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COMPLEMENTED COPIES OF c0(τ) IN TENSOR

PRODUCTS OF Lp[0, 1]

VINÍCIUS CORTES, ELÓI MEDINA GALEGO, AND CHRISTIAN SAMUEL

Abstract. Let X be a Banach space and τ an in�nite cardinal. We
show that if τ has uncountable co�nality, p ∈ [1,∞) and either the
Lebesgue-Bochner space Lp([0, 1], X) or the injective tensor product
Lp[0, 1]⊗̂εX contains a complemented copy of c0(τ), then so does X.
We show also that if p ∈ (1,∞) and the projective tensor product
Lp[0, 1]⊗̂πX contains a complemented copy of c0(τ), then so does X.

1. Introduction and Preliminaries

We use standard set-theoretical and Banach space theory terminology as
may be found, e.g., in [16] and [17]. We denote by BX the closed unit ball of
the Banach space X. If X and Y are Banach spaces, we denote by L(X, Y )
the space of all bounded linear operators from X to Y and by K(X, Y ) the
subspace of all compact linear operators. We say that Y contains a copy

(resp. a complemented copy) of X, and write X ↪→ Y (resp. X
c
↪→ Y ), if

X is isomorphic to a subspace (resp. complemented subspace) of Y . The
density character of X, denoted by dens(X), is the smallest cardinality of
a dense subset of X.

A Banach spaceX has the bounded approximation property if there exists
λ > 0 such that, for every compact subset K of X and every ε > 0, there
exists a �nite rank operator T : X → X such that ‖T‖ ≤ λ and ‖x−T (x)‖ <
ε, for every x ∈ K.

We shall denote the projective and injective tensor norms by ‖ · ‖π and
‖ · ‖ε respectively. The projective (resp. injective) tensor product of X and
Y is the completion of X ⊗Y with respect to ‖ · ‖π (resp. ‖ · ‖ε) and will be
denoted by X⊗̂πY (resp. X⊗̂εY ).

For a non-empty set Γ, c0(Γ) denotes the Banach space of all real-valued
maps f on Γ with the property that for each ε > 0, the set {γ ∈ Γ : |f(γ)| ≥
ε} is �nite, equipped with the supremum norm. We will refer to c0(Γ) as
c0(τ) when the cardinality of Γ (denoted by |Γ|) is equal to τ . This space
will be denoted by c0 when τ = ℵ0. By `∞(Γ) we will denote the Banach
space of all bounded real-valued maps on Γ, with the supremum norm. This
space will be denoted by `∞ when Γ = N.

Given X a Banach space and p ∈ [1,∞), we denote by Lp([0, 1], X)
the Lebesgue-Bochner space of all (classes of equivalence of) measurable
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functions f : [0, 1] → X such that the scalar function ‖f‖p is integrable,
equipped with the complete norm

‖f‖p =

[∫ 1

0

‖f(t)‖pdt
] 1

p

.

These spaces will be denoted by Lp[0, 1] when X = R.
A measurable function f : [0, 1] → X is essentially bounded if there

exists ε > 0 such that the set {t ∈ [0, 1] : ‖f(t)‖ ≥ ε} has Lebesgue measure
zero, and we denote by ‖f‖∞ the in�mum of all such numbers ε > 0.
By L∞([0, 1], X) we will denote the space of all (classes of equivalence of)
essentially bounded functions f : [0, 1] → X, equipped with the complete
norm ‖ · ‖∞.

Recall that if τ is an in�nite cardinal then the co�nality of τ , denoted
by cf(τ), is the least cardinal α such that there exists a family of ordinals
{βj : j ∈ α} satisfying βj < τ for all j ∈ α, and sup{βj : j ∈ α} = τ . A
cardinal τ is said to be regular when cf(τ) = τ ; otherwise, it is said to be
singular.

Many papers in the history of the geometry of Banach spaces have been
devoted to establish results about when certain Banach spaces contain com-
plemented copies of c0 or c0(τ) for uncountable cardinals τ , see for example
[1, 2, 6, 7, 12, 26, 27]. The starting points of our research are three of these
results related to the space c0, i.e., Theorems 1, 2 and 3 below.

We begin by recalling the following immediate consequence of the clas-
sical Cembranos-Freniche Theorem [6, Main Theorem], [14, Corollary 2.5].

Theorem 1. For each p ∈ [1,∞), c0
c
↪→ Lp[0, 1]⊗̂ε`∞.

However, c0 6
c
↪→ `∞ (see, e. g., [10, Corollary 11, p. 156]).

On the other hand, Oja proved the following stability property.

Theorem 2 ([22], Theorem 3b). If X is a Banach space and p ∈ (1,∞),
then

c0
c
↪→ Lp[0, 1]⊗̂πX =⇒ c0

c
↪→ X.

Observe that Theorem 2 does not hold for p = 1. Indeed, L1([0, 1], X) is
linearly isometric to L1[0, 1]⊗̂πX [24, Example 2.19, p. 29] and Emmanuele
obtained the following result.

Theorem 3 ([12], Main Theorem). If X is a Banach space and p ∈ [1,∞),
then

c0 ↪→ X =⇒ c0
c
↪→ Lp([0, 1], X).

So, in particular, Lp([0, 1], `∞) contains a complemented copy of c0, but

once again c0 6
c
↪→ `∞.

We recall also that, denoting by ‖ · ‖∆p the natural tensor norm induced

on Lp[0, 1] ⊗ X by Lp([0, 1], X) and by Lp[0, 1]⊗̂∆pX the completion of
Lp[0, 1] ⊗X with this norm, the space Lp([0, 1], X) is linearly isometric to
Lp[0, 1]⊗̂∆pX [9, Chapters 7.1 and 7.2].

Thus, the above facts naturally lead us to the following problem.
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Problem 4. Let X be a Banach space, p ∈ [1,∞) and τ be an in�nite
cardinal. Under which conditions

c0(τ)
c
↪→ Lp[0, 1]⊗̂αX =⇒ c0(τ)

c
↪→ X,

where α denotes either the projective, injective or natural norm?

This problem becomes more interesting if we keep in mind that, in gen-
eral, it is not so simple to determine whether the tensor products of E andX
contain complemented copies of a certain space F , even when E contains no
complemented copies of F . Indeed, there are a number of elementary ques-
tions about this topic that remain unanswered. For instance, it is not known
whether l∞⊗̂πl∞ contains a complemented copy of c0 or not [4, Remark 3].

In the present paper, we will prove that for every Banach space X,
p ∈ (1,∞) and an in�nite cardinal τ ,

c0(τ)
c
↪→ Lp[0, 1]⊗̂πX =⇒ c0(τ)

c
↪→ X.

Additionally, if τ has uncountable co�nality, then for every p ∈ [1,∞)

c0(τ)
c
↪→ Lp[0, 1]⊗̂εX =⇒ c0(τ)

c
↪→ X,

and
c0(τ)

c
↪→ Lp([0, 1], X) =⇒ c0(τ)

c
↪→ X.

This paper is organized as follows. We study complemented copies of
c0(τ) in the injective (Section 2), projective (Section 3) and natural (Section
4) tensor products with Lp[0, 1].

2. Complemented copies of c0(τ) in X⊗̂εY spaces

The goal of this section is to prove Theorem 7. We recall that given
Banach spaces X and Y , the operator S : X⊗̂εY → K(X∗, Y ) satisfying

S(v)(x∗) =

j∑
i=1

x∗(ai)bi,

for every x∗ ∈ X∗ and v =
∑j

i=1 ai ⊗ bi ∈ X ⊗ Y , is a linear isometry onto
its image.

We will need the following key lemma.

Lemma 5. Let X and Y be Banach spaces. Suppose that X has the bounded
approximation property. Then there exist sets A ⊂ X and B ⊂ X∗ such that
max(|A|, |B|) ≤ dens(X) and for every u ∈ X⊗̂εY and δ > 0 there exist
x1, . . . , xm ∈ A and ϕ1, . . . , ϕm ∈ B satisfying∥∥∥∥∥u−

m∑
n=1

xn ⊗ S(u)(ϕn)

∥∥∥∥∥
ε

< δ.

Proof. By hypothesis, there exists λ ≥ 1 such that for every �nite dimen-
sional subspace Z of X there exists a �nite rank operator T on X such that
‖T‖ ≤ λ and T (x) = x for all x ∈ Z [5, Theorem 3.3.(3), p. 288].

Let D be a dense subset of X with |D| = dens(X) and let F be the
family of all �nite, non-empty subsets of D. For each F ∈ F , �x a �nite
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rank operator TF on X such that ‖TF‖ ≤ λ and TF (d) = d for all d ∈ F .
Let mF be the dimension of TF (X), {xF1 , . . . , xFmF

} be a basis of TF (X) and

ϕF1 , . . . , ϕ
F
mF
∈ X∗ such that

TF (x) =

mF∑
n=1

ϕFn (x)xFn ,

for every x ∈ X. De�ne

A =
⋃
F∈F

{xF1 , . . . , xFmF
} and B =

⋃
F∈F

{ϕF1 , . . . , ϕFmF
}.

We claim that A and B have the desired properties. Indeed, notice that

|A| ≤ |F| sup
F∈F
|{xF1 , . . . , xFmF

}| ≤ max(|D|,ℵ0) = |D|

and similarly |B| ≤ |D|.
Next, let u ∈ X⊗̂εY and δ > 0 be given. There exists v =

∑k
j=1 dj⊗yj ∈

X ⊗ Y such that d1, . . . , dk ∈ D, di 6= dj if i 6= j, and

‖u− v‖ε <
δ

λ+ 1
.

Writing G = {d1, . . . , dk}, we see that
mG∑
n=1

xGn ⊗ S(v)(ϕGn ) =
k∑
j=1

(
mG∑
n=1

ϕGn (dj)x
G
n

)
⊗ yj =

k∑
j=1

TG(dj)⊗ yj = v.

Furthermore, since∥∥∥∥∥
mG∑
n=1

xGn ⊗ ϕGn

∥∥∥∥∥
ε

= sup
x∈BX

∥∥∥∥∥
mG∑
n=1

ϕGn (x)xGn

∥∥∥∥∥ = ‖TG‖ ≤ λ,

we obtain∥∥∥∥∥
mG∑
n=1

xGn ⊗ S(u− v)(ϕGn )

∥∥∥∥∥
ε

= sup
x∗∈BX∗

∥∥∥∥∥
mG∑
n=1

x∗(xGn )S(u− v)(ϕGn )

∥∥∥∥∥
≤ ‖u− v‖ε sup

x∗∈BX∗

∥∥∥∥∥
mG∑
n=1

x∗(xGn )(ϕGn )

∥∥∥∥∥
<

δ

λ+ 1

∥∥∥∥∥
mG∑
n=1

xGn ⊗ ϕGn

∥∥∥∥∥
ε

≤ λδ

λ+ 1
.

Thus, ∥∥∥∥∥u−
mG∑
n=1

xGn ⊗ S(u)(ϕGn )

∥∥∥∥∥
ε

< δ

and we are done. �

The following result obtained in [8] will also be used frequently through-
out this work.

Theorem 6 ([8], Theorem 2.4). Let X be a Banach space and τ be an
in�nite cardinal. The following are equivalent:
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(1) X contains a complemented copy of c0(τ).
(2) There exist a family (xj)j∈τ equivalent to the unit-vector basis of

c0(τ) in X and a weak∗-null family (x∗j)j∈τ in X∗ such that, for each
j, k ∈ τ ,

x∗j(xk) = δjk.

(3) There exist a family (xj)j∈τ equivalent to the unit-vector basis of
c0(τ) in X and a weak∗-null family (x∗j)j∈τ in X∗ such that

inf
j∈τ
|x∗j(xj)| > 0.

Theorem 7. Let X and Y be Banach spaces and τ be an in�nite cardinal.
If X has the bounded approximation property and cf(τ) > dens(X), then

c0(τ)
c
↪→ X⊗̂εY =⇒ c0(τ)

c
↪→ Y.

Proof. Let A ⊂ X and B ⊂ X∗ be the sets provided by Lemma 5. By
Theorem 6, there exist families (ui)i∈τ in X⊗̂εY and (ψi)i∈τ in (X⊗̂εY )∗

such that (ui)i∈τ is equivalent to the usual unit-vector basis of c0(τ), (ψi)i∈τ
is weak∗-null and ψi(uj) = δij, for each i, j ∈ τ . Let s = supi∈τ ‖ψi‖ <∞.

For each i ∈ τ there exist xi1, . . . , ximi
∈ A and ϕi1, . . . , ϕ

i
mi
∈ B such that∥∥∥∥∥ui −

mi∑
n=1

xin ⊗ S(ui)(ϕ
i
n)

∥∥∥∥∥
ε

<
1

2s

and hence
1

2
<

mi∑
n=1

|ψi(xin ⊗ S(ui)(ϕ
i
n))|.

PutM = {mi : i ∈ τ} and for each m ∈M de�ne αm = {i ∈ τ : mi = m}.
SinceM is countable and τ has uncountable co�nality, there existsM ∈M
such that |αM | = τ . Setting τ1 = αM , we have

1

2
<

M∑
n=1

|ψi(xin ⊗ S(ui)(ϕ
i
n))|,∀i ∈ τ1.

Next, for each i ∈ τ1 there exists 1 ≤ ni ≤M satisfying

1

2M
< |ψi(xini

⊗ S(ui)(ϕ
i
ni

))|.

Let N = {ni : i ∈ τ1} and for each n ∈ N consider βn = {i ∈ τ1 : ni = n}.
Since N is �nite, there exists N ∈ N such that |βN | = τ . Setting τ2 = βN ,
we obtain

1

2M
< |ψi(xiN ⊗ S(ui)(ϕ

i
N))|,∀i ∈ τ2.

Now let A = {xiN : i ∈ τ2} and for each a ∈ A put γa = {i ∈ τ2 : xiN = a}.
Since cf(τ) > dens(X) ≥ |A|, there exists x0 ∈ A such that |γx0| = τ .
Setting τ3 = γx0 , we get

1

2M
< |ψi(x0 ⊗ S(ui)(ϕ

i
N))|,∀i ∈ τ3.
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Finally, let B = {ϕiN : i ∈ τ3} and for each ϕ ∈ B put λϕ = {i ∈ τ3 : ϕiN =
ϕ}. Since cf(τ) > dens(X) ≥ |B|, there exists ϕ0 ∈ B such that |λϕ0| = τ .
Setting τ4 = λϕ0 , we obtain

(2.1)
1

2M
< |ψi(x0 ⊗ S(ui)(ϕ0))|,∀i ∈ τ4.

For each i ∈ τ4, write yi = S(ui)(ϕ0) ∈ Y and consider the linear
functional y∗i ∈ Y ∗ de�ned by y∗i (y) = ψi(x0 ⊗ y), for every y ∈ Y . By
(2.1), we have

1

2M
< |y∗i (yi)| ≤ ‖ψi‖‖x0‖‖yi‖ ≤ s‖x0‖‖yi‖, ∀i ∈ τ4,

and therefore

(2.2)
1

2Ms‖x0‖
< ‖yi‖,∀i ∈ τ4.

Denote by (ei)i∈τ the unit-vector basis of c0(τ) and let T : c0(τ) →
X⊗̂εY be an isomorphism from c0(τ) onto its image such that T (ei) = ui,
for each i ∈ τ . Consider P : X⊗̂εY → Y the linear operator de�ned by
P (u) = S(u)(ϕ0), for every u ∈ X⊗̂εY . The inequality (2.2) then yields

‖(P ◦ T )(ei)‖ = ‖yi‖ ≥
1

2Ms‖x0‖
> 0, ∀i ∈ τ4

and thus, by [23, Remark following Theorem 3.4], there exists τ5 ⊂ τ4 such
that |τ5| = τ and P ◦ T|c0(τ5) is an isomophism onto its image. This shows
that (yi)i∈τ5 = (P (T (ei))i∈τ5 is equivalent to the unit-vector basis of c0(τ5)
in Y . Notice also that

(y∗i (y))i∈τ5 = (ψi(x0 ⊗ y))i∈τ5 ∈ c0(τ5),∀y ∈ Y,

since (ψi)i∈τ is weak∗-null by hypothesis. Thus, (y∗i )i∈τ5 is weak∗-null in
Y ∗. Combining these facts with (2.1), an appeal to Theorem 6 yields a
complemented copy of c0(τ) in Y . �

Note that according to Theorem 1 the above result is optimal. More-
over, Theorem 7 does not hold for cardinals with uncountable co�nality
equal to the density of X. Indeed, by [15, Theorem 4.5] it follows that

c0(τ)
c
↪→ `1(τ)⊗̂ε`∞(τ), however according to [10, Corollary 11, p. 156]

c0(τ) 6 c↪→ `∞(τ).

As a direct application of Theorem 7, we have:

Corollary 8. Let X be a Banach space, p ∈ [1,∞) and τ an in�nite cardinal
with cf(τ) > ℵ0. Then

c0(τ)
c
↪→ Lp[0, 1]⊗̂εX =⇒ c0(τ)

c
↪→ X.

3. Complemented copies of c0(τ) in Lp[0, 1]⊗̂πX spaces

We will use a convenient characterization of Lp[0, 1]⊗̂πX as a sequence
space.
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3.1. The spaces Lweakp (X) and Lp〈X〉. We will denote by (χn)n≥1 the
Haar system, that is, the sequence of functions de�ned on [0, 1] by χ1(t) = 1,
for every t ∈ [0, 1], and

χ2k+j(t) =


1, if t ∈

[
2j−2
2k+1 ,

2j−1
2k+1

)
,

−1, if t ∈
[

2j−1
2k+1 ,

2j
2k+1

)
,

0, otherwise,

for each k ≥ 0 and 1 ≤ j ≤ 2k. It is well known (see [18, p. 3], [19, p. 155])
that the Haar system is an unconditional basis of Lp[0, 1], p ∈ (1,∞), and
we will denote its unconditional basis constant by Kp. Following [3, 11], we
renorm Lp[0, 1] by

‖f‖newp = sup


∥∥∥∥∥
∞∑
n=1

θnαnχn

∥∥∥∥∥
p

: θn = ±1, n ≥ 1

 ,

for each f =
∑∞

n=1 αnχn ∈ Lp[0, 1]. Then

‖ · ‖p ≤ ‖ · ‖newp ≤ Kp‖ · ‖p
and (χn)n≥1 is a monotone, unconditional basis with respect to ‖ · ‖newp . By
Lnew

p [0, 1] we will denote Lp[0, 1] equipped with the norm ‖ · ‖newp .
Now, for each n ≥ 1 let

epn =
χn

‖χn‖newp

.

The sequence (epn)n≥1 is a normalized, unconditional basis of Lnew

p [0, 1] whose
unconditional basis constant is 1. Furthermore, by [18, p. 18], (epn)n≥1 is also
a boundedly complete basis.

Given X a Banach space and p, q ∈ (1,∞) satisfying 1/p + 1/q = 1, we
denote by Lweak

p (X) the space{
(xn)n≥1 ∈ XN :

∞∑
n=1

x∗(xn)epn converges in L
new

p [0, 1] for each x∗ ∈ X∗
}

equipped with the norm

‖x‖weakp = sup


∥∥∥∥∥
∞∑
n=1

x∗(xn)epn

∥∥∥∥∥
new

p

: x∗ ∈ BX∗

 ,

and by Lp〈X〉 the space{
(xn)n≥1 ∈ XN :

∞∑
n=1

|x∗n(xn)| <∞ for each (x∗n)n≥1 ∈ Lweak

q (X∗)

}
with the norm

‖x‖Lp〈X〉 = sup

{
∞∑
n=1

|x∗n(xn)| : (x∗n)n≥1 ∈ BLweakq (X∗)

}
,

where x = (xn)n≥1. With their own respective norms, Lweak

p (X) and Lp〈X〉
are Banach spaces [3].
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For each n ≥ 1, we will denote by In : X → XN the natural inclusion

In(x) = (δmnx)m≥1,∀x ∈ X.
It is easy to see that ‖In(x)‖weakp = ‖x‖ and furthermore, by [18, Proposition
1.c.7], we know that ‖In(x)‖Lp〈X〉 ≤ 2‖x‖, for every x ∈ X.

We shall consider also the following closed subspace of Lweak

p (X):

Fp(X) =

x = (xn)n≥1 ∈ Lweak

p (X) :

∥∥∥∥∥x−
m∑
n=1

In(xn)

∥∥∥∥∥
weak

p

−→ 0

 .

Next, we recall some results obtained in [3].

Theorem 9 ([3], Theorem 2.4). Given X a Banach space, p ∈ (1,∞) and
x = (xn)n≥1 ∈ Lp〈X〉, the series

∑∞
n=1 In(xn) converges to x in Lp〈X〉.

The next one gives a sequential representation of Lp[0, 1]⊗̂πX.

Theorem 10 ([3], Theorem 3.4). Let X be a Banach space and p ∈ (1,∞).
The function Ψ : Lp〈X〉 → Lp[0, 1]⊗̂πX de�ned by

Ψ(x) =
∞∑
n=1

epn ⊗ xn,

for each x = (xn)n≥1 ∈ Lp〈X〉, is an isomorphism onto Lp[0, 1]⊗̂πX.

Theorem 11. Let X be a Banach space and p, q ∈ (1,∞) such that 1/p+
1/q = 1. Then Lweak

q (X) is isomorphic to L(Lp[0, 1], X) and its subspace
Fq(X) is isomorphic to K(Lp[0, 1], X).

Proof. Let (e∗n)n≥1 be the sequence of coordinate functionals in Lp[0, 1]∗ with
respect to the basis (epn)n≥1. It is easy to check that the usual isometry from
Lp[0, 1]∗ onto Lq[0, 1] associates the functional e∗n to eqn.

Fix x = (xn)n≥1 ∈ Lweak

q (X) and f =
∑∞

n=1 αne
p
n ∈ Lp[0, 1]. We claim

that the series
∑∞

n=1 αnxn converges in X. Indeed, given k ≥ j ≥ 1 we have∥∥∥∥∥
k∑
n=j

αnxn

∥∥∥∥∥ =

∥∥∥∥∥
k∑
n=j

e∗n(f)xn

∥∥∥∥∥ = sup
x∗∈BX∗

∣∣∣∣∣
k∑
n=j

e∗n(f)x∗(xn)

∣∣∣∣∣
= sup

x∗∈BX∗

∣∣∣∣∣
(

k∑
n=j

x∗(xn)e∗n

)(
k∑

m=j

e∗m(f)epm

)∣∣∣∣∣
≤ sup

x∗∈BX∗

∥∥∥∥∥
k∑
n=j

x∗(xn)e∗n

∥∥∥∥∥
∥∥∥∥∥

k∑
m=j

e∗m(f)epm

∥∥∥∥∥
= sup

x∗∈BX∗

∥∥∥∥∥
k∑
n=j

x∗(xn)eqn

∥∥∥∥∥
q

∥∥∥∥∥
k∑

m=j

e∗m(f)epm

∥∥∥∥∥
≤ ‖x‖weakq

∥∥∥∥∥
k∑

m=j

e∗m(f)epm

∥∥∥∥∥
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and therefore the partial sums of the series
∑∞

n=1 αnxn form a Cauchy se-
quence in X, which establishes our claim.

This proves that I : Lweak

q (X)→ L(Lp[0, 1], X) given by

I(x)(f) =
∞∑
n=1

αnxn,

for each x = (xn)n≥1 ∈ Lweak

q (X) and f =
∑∞

n=1 αne
p
n ∈ Lp[0, 1], is a well

de�ned linear operator satisfying ‖I(x)‖ ≤ ‖x‖weakq .
Let us show now that I is an isomorphism onto L(Lp[0, 1], X). Fix

S ∈ L(Lp[0, 1], X) and consider y = (S(epn))n≥1. We claim that y ∈ Lweak

q .
Indeed, for each m ≥ 1 and x∗ ∈ BX∗ we have∥∥∥∥∥

m∑
n=1

x∗(S(epn))eqn

∥∥∥∥∥
new

q

= sup
θn=±1

∥∥∥∥∥
m∑
n=1

θnx
∗(S(epn))eqn

∥∥∥∥∥
q

= sup
θn=±1

sup
g∈BLp[0,1]

∥∥∥∥∥x∗
(

m∑
n=1

θne
∗
n(g)S(epn)

)∥∥∥∥∥
≤ sup

θn=±1
sup

g∈BLp[0,1]

∥∥∥∥∥S
(

m∑
n=1

θne
∗
n(g)epn

)∥∥∥∥∥
≤ ‖S‖ sup

θn=±1
sup

g∈BLp[0,1]

∥∥∥∥∥
m∑
n=1

θne
∗
n(g)epn

∥∥∥∥∥
p

= ‖S‖ sup
g∈BLp[0,1]

∥∥∥∥∥
m∑
n=1

e∗n(g)epn

∥∥∥∥∥
new

p

≤ ‖S‖ sup
g∈BLp[0,1]

∥∥∥∥∥
∞∑
n=1

e∗n(g)epn

∥∥∥∥∥
new

p

≤ Kp‖S‖ sup
g∈BLp[0,1]

∥∥∥∥∥
∞∑
n=1

e∗n(g)epn

∥∥∥∥∥
p

= Kp‖S‖.

Since (eqn)n≥1 is a boundedly complete basis, the claim is established. This
shows that I ′ : L(Lp[0, 1], X) → Lweak

q (X) de�ned by I ′(S) = (S(epn))n≥1,
is a bounded linear operator with ‖I ′‖ ≤ Kp. Furthermore, it is easy to see
that I ′ is the inverse of I. Thus, I is an isomorphism onto L(Lp[0, 1], X).

Next we will show that I maps Fq(X) onto K(Lp[0, 1], X). It is clear that
I(Fq(X)) is subset of K(Lp[0, 1], X). Next, �x T ∈ K(Lp[0, 1], X). Since I is
onto L(Lp[0, 1], X), there exists an unique y = (yn)n≥1 ∈ Lweak

q (X) such that
I(y) = T . We will show that y ∈ Fq(X). Fix ε > 0 and denote by (Pn)n≥1

the sequence of projections associated to the basis (epn)n. Since (e∗n)n≥1 is a
Schauder basis of Lp[0, 1]∗ and T is compact, the sequence (P ∗n)n≥1 converges
uniformly to the identity operator on the compact set T ∗(BX∗). Hence, there
exists N ≥ 1 such that ‖P ∗m(T ∗(x∗))− T ∗(x∗)‖ < ε/Kp for every x

∗ ∈ BX∗

and m ≥ N , and thus ‖T ◦Pm− T‖ ≤ ε/Kp, for every m ≥ N . It is easy to
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see that

I

(
m∑
n=1

In(yn)

)
= T ◦ Pm,

for every m ≥ 1. Therefore we have∥∥∥∥∥y −
m∑
n=1

In(yn)

∥∥∥∥∥
weak

q

≤ ‖I−1‖‖T − T ◦ Pm‖ < ε,

for every m ≥ N , and thus y ∈ Fq(X). The proof is complete. �

3.2. The duals of the spaces Lp〈X〉 and Fq(X). It is well known that
Lp〈X〉∗ is linearly isomorphic to L(Lp[0, 1], X∗) [24, Theorem 2.9] and that
Fq(X)∗ is linearly isomorphic to Lq[0, 1]⊗̂πX∗ [24, Theorem 5.33].

This subsection will be devoted to obtaining convenient characterizations
of the duals of the spaces Fq(X) and Lp〈X〉.

Proposition 12. Given X a Banach space, p ∈ (1,∞), x = (xn)n≥1 ∈
Lp〈X〉 and ϕ ∈ Lp〈X〉∗, the series

∑∞
n=1(ϕ ◦ In)(xn) converges absolutely.

Proof. For each n ≥ 1, let θn = sign(ϕ ◦ In)(xn). Then y = (θnxn)n≥1 ∈
Lp〈X〉 and by Theorem 9 we have

∞∑
n=1

|(ϕ ◦ In)(xn)| =
∞∑
n=1

(ϕ ◦ In)(θnxn) = ϕ(y),

as desired. �

Similarly to the previous proposition, we have:

Proposition 13. Given X a Banach space, p ∈ (1,∞), x = (xn)n≥1 ∈
Fp(X) and ϕ ∈ Fp(X)∗, the series

∑∞
n=1(ϕ ◦ In)(xn) converges absolutely.

Proof. For each n ≥ 1, let θn = sign(ϕ ◦ In)(xn). Since (epn)n≥1 is an un-
conditional basis with unconditional constant equal to 1, it follows that the
series

∑∞
n=1 θnx

∗(xn)epn converges in L
new

p [0, 1] for every x∗ ∈ X∗. Moreover,
for every k ≥ 1 and x∗ ∈ X∗ we have∥∥∥∥∥

∞∑
n=k

θnx
∗(xn)epn

∥∥∥∥∥
new

p

=

∥∥∥∥∥
∞∑
n=k

x∗(xn)epn

∥∥∥∥∥
new

p

and so (θnxn)n≥1 ∈ Fp(X). Thus,
∑∞

n=1 θn(ϕ ◦ In)(xn) converges. �

Proposition 14. Let X be a Banach space and p, q ∈ (1,∞) such that
1/p + 1/q = 1. A sequence x∗ = (x∗n)n≥1 of elements of X∗ belongs to
Lp〈X∗〉 if, and only if, the series

∑∞
n=1 x

∗
n(xn) converges absolutely, for each

x = (xn)n≥1 ∈ Fq(X). Furthermore, in this case one has

‖x∗‖Lp〈X〉 ≤ sup

{
∞∑
n=1

|x∗n(xn)| : x = (xn)n≥1 ∈ BFq(X)

}
<∞.
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Proof. Let us show the non-trivial implication. Let x∗ = (x∗n)n≥1 be a se-
quence of elements of X∗ such that the series

∑∞
n=1 x

∗
n(xn) converges abso-

lutely, for each x = (xn)n≥1 ∈ Fq(X). We claim that

S(x∗) = sup

{
∞∑
n=1

|x∗n(xn)| : x = (xn)n≥1 ∈ BFq(X)

}
<∞.

Indeed, for each m ≥ 1, consider the set

Um =

{
x = (xn)n≥1 ∈ BFq(X) :

∑
n≥1

|x∗n(xn)| ≤ m

}
.

It is easy to check that Um is a closed, absolutely convex subset of BFq(X).
Since BFq(X) =

⋃
m≥1 Um has non-empty interior, by Baire's Theorem there

exists M ≥ 1 such that UM has non-empty interior. The absolute convexity
of UM implies that 0 is an interior point of UM , that is, there exists r > 0
satisfying {

x = (xn)n≥1 ∈ BFq(X) : ‖x‖weakq ≤ r
}
⊂ UM .

This proves that S(x∗) ≤ M
r
and our claim is established.

Next, let us show that x∗ = (x∗n)n≥1 ∈ Lp〈X∗〉. Fix x∗∗ = (x∗∗n )n≥1 ∈
Lweak

q (X∗∗), m ≥ 1 and ε > 0. Put Y = span{x∗∗1 , . . . , x∗∗m}. By the Principle
of Local Re�exivity [20, Theorem 2], there exists a linear operator T : Y →
X satisfying ‖T‖ ≤ 1 + ε and x∗n(T (x∗∗n )) = x∗∗n (x∗n), for each 1 ≤ n ≤ m.
Put y = (yn)n≥1 ∈ Fq(X), where yn = T (x∗∗n ), if 1 ≤ n ≤ m, and yn = 0
otherwise.

Since (eqn)n≥1 is an unconditional basis, by [18, p. 18] we have

‖y‖weakq = sup
x∗∈BX∗

∥∥∥∥∥
m∑
n=1

(x∗ ◦ T )(x∗∗n )eqn

∥∥∥∥∥
new

q

≤ (1 + ε) sup
ϕ∈BX∗∗∗

∥∥∥∥∥
m∑
n=1

ϕ(x∗∗n )eqn

∥∥∥∥∥
new

q

≤ (1 + ε) sup
ϕ∈BX∗∗∗

∥∥∥∥∥
∞∑
n=1

ϕ(x∗∗n )eqn

∥∥∥∥∥
new

q

= (1 + ε)‖x∗∗‖weakq

and hence
m∑
n=1

|x∗∗n (x∗n)| ≤ S(x∗)‖y‖weakq ≤ (1 + ε)S(x∗)‖x∗∗‖weakq .

Since ε > 0 was arbitrary, we obtain
m∑
n=1

|x∗∗n (x∗n)| ≤ S(x∗)‖x∗∗‖weakq ,

for each m ≥ 1, which in turn implies
∞∑
n=1

|x∗∗n (x∗n)| ≤ S(x∗)‖x∗∗‖weakq .
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Thus, x∗ ∈ Lp〈X∗〉 and ‖x∗‖Lp〈X〉 ≤ S(x∗), as desired. �

Theorem 15. Let X be a Banach space and p, q ∈ (1,∞) such that 1/p+
1/q = 1. The function H : Fq(X)∗ → Lp〈X∗〉 de�ned by

H(ϕ) = (ϕ ◦ In)n≥1,

for each ϕ ∈ Fq(X)∗, is a linear isometry onto Lp〈X∗〉.

Proof. Given ϕ ∈ Fq(X)∗, Propositions 13 and 14 imply that (ϕ ◦ In)n≥1 ∈
Lp〈X∗〉. Thus, H is well de�ned. It is clear that H is linear.

By Proposition 13, we have

‖H(ϕ)‖Lp〈X∗〉 ≤ sup

{
∞∑
n=1

|(ϕ ◦ In)(xn)| : x = (xn)n≥1 ∈ BFq(X)

}

= sup

{∣∣∣∣∣
∞∑
n=1

(ϕ ◦ In)(xn)

∣∣∣∣∣ : x = (xn)n≥1 ∈ BFq(X)

}
= sup

{
|ϕ(x)| : x = (xn)n≥1 ∈ BFq(X)

}
= ‖ϕ‖,

where the �rst equality follows immediately from the proof of Proposition
13. On the other hand,

‖H(ϕ)‖Lp〈X∗〉 = sup

{
∞∑
n=1

|x∗∗n (ϕ ◦ In)| : x∗∗ = (x∗∗n )n≥1 ∈ BLweakq (X∗∗)

}

≥ sup

{
∞∑
n=1

|(ϕ ◦ In)(xn)| : x = (xn)n≥1 ∈ BFq(X)

∥∥∥∥∥ = ‖ϕ‖.

This shows that H is an isometry onto its image.
Finally, given x∗ = (x∗n)n≥1 ∈ Lp〈X∗〉, the function ψ : Fq(X) → R

de�ned by ψ(x) =
∑∞

n=1 x
∗
n(xn), for each x = (xn)n≥1 ∈ Fq(X), is a linear

functional on Fq(X) and it is clear that H(ψ) = x∗. This completes the
proof. �

Next, we establish an isomorphism from Lp〈X〉∗ onto Lweak

q (X∗).

Theorem 16. Let X be a Banach space and p, q ∈ (1,∞) such that 1/p+
1/q = 1. The function J : Lweak

q (X∗)→ Lp〈X〉∗ given by

J (x∗)(x) =
∞∑
n=1

x∗n(xn),

for each x∗ = (xn)n≥1 ∈ Lweak

q (X∗) and x = (xn)n≥1 ∈ Lp〈X〉, is an isomor-
phism onto Lp〈X〉∗.

Proof. Let Ψ : Lp〈X〉 → Lp[0, 1]⊗̂πX be the isomorphism de�ned in The-
orem 10, I : Lweak

q (X∗) → L(Lp[0, 1], X∗) be the isomorphism de�ned

in Theorem 11, and consider Φ : L(Lp[0, 1], X∗) → (Lp[0, 1]⊗̂πX)∗ the
canonical linear isometry [24, p. 24]. Given x∗ = (xn)n≥1 ∈ Lweak

q (X∗) and
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x = (xn)n≥1 ∈ Lp〈X〉, we have

(Ψ∗ ◦ Φ ◦ I)(x∗)(x) = (Φ ◦ I)(x∗)(Ψ(x)) =
∞∑
n=1

(Φ ◦ I)(x∗)(epn ⊗ xn)

=
∞∑
n=1

I(x∗)(epn)(xn) = J (x∗)(x) =
∞∑
n=1

x∗n(xn)

and therefore J = Ψ∗ ◦ Φ ◦ I. The proof is complete. �

3.3. Complemented copies of c0(τ) in Lp〈X〉 spaces. The next lemma
will play a crucial role in the proof of Theorem 18.

Lemma 17. Let X be a Banach space, τ be an in�nite cardinal and p, q ∈
(1,∞) such that 1/p + 1/q = 1. Suppose that (xi)i∈τ = ((xin)n≥1)i∈τ is a
family equivalent to the canonical basis of c0(τ) in Lp〈X〉 and let (ϕi)i∈τ be
a bounded family in Lp〈X〉∗. Then for each ε > 0 there exists M ≥ 0 such
that ∣∣∣∣∣

∞∑
n=M+1

(ϕi ◦ In)(xin)

∣∣∣∣∣ < ε,∀i ∈ τ.

Proof. We recall that the series
∑∞

n=1(ϕi ◦ In)(xin) converges absolutely for
each i ∈ τ , by Proposition 12. Let s = supi∈τ ‖ψi‖ <∞.

Suppose the thesis does not hold. Then there exists ε > 0 such that, for
each m ≥ 0, there exists i ∈ τ satisfying∣∣∣∣∣

∞∑
n=m+1

(ϕi ◦ In)(xin)

∣∣∣∣∣ ≥ ε.

We proceed by induction. For M0 = 0, there exists i1 ∈ τ such that∣∣∣∣∣
∞∑
n=1

(ϕi1 ◦ In)(xi1n )

∣∣∣∣∣ ≥ ε.

The absolute convergence of
∑∞

n=1(ϕi1 ◦ In)(xi1n ) yields M1 ≥ 1 such that

∞∑
n=M1+1

|(ϕi1 ◦ In)(xi1n )| < ε

2
.

Thus we have ∣∣∣∣∣
M1∑
n=1

(ϕi1 ◦ In)(xi1n )

∣∣∣∣∣ > ε

2
.

Suppose we have obtained, for some k ≥ 1, strictly increasing natural
numbers 0 = M0 < M1 < . . . < Mk and distinct i1, . . . , ik ∈ τ satisfying

(3.1)

∣∣∣∣∣∣
Mj∑
n=Nj

(ϕij ◦ In)(xijn )

∣∣∣∣∣∣ > ε

2
>

∞∑
n=Mj+1

|(ϕij ◦ In)(xijn )|,
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where Nj = Mj−1 + 1, for each 1 ≤ j ≤ k. By hypothesis, there exists
ik+1 ∈ τ such that ∣∣∣∣∣

∞∑
n=Mk+1

(ϕik+1
◦ In)(xik+1

n )

∣∣∣∣∣ ≥ ε.

The absolute convergence of
∑∞

n=1(ϕik+1
◦ In)(x

ik+1
n ) yields Mk+1 ≥Mk + 1

such that
∞∑

n=Mk+1

|(ϕik+1
◦ In)(xik+1

n )| < ε

2
.

Thus we have ∣∣∣∣∣
Mk+1∑

n=Mk+1

(ϕik+1
◦ In)(xik+1

n )

∣∣∣∣∣ > ε

2
.

The above inequality and (3.1) imply that ik+1 /∈ {i1, . . . , ik}.
For each j ≥ 1, consider x∗j = (x∗j,n)n≥1 ∈ Fq(X∗), where

x∗j,n =

{
ϕij ◦ In, if Nj ≤ n ≤Mj,

0, otherwise.

We claim that (x∗j)j≥1 is weakly-null in Fq(X
∗). Indeed, �x ψ ∈ Fq(X)∗ and

δ > 0. Let J be the isomorphism de�ned in Theorem 16. By Theorem 15,
the sequence (ψ ◦ Jn)n≥1 belongs to Lp〈X∗〉, where Jn : X∗ → (X∗)N is the
usual inclusion. By Theorem 9, there exists N ≥ 1 such that∥∥∥∥∥

∞∑
n=m

Kn(ψ ◦ Jn)

∥∥∥∥∥
Lp〈X∗〉

<
δ

s‖J −1‖
,

for each m ≥ N , where Kn : X∗∗ → (X∗∗)N is the usual inclusion. Since the
sequence (Nj)j≥1 is strictly increasing, there exists J ≥ 1 such that Nj ≥ N ,
for all j ≥ J . Thus we have

|ψ(x∗j)| =

∣∣∣∣∣∣
Mj∑
n=Nj

(ψ ◦ Jn)(x∗j,n)

∣∣∣∣∣∣ ≤ ‖x∗j‖weakq

∥∥∥∥∥∥
Mj∑
n=Nj

Kn(ψ ◦ Jn)

∥∥∥∥∥∥
Lp〈X∗〉

≤ ‖(ϕij ◦ In)n≥1‖weakq

δ

s‖J −1‖
= ‖J −1(ϕij)‖weakq

δ

s‖J −1‖
≤ δ,

for all j ≥ J . Claim established.
Now, let θj = J (x∗j) ∈ Lp〈X〉∗, for each j ≥ 1. By our claim, (θj)j≥1 is

weakly-null. On the other hand, by (3.1) we have

|θj(xij)| =

∣∣∣∣∣∣
Mj∑
n=Nj

(ϕij ◦ In)(xijn )

∣∣∣∣∣∣ > ε

2
,∀j ≥ 1.

This contradicts the Dunford-Pettis property of c0 [13, p. 596], and we are
done. �
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Theorem 18. Given X a Banach space, p ∈ (1,∞) and τ an in�nite
cardinal, we have

c0(τ)
c
↪→ Lp[0, 1]⊗̂πX =⇒ c0(τ)

c
↪→ X.

Proof. By Theorems 6 and 10, there exist families (xi)i∈τ = ((xin)n≥1)i∈τ in
Lp〈X〉 and (ψi)i∈τ in Lp〈X〉∗ such that (xi)i∈τ is equivalent to the usual
unit-vector basis of c0(τ), (ψi)i∈τ is weak∗-null and ψi(xj) = δij, for each
i, j ∈ τ . Let s = supi∈τ ‖ψi‖ <∞.

An appeal to Lemma 17 yields M ≥ 0 such that∣∣∣∣∣
∞∑

n=M+1

(ϕi ◦ In)(xin)

∣∣∣∣∣ < 1

2
,∀i ∈ τ.

Since 1 = ψi(xi) =
∑∞

n=1(ϕi ◦ In)(xin), we have M ≥ 1 and

1

2
<

M∑
n=1

|(ψi ◦ In)(xin)|,∀i ∈ τ.

Next, for each i ∈ τ there exists 1 ≤ ni ≤M satisfying

1

2M
< |(ψi ◦ Ini

)(xini
)|.

Let N = {ni : i ∈ τ} and for each n ∈ N consider αn = {i ∈ τ : ni = n}.
Since N is �nite, there exists N ∈ N such that |αN | = τ . Setting τ1 = αN ,
we obtain

(3.2)
1

2M
< |(ψi ◦ IN)(xiN)|,∀i ∈ τ1.

For each i ∈ τ1, de�ne xi = xiN ∈ X and x∗i = ψi ◦ IN ∈ X∗. By (3.2),
we have

1

2M
< |x∗i (xi)| ≤ ‖ψi‖‖IN‖‖xi‖ ≤ s‖IN‖‖yi‖, ∀i ∈ τ1,

and therefore

(3.3)
1

2Ms‖IN‖
< ‖xi‖, ∀i ∈ τ1.

Next, let (ei)i∈τ denote the unit-vector basis of c0(τ). By hypothesis,
there exists T : c0(τ) → Lp〈X〉 an isomorphism from c0(τ) onto its image
such that T (ei) = xi, for each i ∈ τ . By (3.3), we have

‖(PN ◦ T )(ei)‖ = ‖xi‖ ≥
1

2Ms‖IN‖
> 0,∀i ∈ τ1.

Therefore, by [23, Remark following Theorem 3.4], there exists τ2 ⊂ τ1 such
that |τ2| = τ and PN ◦ T|c0(τ2) is an isomophism onto its image; hence,
(xi)i∈τ2 = (PN(T (ei))i∈τ2 is equivalent to the unit-vector basis of c0(τ2).

Finally, given x ∈ X, observe that

(x∗i (x))i∈τ2 = (ψi(IN(x)))i∈τ2 ∈ c0(τ2),

since (ψi)i∈τ is weak
∗-null by hypothesis. This shows that (x∗i )i∈τ2 is weak

∗-
null in X∗.
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Combining these facts with (3.2), an appeal to Theorem 6 yields a com-
plemented copy of c0(τ) in X. �

4. Complemented copies of c0(τ) in Lp([0, 1], X) spaces

Let ρ : Lp[0, 1]⊗̂∆pX → Lp([0, 1], X) be the unique linear extension of
the natural mapping g ⊗ x 7→ g(·)x, where g ∈ Lp[0, 1] and x ∈ X. By
[9, Chapters 7.1 and 7.2], ρ is a linear isometry from Lp[0, 1]⊗̂∆pX onto
Lp([0, 1], X).

For every integer m and u ∈ Lp[0, 1] we de�ne

σm(u) =
m∑
n=1

cnχn(.)

∫ 1

0

χn(s)u(s)ds

where c1 = 1 and c2k+j = 2k, for each k ≥ 0 and 1 ≤ j ≤ 2k.
We de�ne also the function Hm on [0, 1]× [0, 1] by

Hm(t, s) =
m∑
n=1

cnχn(t)χn(s).

For every integer k ≥ 1 we denote

Ik,l =

{[
l−1
2k
, l

2k

[
if 1 ≤ l ≤ 2k − 1[

1− 1
2k
, 1
]

if l = 2k.

We also write I0,1 = [0, 1] and Ck,l = Ik,l × Ik,l.
It is easy to check by induction that for each k ≥ 0, 1 ≤ l ≤ 2k and

m = 2k + l we have

Hm = 2k+1

2l∑
i=1

1Ck+1,i
+ 2k

2k∑
i=l+1

1Ck,i
,

[21, p.17], where 1A denotes the characteristic function of A ⊂ [0, 1], and
thus Hm is a positive function on [0, 1]× [0, 1]. Since one has

σm(g) =

∫ 1

0

Hm(·, s)g(s)ds,

for each g ∈ Lp[0, 1], we conclude that σm is a positive operator on Lp[0, 1].
Furthermore, ‖σm‖ = 1 and

(4.1) lim
m→∞

‖σm(g)− g‖p = 0,

for each f ∈ Lp[0, 1], by [18, p. 3] or [25, Example 2.3, p. 13].

Lemma 19. Given X a Banach space, p ∈ [1,∞) and f ∈ Lp([0, 1], X),
the series

∞∑
n=1

cnχn(·)
∫ 1

0

χn(s)f(s)ds

converges to f in Lp([0, 1], X), where c1 = 1 and c2k+j = 2k, for each k ≥ 0
and 1 ≤ j ≤ 2k.
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Proof. The natural tensor norm ‖ · ‖∆p is not an uniform cross norm, never-
theless the operator sm = σm⊗ IX is bounded and ‖sm‖ = 1 by [9, Chapter
7.2]. By (4.1), we have

lim
m→∞

‖sm(g ⊗ x)− g ⊗ x‖∆p = 0

and hence
lim
m→∞

‖sm(u)− u‖∆p = 0

for every u ∈ Lp[0, 1]⊗̂∆pX. The result then follows from the fact that ρ is
a linear isometry onto Lp([0, 1], X). �

We are now ready to prove the main result of this section.

Theorem 20. Let X be a Banach space, τ be an in�nite cardinal and
p ∈ [1,∞). If cf(τ) > ℵ0, then

c0(τ)
c
↪→ Lp([0, 1], X) =⇒ c0(τ)

c
↪→ X.

Proof. By Theorem 6, there exist families (fi)i∈τ in Lp([0, 1], X) and (ψi)i∈τ
in Lp([0, 1], X)∗ such that (fi)i∈τ is equivalent to the usual unit-vector basis
of c0(τ), (ψi)i∈τ is weak∗-null and ψ(fj) = δij, for each i, j ∈ τ . Let s =
supi∈τ ‖ψi‖ <∞.

By Lemma 19, for each i ∈ τ we have

1 = |ψi(fi)| ≤
∞∑
n=1

cn|ψi(χn(·)xin)|,

where xin =
∫ 1

0
χn(s)fi(s)ds, and thus there exists mi ≥ 1 such that

1

2
<

mi∑
n=1

cn|ψi(χn(·)xin)|.

PutM = {mi : i ∈ τ} and for each m ∈M de�ne αm = {i ∈ τ : mi = m}.
SinceM is countable and τ has uncountable co�nality, there existsM ∈M
such that |αM | = τ . Setting τ1 = αM , we have

1

2
<

M∑
n=1

cn|ψi(χn(·)xin)|,∀i ∈ τ1.

Next, for each i ∈ τ1 there exists 1 ≤ ni ≤M satisfying

1

2M
< cni

|ψi(χni
(·)xini

)|.

Let N = {ni : i ∈ τ1} and for each n ∈ N consider βn = {i ∈ τ1 : ni = n}.
Since N is �nite, there exists N ∈ N such that |βN | = τ . Setting τ2 = βN ,
we obtain

(4.2)
1

2McN
< |ψi(χN(·)xiN)|,∀i ∈ τ2.

For each i ∈ τ2, write xi = xiN and consider the linear functional x∗i ∈ X∗
de�ned by

x∗i (x) = ψi(χN(·)(x)),∀x ∈ X.
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By (4.2), we obtain

1

2McN
< |x∗i (xi)| ≤ ‖ψi‖‖χN(·)xi‖p ≤ δ‖χN‖p‖xi‖,∀i ∈ τ2,

and therefore

(4.3) ∆ < ‖xi‖,∀i ∈ τ2,

where ∆ = (2MscN‖χN‖p)−1.
Next, let (ei)i∈τ be the unit-vector basis of c0(τ) and T : c0(τ) →

Lp([0, 1], X) be an isomorphism from c0(τ) onto its image such that T (ei) =
fi, for each i ∈ τ . Consider P : Lp([0, 1], X)→ X the linear operator de�ned
by

P (f) =

∫ 1

0

χN(s)f(s)ds,∀f ∈ Lp([0, 1], X).

By (4.3), we have

‖(P ◦ T )(ei)‖ = ‖xi‖ ≥ ∆ > 0,∀i ∈ τ2.

Therefore, by [23, Remark following Theorem 3.4], there exists τ3 ⊂ τ2 such
that |τ3| = τ and P ◦ T|c0(τ3) is an isomophism onto its image; hence,

(xi)i∈τ3 = (P (T (ei))i∈τ3

is equivalent to the unit-vector basis of c0(τ3).
Finally, given x ∈ X, observe that

(x∗i (x))i∈τ3 = (ψi(χN(·)(x)))i∈τ3 ∈ c0(τ3),

since (ψi)i∈τ is weak
∗-null by hypothesis. This proves that (x∗i )i∈τ3 is weak

∗-
null in X∗.

Combining these facts with (2.1), an appeal to Theorem 6 yields a com-
plemented copy of c0(τ) in X. �

We do not know if the statement of Theorem 20 remains true in the case
p =∞.
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