

)
}

+
1 + ε

γε
log(T ) + 2δ .

This concludes the proof of Theorem 7. �

6. Experiments & Results

We compared A-ROGUE to UCRL Jaksch et al. (2010) and R-Max Brafman and Ten-
nenholtz (2003) where UCRL enjoys strong regret guarantees for communicating MDPs5

and R-Max has strong sample complexity guarantees. The reason for comparing only to
such algorithms is because they are the only one we know that provably enjoy non-trivial
performance guarantees in communicating MDPs. Thus they serve here as a benchmark.
For illustration, we used three 4× 4 gridworld MDPs (Figure 8) with stochastic transition
probabilities and four actions {n, s, e, w}. Of course, the algorithms did not have knowledge
about this structure and thus had to consider the full S(S − 1)A+ SA = 1024-dimensional
problem. Though these MDPs look extremely simple, they are actually tricky due to the
presence of traps, and are enough to illustrate the main drawback of existing algorithms
assuming fast recoverability. Given the agent’s position (x, y), if the agent is not blocked
by a wall or in an absorbing state, executing action n transfers the agent to state (x, y+ 1)
with probability 0.8 or to either (x − 1, y + 1) or (x + 1, y + 1) each with probability 0.1.

5. We do not compare against REGAL, as it is still an open question whether this algorithm can be
implemented, see Bartlett and Tewari (2009).
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Figure 9: Comparison of average regret achieved by A-ROGUE, UCRL, and R-Max on
gridworlds from (a) Figure 8a, (b) Figure 8b, and (c) Figure 8c. The shaded area
represents one standard deviation for each algorithm.
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Actions s, e, and w are defined similarly in the other three directions. Each gridworld has a
single absorbing goal state, which gives a reward of 0.9. All three tasks contain one or more
“trap” states, which are nearly-absorbing states where all actions give 0 reward and lead to
the initial state with probability 10−4. The reason for this low-probability transition is to
ensure that the MDP has finite (though huge) diameter, and thus that the regret bound for
UCRL holds. Putting the probability from 10−4 to 0 only favors our algorithm, but looks
unfair with respect to other algorithms. Note also that this construction is different from
imposing there is a reset action. The maximum possible immediate reward is Rmax = 1,
which means that even if the goal state is discovered early, all state-action pairs need to be
explored to determine an optimal policy. The horizon was set to T = 30, 000. R-Max, was
run with sampling parameter m = 20 (see Jong and Stone (2008) for explanations). For
UCRL, we used δ = 0.05. We loosely tuned A-ROGUE with δ = 0.05, γ = 0.35, ε = 1/3,
assuming that p0 > 1/2, and we used the upper bound D = 8 on d?.

The first task (Figure 8a) contains a single trap and a non-absorbing goal state. The
agent must take no irreversible actions to act optimally. UCRL and R-Max are expected
to perform poorly here because even if they have discovered the goal state before the trap
state, they keep exploring until all state-action pairs have been visited. Thus they get stuck
in the trap state. A-ROGUE, on the other hand, can learn about the trap without entering
it using roll-outs. As we can see in Figure 9a, A-ROGUE has small regret compared to
the optimistic strategies UCRL and R-Max.
In the second task (Figure 8b), there is one trap state and one absorbing goal state. Here
UCRL and R-Max explore the environment optimistically and discover the goal or the
trap state with about equal probability, which leads to large regret and high variance, while
A-ROGUE is able to use roll-outs to learn about the trap states and avoid them. Figure
9b shows that UCRL and R-Max incur here large regret and high variance. A-ROGUE
achieves both small regret and low variance.
The third task (Figure 8c) contains four absorbing trap states and a single absorbing goal
state. It is harder than the previous two because there are more “trap” states. Notice that
again, A-ROGUE achieves low regret while UCRL and R-Max both have large regret
and high variance (Figure 9c).
In all tasks, A-ROGUE successfully avoids entering bad traps with high probability. On
the other hand, UCRL and R-Max accrue very large regret.

7. Conclusion

We obtained the first sublinear regret performance for multi-chain MDPs, as we are unaware
of any work providing theoretical performance guarantees in the multichain MDP setting
with no reset. The key ingredient for achieving this performance is to actively ask for
external information. We captured the notion of external information here by giving the
learner the option to ask for roll-outs. Most of the other possibilities require stronger
assumptions and trivialize the problem by recasting it into a standard communicating MDP
aith modified state-action space. Other possibilities, that are however restricted to specific
situations include resorting to an expert, a simulator, or a teacher and can be seen as special
cases of our setting. A-ROGUE is able to detect when it requires such external information
and what experiment to design and ask for a respective roll-out. The heuristic idea behind
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the algorithm is intuitive, which is a strength, but precisely quantifying the amount of
external information needed, and how to use them in an efficient way is challenging and is
the focus of this paper.

Trading-off planning costs and experimentation costs A key component in our
model is that roll-outs are costly: We assume that a zero reward is given for each roll-out
transition, thus incurring a maximal regret for each asked transition; this is a strong penalty.
Instead, one could provide a small reward, especially when producing a roll-out step is much
cheaper than a real execution. Alternatively, when roll-outs are numerical simulations, it
makes sense to consider the numerical cost of running a simulation and the actual time
it may take competing to executing the actual action. Since our analysis separates the
bound on the total number of roll-out asked by the algorithm and the cumulative regret
of the algorithm while acting, such modifications when using a different cost for roll-out
transitions and executed actions can be done easily.

Perspective In the paper, we provide one answer to a critical question that appears
in many realistic applications of Reinforcement Learning (that is, explicitly quantifying
the amount of external information sufficient to guarantee a O(

√
T ) learning regret when

interacting with a multi-chain MDP). Obviously, when one wants to address a real-world
problem, as one should pay attention to additional difficulties (such as inaccurate state
model, trembling-hand phenomenon, robustness) that need to be addressed together with
the multi-chain issue. In such situations, we do not claim to provide an end-to-end solution
that can directly be used off-the-shelf but a component that must be combined with other
mechanisms. Amongst the many questions one can ask, an interesting direction of research
is how to deal with the case when the roll-outs requested by the learner only come from an
approximate model, as opposed to the same model.
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