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Let X be a Banach space and τ an innite cardinal. We show that if τ has uncountable conality, p ∈ [1, ∞) and either the Lebesgue-Bochner space L p ([0, 1], X) or the injective tensor product L p [0, 1] ⊗ ε X contains a complemented copy of c 0 (τ ), then so does X. We show also that if p ∈ (1, ∞) and the projective tensor product L p [0, 1] ⊗ π X contains a complemented copy of c 0 (τ ), then so does X.

Introduction and Preliminaries

We use standard set-theoretical and Banach space theory terminology as may be found, e.g., in [START_REF] Jech | Set Theory, The Third Millennium Edition, revised and expanded[END_REF] and [START_REF] Johnson | Handbook of the geometry of Banach spaces[END_REF]. We denote by B X the closed unit ball of the Banach space X. If X and Y are Banach spaces, we denote by L(X, Y ) the space of all bounded linear operators from X to Y and by K(X, Y ) the subspace of all compact linear operators. We say that Y contains a copy (resp. a complemented copy) of X, and write X → Y (resp. X c → Y ), if X is isomorphic to a subspace (resp. complemented subspace) of Y . The density character of X, denoted by dens(X), is the smallest cardinality of a dense subset of X.

A Banach space X has the bounded approximation property if there exists λ > 0 such that, for every compact subset K of X and every ε > 0, there exists a nite rank operator T : X → X such that T ≤ λ and x-T (x) < ε, for every x ∈ K.

We shall denote the projective and injective tensor norms by • π and • ε respectively. The projective (resp. injective) tensor product of X and Y is the completion of X ⊗ Y with respect to • π (resp. • ε ) and will be denoted by X ⊗ π Y (resp. X ⊗ ε Y ).

For a non-empty set Γ, c 0 (Γ) denotes the Banach space of all real-valued maps f on Γ with the property that for each ε > 0, the set {γ ∈ Γ : |f (γ)| ≥ ε} is nite, equipped with the supremum norm. We will refer to c 0 (Γ) as c 0 (τ ) when the cardinality of Γ (denoted by |Γ|) is equal to τ . This space will be denoted by c 0 when τ = ℵ 0 . By ∞ (Γ) we will denote the Banach space of all bounded real-valued maps on Γ, with the supremum norm. This space will be denoted by ∞ when Γ = N.

Given X a Banach space and p ∈ [1, ∞), we denote by L p ([0, 1], X) the Lebesgue-Bochner space of all (classes of equivalence of) measurable functions f : [0, 1] → X such that the scalar function f p is integrable, equipped with the complete norm

f p = 1 0 f (t) p dt 1 p
. These spaces will be denoted by L p [0, 1] when X = R.

A measurable function f : [0, 1] → X is essentially bounded if there exists ε > 0 such that the set {t ∈ [0, 1] : f (t) ≥ ε} has Lebesgue measure zero, and we denote by f ∞ the inmum of all such numbers ε > 0. By L ∞ ([0, 1], X) we will denote the space of all (classes of equivalence of) essentially bounded functions f : [0, 1] → X, equipped with the complete norm • ∞ .

Recall that if τ is an innite cardinal then the conality of τ , denoted by cf(τ ), is the least cardinal α such that there exists a family of ordinals {β j : j ∈ α} satisfying β j < τ for all j ∈ α, and sup{β j : j ∈ α} = τ . A cardinal τ is said to be regular when cf(τ ) = τ ; otherwise, it is said to be singular.

Many papers in the history of the geometry of Banach spaces have been devoted to establish results about when certain Banach spaces contain complemented copies of c 0 or c 0 (τ ) for uncountable cardinals τ , see for example [START_REF] Amir | The structure of weakly compact sets in Banach spaces[END_REF][START_REF] Argyros | Complementation and embeddings of c 0 (I) in Banach spaces[END_REF][START_REF] Cembranos | E) contains a complemented copy of c 0[END_REF][START_REF] Cembranos | Banach Space.s of Vector-Valued Functions[END_REF][START_REF] Emmanuele | On complemented copies of c 0 in L p X , 1 ≤ p < ∞[END_REF][START_REF] Sobczyk | Projection of the space (m) on its subspace (c 0 )[END_REF][START_REF] Zippin | The separable extension problem[END_REF]. The starting points of our research are three of these results related to the space c 0 , i.e., Theorems 1, 2 and 3 below.

We begin by recalling the following immediate consequence of the classical Cembranos-Freniche Theorem [6, Main Theorem], [START_REF] Freniche | Barrelledness of the space of vector valued and simple functions[END_REF]Corollary 2.5].

Theorem 1. For each p ∈ [1, ∞), c 0 c → L p [0, 1] ⊗ ε ∞ .
However, c 0 c → ∞ (see, e. g., [START_REF] Diestel | Vector Measures[END_REF]Corollary 11,p. 156]). On the other hand, Oja proved the following stability property. Theorem 2 ([22], Theorem 3b). If X is a Banach space and p ∈ (1, ∞), then

c 0 c → L p [0, 1] ⊗ π X =⇒ c 0 c → X.
Observe that Theorem 2 does not hold for p = 1. Indeed, [START_REF] Ryan | Introduction to Tensor Products of Banach Spaces[END_REF]Example 2.19,p. 29] and Emmanuele obtained the following result.

L 1 ([0, 1], X) is linearly isometric to L 1 [0, 1] ⊗π X
Theorem 3 ([12], Main Theorem). If X is a Banach space and p ∈ [1, ∞), then c 0 → X =⇒ c 0 c → L p ([0, 1], X).
This paper is organized as follows. We study complemented copies of c 0 (τ ) in the injective (Section 2), projective (Section 3) and natural (Section 4) tensor products with L p [0, 1].

Complemented copies of c

0 (τ ) in X ⊗ε Y spaces
The goal of this section is to prove Theorem 7. We recall that given Banach spaces X and Y , the operator S :

X ⊗ε Y → K(X * , Y ) satisfying S(v)(x * ) = j i=1 x * (a i )b i , for every x * ∈ X * and v = j i=1 a i ⊗ b i ∈ X ⊗ Y
, is a linear isometry onto its image.

We will need the following key lemma.

Lemma 5. Let X and Y be Banach spaces. Suppose that X has the bounded approximation property. Then there exist sets A ⊂ X and B ⊂ X * such that max(|A|, |B|) ≤ dens(X) and for every u ∈ X ⊗ε Y and δ > 0 there exist

x 1 , . . . , x m ∈ A and ϕ 1 , . . . , ϕ m ∈ B satisfying u - m n=1 x n ⊗ S(u)(ϕ n ) ε < δ.
Proof. By hypothesis, there exists λ ≥ 1 such that for every nite dimensional subspace Z of X there exists a nite rank operator T on X such that T ≤ λ and T (x) = x for all x ∈ Z [5, Theorem 3.3.(3), p. 288].

Let D be a dense subset of X with |D| = dens(X) and let F be the family of all nite, non-empty subsets of D. For each

F ∈ F, x a nite rank operator T F on X such that T F ≤ λ and T F (d) = d for all d ∈ F . Let m F be the dimension of T F (X), {x F 1 , . . . , x F m F } be a basis of T F (X) and ϕ F 1 , . . . , ϕ F m F ∈ X * such that T F (x) = m F n=1 ϕ F n (x)x F n ,
for every x ∈ X. Dene

A = F ∈F {x F 1 , . . . , x F m F } and B = F ∈F {ϕ F 1 , . . . , ϕ F m F }.
We claim that A and B have the desired properties. Indeed, notice that

|A| ≤ |F| sup F ∈F |{x F 1 , . . . , x F m F }| ≤ max(|D|, ℵ 0 ) = |D|
and similarly |B| ≤ |D|.

Next, let u ∈ X ⊗ε Y and δ > 0 be given. There

exists v = k j=1 d j ⊗ y j ∈ X ⊗ Y such that d 1 , . . . , d k ∈ D, d i = d j if i = j, and u -v ε < δ λ + 1
.

Writing G = {d 1 , . . . , d k }, we see that m G n=1 x G n ⊗ S(v)(ϕ G n ) = k j=1 m G n=1 ϕ G n (d j )x G n ⊗ y j = k j=1 T G (d j ) ⊗ y j = v.
Furthermore, since

m G n=1 x G n ⊗ ϕ G n ε = sup x∈B X m G n=1 ϕ G n (x)x G n = T G ≤ λ,
we obtain

m G n=1 x G n ⊗ S(u -v)(ϕ G n ) ε = sup x * ∈B X * m G n=1 x * (x G n )S(u -v)(ϕ G n ) ≤ u -v ε sup x * ∈B X * m G n=1 x * (x G n )(ϕ G n ) < δ λ + 1 m G n=1 x G n ⊗ ϕ G n ε ≤ λδ λ + 1 .
Thus,

u - m G n=1 x G n ⊗ S(u)(ϕ G n ) ε < δ
and we are done.

The following result obtained in [START_REF] Cortes | When does C 0 (K, X) contain a complemented copy of c 0 (Γ) i X does? To appear in Bull[END_REF] will also be used frequently throughout this work. Theorem 6 ([8], Theorem 2.4). Let X be a Banach space and τ be an innite cardinal. The following are equivalent:

(1) X contains a complemented copy of c 0 (τ ).

(2) There exist a family (x j ) j∈τ equivalent to the unit-vector basis of c 0 (τ ) in X and a weak * -null family (x * j ) j∈τ in X * such that, for each j, k ∈ τ ,

x * j (x k ) = δ jk .
(3) There exist a family (x j ) j∈τ equivalent to the unit-vector basis of c 0 (τ ) in X and a weak * -null family (x * j ) j∈τ in X * such that

inf j∈τ |x * j (x j )| > 0.
Theorem 7. Let X and Y be Banach spaces and τ be an innite cardinal. If X has the bounded approximation property and cf(τ ) > dens(X), then

c 0 (τ ) c → X ⊗ε Y =⇒ c 0 (τ ) c → Y.
Proof. Let A ⊂ X and B ⊂ X * be the sets provided by Lemma 5. By Theorem 6, there exist families

(u i ) i∈τ in X ⊗ε Y and (ψ i ) i∈τ in (X ⊗ε Y ) * such that (u i ) i∈τ is equivalent to the usual unit-vector basis of c 0 (τ ), (ψ i ) i∈τ is weak * -null and ψ i (u j ) = δ ij , for each i, j ∈ τ . Let s = sup i∈τ ψ i < ∞.
For each i ∈ τ there exist

x i 1 , . . . , x i m i ∈ A and ϕ i 1 , . . . , ϕ i m i ∈ B such that u i - m i n=1 x i n ⊗ S(u i )(ϕ i n ) ε < 1 2s
and hence

1 2 < m i n=1 |ψ i (x i n ⊗ S(u i )(ϕ i n ))|.
Put M = {m i : i ∈ τ } and for each m ∈ M dene α m = {i ∈ τ : m i = m}. Since M is countable and τ has uncountable conality, there exists

M ∈ M such that |α M | = τ . Setting τ 1 = α M , we have 1 2 < M n=1 |ψ i (x i n ⊗ S(u i )(ϕ i n ))|, ∀i ∈ τ 1 .
Next, for each i ∈ τ 1 there exists

1 ≤ n i ≤ M satisfying 1 2M < |ψ i (x i n i ⊗ S(u i )(ϕ i n i ))|. Let N = {n i : i ∈ τ 1 } and for each n ∈ N consider β n = {i ∈ τ 1 : n i = n}. Since N is nite, there exists N ∈ N such that |β N | = τ . Setting τ 2 = β N , we obtain 1 2M < |ψ i (x i N ⊗ S(u i )(ϕ i N ))|, ∀i ∈ τ 2 . Now let A = {x i N : i ∈ τ 2 } and for each a ∈ A put γ a = {i ∈ τ 2 : x i N = a}. Since cf(τ ) > dens(X) ≥ |A|, there exists x 0 ∈ A such that |γ x 0 | = τ . Setting τ 3 = γ x 0 , we get 1 2M < |ψ i (x 0 ⊗ S(u i )(ϕ i N ))|, ∀i ∈ τ 3 . Finally, let B = {ϕ i N : i ∈ τ 3 } and for each ϕ ∈ B put λ ϕ = {i ∈ τ 3 : ϕ i N = ϕ}. Since cf(τ ) > dens(X) ≥ |B|, there exists ϕ 0 ∈ B such that |λ ϕ 0 | = τ . Setting τ 4 = λ ϕ 0 , we obtain (2.1) 1 2M < |ψ i (x 0 ⊗ S(u i )(ϕ 0 ))|, ∀i ∈ τ 4 .
For each i ∈ τ 4 , write y i = S(u i )(ϕ 0 ) ∈ Y and consider the linear functional y * i ∈ Y * dened by y * i (y) = ψ i (x 0 ⊗ y), for every y ∈ Y . By (2.1), we have

1 2M < |y * i (y i )| ≤ ψ i x 0 y i ≤ s x 0 y i , ∀i ∈ τ 4 ,
and therefore

(2.2)

1 2M s x 0 < y i , ∀i ∈ τ 4 .
Denote by (e i ) i∈τ the unit-vector basis of c 0 (τ ) and let T : c 0 (τ ) → X ⊗ε Y be an isomorphism from c 0 (τ ) onto its image such that T (e i ) = u i , for each i ∈ τ . Consider P : X ⊗ε Y → Y the linear operator dened by P (u) = S(u)(ϕ 0 ), for every u ∈ X ⊗ε Y . The inequality (2.2) then yields

(P • T )(e i ) = y i ≥ 1 2M s x 0 > 0, ∀i ∈ τ 4
and thus, by [23, Remark following Theorem 3.4], there exists τ 5 ⊂ τ 4 such that |τ 5 | = τ and P • T |c 0 (τ 5 ) is an isomophism onto its image. This shows that (y i ) i∈τ 5 = (P (T (e i )) i∈τ 5 is equivalent to the unit-vector basis of c 0 (τ 5 ) in Y . Notice also that

(y * i (y)) i∈τ 5 = (ψ i (x 0 ⊗ y)) i∈τ 5 ∈ c 0 (τ 5 ), ∀y ∈ Y,
since (ψ i ) i∈τ is weak * -null by hypothesis. Thus, (y * i ) i∈τ 5 is weak * -null in Y * . Combining these facts with (2.1), an appeal to Theorem 6 yields a complemented copy of c 0 (τ ) in Y .

Note that according to Theorem 1 the above result is optimal. Moreover, Theorem 7 does not hold for cardinals with uncountable conality equal to the density of X. Indeed, by [START_REF] Galego | Copies of c 0 (Γ) in C(K, X) spaces[END_REF]Theorem 4.5] it follows that

c 0 (τ ) c → 1 (τ ) ⊗ε ∞ (τ ), however according to [10, Corollary 11, p. 156] c 0 (τ ) c → ∞ (τ ).
As a direct application of Theorem 7, we have:

Corollary 8. Let X be a Banach space, p ∈ [1, ∞) and τ an innite cardinal with cf(τ ) > ℵ 0 . Then c 0 (τ ) c → L p [0, 1] ⊗ε X =⇒ c 0 (τ ) c → X. 3. Complemented copies of c 0 (τ ) in L p [0, 1] ⊗π X spaces
We will use a convenient characterization of L p [0, 1] ⊗π X as a sequence space.

3.1. The spaces L weak p (X) and L p X . We will denote by (χ n ) n≥1 the Haar system, that is, the sequence of functions dened on [0, 1] by χ 1 (t) = 1, for every t ∈ [0, 1], and [18, p. 3], [19, p. 155]) that the Haar system is an unconditional basis of L p [0, 1], p ∈ (1, ∞), and we will denote its unconditional basis constant by K p . Following [START_REF] Bu | Observations about the projective tensor product of Banach spaces, II -L p (0, 1) ⊗ X, 1 < p < ∞[END_REF][START_REF] Dowling | Stability of Banach space properties in the projective tensor product[END_REF], we renorm L p [0, 1] by

χ 2 k +j (t) =      1, if t ∈ 2j-2 2 k+1 , 2j-1 2 k+1 , -1, if t ∈ 2j-1 2 k+1 , 2j 2 k+1 , 0, otherwise, for each k ≥ 0 and 1 ≤ j ≤ 2 k . It is well known (see
f new p = sup    ∞ n=1 θ n α n χ n p : θ n = ±1, n ≥ 1    , for each f = ∞ n=1 α n χ n ∈ L p [0, 1]. Then • p ≤ • new p ≤ K p • p and (χ n ) n≥1 is a monotone, unconditional basis with respect to • new p . By L new p [0, 1] we will denote L p [0, 1] equipped with the norm • new p . Now, for each n ≥ 1 let e p n = χ n χ n new p .
The sequence (e p n ) n≥1 is a normalized, unconditional basis of L new p [0, 1] whose unconditional basis constant is 1. Furthermore, by [18, p. 18], (e p n ) n≥1 is also a boundedly complete basis.

Given X a Banach space and p, q ∈ (1, ∞) satisfying 1/p + 1/q = 1, we denote by L weak p (X) the space

(x n ) n≥1 ∈ X N : ∞ n=1 x * (x n )e p n converges in L new p [0, 1] for each x * ∈ X *
equipped with the norm

x weak p = sup    ∞ n=1 x * (x n )e p n new p : x * ∈ B X *    ,
and by L p X the space

(x n ) n≥1 ∈ X N : ∞ n=1 |x * n (x n )| < ∞ for each (x * n ) n≥1 ∈ L weak q (X * )
with the norm

x Lp X = sup ∞ n=1 |x * n (x n )| : (x * n ) n≥1 ∈ B L weak q (X * )
, where x = (x n ) n≥1 . With their own respective norms, L weak p (X) and L p X are Banach spaces [START_REF] Bu | Observations about the projective tensor product of Banach spaces, II -L p (0, 1) ⊗ X, 1 < p < ∞[END_REF].

For each n ≥ 1, we will denote by I n : X → X N the natural inclusion

I n (x) = (δ mn x) m≥1 , ∀x ∈ X.
It is easy to see that I n (x) weak p = x and furthermore, by [18, Proposition 1.c.7], we know that I n (x) Lp X ≤ 2 x , for every x ∈ X.

We shall consider also the following closed subspace of L weak p (X):

F p (X) =    x = (x n ) n≥1 ∈ L weak p (X) : x - m n=1 I n (x n ) weak p -→ 0    .
Next, we recall some results obtained in [START_REF] Bu | Observations about the projective tensor product of Banach spaces, II -L p (0, 1) ⊗ X, 1 < p < ∞[END_REF].

Theorem 9 ([3], Theorem 2.4). Given X a Banach space, p ∈ (1, ∞) and x = (x n ) n≥1 ∈ L p X , the series ∞ n=1 I n (x n ) converges to x in L p X . The next one gives a sequential representation of L p [0, 1] ⊗π X.
Theorem 10 ([3], Theorem 3.4). Let X be a Banach space and p ∈ (1, ∞).

The function

Ψ : L p X → L p [0, 1] ⊗π X dened by Ψ(x) = ∞ n=1 e p n ⊗ x n , for each x = (x n ) n≥1 ∈ L p X , is an isomorphism onto L p [0, 1] ⊗π X.
Theorem 11. Let X be a Banach space and p, q ∈ (1, ∞) such that 1/p + 1/q = 1. Then L weak q (X) is isomorphic to L(L p [0, 1], X) and its subspace F q (X) is isomorphic to K(L p [0, 1], X). Proof. Let (e * n ) n≥1 be the sequence of coordinate functionals in L p [0, 1] * with respect to the basis (e p n ) n≥1 . It is easy to check that the usual isometry from L p [0, 1] * onto L q [0, 1] associates the functional e * n to e q n . Fix

x = (x n ) n≥1 ∈ L weak q (X) and f = ∞ n=1 α n e p n ∈ L p [0, 1]. We claim that the series ∞ n=1 α n x n converges in X. Indeed, given k ≥ j ≥ 1 we have k n=j α n x n = k n=j e * n (f )x n = sup x * ∈B X * k n=j e * n (f )x * (x n ) = sup x * ∈B X * k n=j x * (x n )e * n k m=j e * m (f )e p m ≤ sup x * ∈B X * k n=j x * (x n )e * n k m=j e * m (f )e p m = sup x * ∈B X * k n=j x * (x n )e q n q k m=j e * m (f )e p m ≤ x weak q k m=j e * m (f )e p m
and therefore the partial sums of the series ∞ n=1 α n x n form a Cauchy sequence in X, which establishes our claim.

This proves that I : L weak q (X) → L(L p [0, 1], X) given by

I(x)(f ) = ∞ n=1 α n x n , for each x = (x n ) n≥1 ∈ L weak q (X) and f = ∞ n=1 α n e p n ∈ L p [0, 1]
, is a well dened linear operator satisfying I(x) ≤ x weak q . Let us show now that I is an isomorphism onto L(L p [0, 1], X). Fix S ∈ L(L p [0, 1], X) and consider y = (S(e p n )) n≥1 . We claim that y ∈ L weak q . Indeed, for each m ≥ 1 and x * ∈ B X * we have Since (e q n ) n≥1 is a boundedly complete basis, the claim is established. This shows that I : L(L p [0, 1], X) → L weak q (X) dened by I (S) = (S(e p n )) n≥1 , is a bounded linear operator with I ≤ K p . Furthermore, it is easy to see that I is the inverse of I. Thus, I is an isomorphism onto L(L p [0, 1], X).

Next we will show that I maps F q (X) onto K(L p [0, 1], X). It is clear that

I(F q (X)) is subset of K(L p [0, 1], X). Next, x T ∈ K(L p [0, 1], X). Since I is onto L(L p [0, 1], X)
, there exists an unique y = (y n ) n≥1 ∈ L weak q (X) such that I(y) = T . We will show that y ∈ F q (X). Fix ε > 0 and denote by (P n ) n≥1 the sequence of projections associated to the basis (e p n ) n . Since (e * n ) n≥1 is a Schauder basis of L p [0, 1] * and T is compact, the sequence (P * n ) n≥1 converges uniformly to the identity operator on the compact set T * (B X * ). Hence, there exists N ≥ 1 such that P * m (T * (x * )) -T * (x * ) < ε/K p for every x * ∈ B X * and m ≥ N , and thus T • P m -T ≤ ε/K p , for every m ≥ N . It is easy to see that

I m n=1 I n (y n ) = T • P m ,
for every m ≥ 1. Therefore we have y -

m n=1 I n (y n ) weak q ≤ I -1 T -T • P m < ε,
for every m ≥ N , and thus y ∈ F q (X). The proof is complete.

3.2.

The duals of the spaces L p X and F q (X). It is well known that L p X * is linearly isomorphic to L(L p [0, 1], X * ) [24, Theorem 2.9] and that F q (X) * is linearly isomorphic to L q [0, 1] ⊗ π X * [24, Theorem 5.33].

This subsection will be devoted to obtaining convenient characterizations of the duals of the spaces F q (X) and L p X .

Proposition 12. Given X a Banach space, p ∈ (1, ∞), x = (x n ) n≥1 ∈ L p X and ϕ ∈ L p X * , the series ∞ n=1 (ϕ • I n )(x n ) converges absolutely. Proof. For each n ≥ 1, let θ n = sign(ϕ • I n )(x n ). Then y = (θ n x n ) n≥1 ∈ L p X and by Theorem 9 we have ∞ n=1 |(ϕ • I n )(x n )| = ∞ n=1 (ϕ • I n )(θ n x n ) = ϕ(y),
as desired.

Similarly to the previous proposition, we have:

Proposition 13. Given X a Banach space, p ∈ (1, ∞), x = (x n ) n≥1 ∈ F p (X) and ϕ ∈ F p (X) * , the series ∞ n=1 (ϕ • I n )(x n ) converges absolutely. Proof. For each n ≥ 1, let θ n = sign(ϕ • I n )(x n ).
Since (e p n ) n≥1 is an unconditional basis with unconditional constant equal to 1, it follows that the series ∞ n=1 θ n x * (x n )e p n converges in L new p [0, 1] for every x * ∈ X * . Moreover, for every k ≥ 1 and x * ∈ X * we have

∞ n=k θ n x * (x n )e p n new p = ∞ n=k x * (x n )e p n new p and so (θ n x n ) n≥1 ∈ F p (X). Thus, ∞ n=1 θ n (ϕ • I n )(x n ) converges. Proposition 14.
Let X be a Banach space and p, q ∈ (1, ∞) such that 1/p + 1/q = 1. A sequence x * = (x * n ) n≥1 of elements of X * belongs to L p X * if, and only if, the series ∞ n=1 x * n (x n ) converges absolutely, for each x = (x n ) n≥1 ∈ F q (X). Furthermore, in this case one has

x * Lp X ≤ sup ∞ n=1 |x * n (x n )| : x = (x n ) n≥1 ∈ B Fq(X) < ∞.
Proof. Let us show the non-trivial implication. Let x * = (x * n ) n≥1 be a sequence of elements of X * such that the series ∞ n=1 x * n (x n ) converges absolutely, for each x = (x n ) n≥1 ∈ F q (X). We claim that

S(x * ) = sup ∞ n=1 |x * n (x n )| : x = (x n ) n≥1 ∈ B Fq(X) < ∞.
Indeed, for each m ≥ 1, consider the set

U m = x = (x n ) n≥1 ∈ B Fq(X) : n≥1 |x * n (x n )| ≤ m .
It is easy to check that U m is a closed, absolutely convex subset of B Fq(X) . Since B Fq(X) = m≥1 U m has non-empty interior, by Baire's Theorem there exists M ≥ 1 such that U M has non-empty interior. The absolute convexity of U M implies that 0 is an interior point of U M , that is, there exists r > 0 satisfying

x = (x n ) n≥1 ∈ B Fq(X) : x weak q ≤ r ⊂ U M .
This proves that S(x * ) ≤ M r and our claim is established. Next, let us show that

x * = (x * n ) n≥1 ∈ L p X * . Fix x * * = (x * * n ) n≥1 ∈ L weak q (X * * ), m ≥ 1 and ε > 0. Put Y = span{x * * 1 , . . . , x * * m }. By the Principle of Local Reexivity [20, Theorem 2], there exists a linear operator T : Y → X satisfying T ≤ 1 + ε and x * n (T (x * * n )) = x * * n (x * n ), for each 1 ≤ n ≤ m. Put y = (y n ) n≥1 ∈ F q (X), where y n = T (x * * n ), if 1 ≤ n ≤ m,
and y n = 0 otherwise.

Since (e q n ) n≥1 is an unconditional basis, by [18, p. 18] we have

y weak q = sup x * ∈B X * m n=1 (x * • T )(x * * n )e q n new q ≤ (1 + ε) sup ϕ∈B X * * * m n=1 ϕ(x * * n )e q n new q ≤ (1 + ε) sup ϕ∈B X * * * ∞ n=1 ϕ(x * * n )e q n new q = (1 + ε) x * * weak q and hence m n=1 |x * * n (x * n )| ≤ S(x * ) y weak q ≤ (1 + ε)S(x * ) x * * weak q .
Since ε > 0 was arbitrary, we obtain

m n=1 |x * * n (x * n )| ≤ S(x * ) x * * weak q ,
for each m ≥ 1, which in turn implies

∞ n=1 |x * * n (x * n )| ≤ S(x * ) x * * weak q .
Thus, x * ∈ L p X * and x * Lp X ≤ S(x * ), as desired.

Theorem 15. Let X be a Banach space and p, q ∈ (1, ∞) such that 1/p + 1/q = 1. The function H : F q (X) * → L p X * dened by

H(ϕ) = (ϕ • I n ) n≥1 ,
for each ϕ ∈ F q (X) * , is a linear isometry onto L p X * .

Proof. Given ϕ ∈ F q (X) * , Propositions 13 and 14 imply that (ϕ

• I n ) n≥1 ∈ L p X * .
Thus, H is well dened. It is clear that H is linear. By Proposition 13, we have

H(ϕ) Lp X * ≤ sup ∞ n=1 |(ϕ • I n )(x n )| : x = (x n ) n≥1 ∈ B Fq(X) = sup ∞ n=1 (ϕ • I n )(x n ) : x = (x n ) n≥1 ∈ B Fq(X) = sup |ϕ(x)| : x = (x n ) n≥1 ∈ B Fq(X) = ϕ ,
where the rst equality follows immediately from the proof of Proposition 13. On the other hand,

H(ϕ) Lp X * = sup ∞ n=1 |x * * n (ϕ • I n )| : x * * = (x * * n ) n≥1 ∈ B L weak q (X * * ) ≥ sup ∞ n=1 |(ϕ • I n )(x n )| : x = (x n ) n≥1 ∈ B Fq(X) = ϕ .
This shows that H is an isometry onto its image. Finally, given

x * = (x * n ) n≥1 ∈ L p X * , the function ψ : F q (X) → R dened by ψ(x) = ∞ n=1 x * n (x n ), for each x = (x n ) n≥1 ∈ F q (X)
, is a linear functional on F q (X) and it is clear that H(ψ) = x * . This completes the proof.

Next, we establish an isomorphism from L p X * onto L weak q (X * ).

Theorem 16. Let X be a Banach space and p, q ∈ (1, ∞) such that 1/p + 1/q = 1. The function J : L weak q (X * ) → L p X * given by

J (x * )(x) = ∞ n=1 x * n (x n ), for each x * = (x n ) n≥1 ∈ L weak q (X * ) and x = (x n ) n≥1 ∈ L p X , is an isomor- phism onto L p X * .
Proof. Let Ψ : L p X → L p [0, 1] ⊗π X be the isomorphism dened in Theorem 10, I : L weak q (X * ) → L(L p [0, 1], X * ) be the isomorphism dened in Theorem 11, and consider Φ :

L(L p [0, 1], X * ) → (L p [0, 1] ⊗π X) * the canonical linear isometry [24, p. 24]. Given x * = (x n ) n≥1 ∈ L weak q (X * ) and x = (x n ) n≥1 ∈ L p X , we have (Ψ * • Φ • I)(x * )(x) = (Φ • I)(x * )(Ψ(x)) = ∞ n=1 (Φ • I)(x * )(e p n ⊗ x n ) = ∞ n=1 I(x * )(e p n )(x n ) = J (x * )(x) = ∞ n=1 x * n (x n )
and therefore J = Ψ * • Φ • I. The proof is complete.

3.3.

Complemented copies of c 0 (τ ) in L p X spaces. The next lemma will play a crucial role in the proof of Theorem 18.

Lemma 17. Let X be a Banach space, τ be an innite cardinal and p, q ∈ (1, ∞) such that 1/p + 1/q = 1. Suppose that

(x i ) i∈τ = ((x i n ) n≥1
) i∈τ is a family equivalent to the canonical basis of c 0 (τ ) in L p X and let (ϕ i ) i∈τ be a bounded family in L p X * . Then for each ε > 0 there exists M ≥ 0 such that

∞ n=M +1 (ϕ i • I n )(x i n ) < ε, ∀i ∈ τ.
Proof. We recall that the series

∞ n=1 (ϕ i • I n )(x i n ) converges absolutely for each i ∈ τ , by Proposition 12. Let s = sup i∈τ ψ i < ∞.
Suppose the thesis does not hold. Then there exists ε > 0 such that, for each m ≥ 0, there exists i ∈ τ satisfying

∞ n=m+1 (ϕ i • I n )(x i n ) ≥ ε.
We proceed by induction. For M 0 = 0, there exists

i 1 ∈ τ such that ∞ n=1 (ϕ i 1 • I n )(x i 1 n ) ≥ ε. The absolute convergence of ∞ n=1 (ϕ i 1 • I n )(x i 1 n ) yields M 1 ≥ 1 such that ∞ n=M 1 +1 |(ϕ i 1 • I n )(x i 1 n )| < ε 2 .
Thus we have

M 1 n=1 (ϕ i 1 • I n )(x i 1 n ) > ε 2 .
Suppose we have obtained, for some k ≥ 1, strictly increasing natural numbers 0 = M 0 < M 1 < . . . < M k and distinct i 1 , . . . , i k ∈ τ satisfying (3.1)

M j n=N j (ϕ i j • I n )(x i j n ) > ε 2 > ∞ n=M j +1 |(ϕ i j • I n )(x i j n )|,
where N j = M j-1 + 1, for each 1 ≤ j ≤ k. By hypothesis, there exists

i k+1 ∈ τ such that ∞ n=M k +1 (ϕ i k+1 • I n )(x i k+1 n ) ≥ ε. The absolute convergence of ∞ n=1 (ϕ i k+1 • I n )(x i k+1 n ) yields M k+1 ≥ M k + 1 such that ∞ n=M k+1 |(ϕ i k+1 • I n )(x i k+1 n )| < ε 2 .
Thus we have

M k+1 n=M k +1 (ϕ i k+1 • I n )(x i k+1 n ) > ε 2 .
The above inequality and (3.1) imply that i k+1 / ∈ {i 1 , . . . , i k }.

For each j ≥ 1, consider x * j = (x * j,n ) n≥1 ∈ F q (X * ), where

x * j,n = ϕ i j • I n , if N j ≤ n ≤ M j , 0,
otherwise.

We claim that (x * j ) j≥1 is weakly-null in F q (X * ). Indeed, x ψ ∈ F q (X) * and δ > 0. Let J be the isomorphism dened in Theorem 16. By Theorem 15, the sequence (ψ • J n ) n≥1 belongs to L p X * , where J n : X * → (X * ) N is the usual inclusion. By Theorem 9, there exists N ≥ 1 such that

∞ n=m K n (ψ • J n ) Lp X * < δ s J -1 ,
for each m ≥ N , where K n : X * * → (X * * ) N is the usual inclusion. Since the sequence (N j ) j≥1 is strictly increasing, there exists J ≥ 1 such that N j ≥ N , for all j ≥ J. Thus we have

|ψ(x * j )| = M j n=N j (ψ • J n )(x * j,n ) ≤ x * j weak q M j n=N j K n (ψ • J n ) Lp X * ≤ (ϕ i j • I n ) n≥1 weak q δ s J -1 = J -1 (ϕ i j ) weak q δ s J -1 ≤ δ,
for all j ≥ J. Claim established. Now, let θ j = J (x * j ) ∈ L p X * , for each j ≥ 1. By our claim, (θ j ) j≥1 is weakly-null. On the other hand, by (3.1) we have

|θ j (x i j )| = M j n=N j (ϕ i j • I n )(x i j n ) > ε 2 , ∀j ≥ 1.
This contradicts the Dunford-Pettis property of c 0 [13, p. 596], and we are done.

Theorem 18. Given X a Banach space, p ∈ (1, ∞) and τ an innite cardinal, we have

c 0 (τ ) c → L p [0, 1] ⊗π X =⇒ c 0 (τ ) c → X.
Proof. By Theorems 6 and 10, there exist families (x i ) i∈τ = ((x i n ) n≥1 ) i∈τ in L p X and (ψ i ) i∈τ in L p X * such that (x i ) i∈τ is equivalent to the usual unit-vector basis of c 0 (τ ), (ψ i ) i∈τ is weak * -null and ψ i (x j ) = δ ij , for each i, j ∈ τ . Let s = sup i∈τ ψ i < ∞.

An appeal to Lemma 17 yields M ≥ 0 such that

∞ n=M +1 (ϕ i • I n )(x i n ) < 1 2 , ∀i ∈ τ. Since 1 = ψ i (x i ) = ∞ n=1 (ϕ i • I n )(x i n ), we have M ≥ 1 and 1 2 < M n=1 |(ψ i • I n )(x i n )|, ∀i ∈ τ.
Next, for each i ∈ τ there exists

1 ≤ n i ≤ M satisfying 1 2M < |(ψ i • I n i )(x i n i )|. Let N = {n i : i ∈ τ } and for each n ∈ N consider α n = {i ∈ τ : n i = n}. Since N is nite, there exists N ∈ N such that |α N | = τ . Setting τ 1 = α N , we obtain (3.2) 1 2M < |(ψ i • I N )(x i N )|, ∀i ∈ τ 1 .
For each i ∈ τ 1 , dene

x i = x i N ∈ X and x * i = ψ i • I N ∈ X * . By (3.2), we have 1 2M < |x * i (x i )| ≤ ψ i I N x i ≤ s I N y i , ∀i ∈ τ 1 ,
and therefore

(3.3) 1 2M s I N < x i , ∀i ∈ τ 1 .
Next, let (e i ) i∈τ denote the unit-vector basis of c 0 (τ ). By hypothesis, there exists T : c 0 (τ ) → L p X an isomorphism from c 0 (τ ) onto its image such that T (e i ) = x i , for each i ∈ τ . By (3.3), we have

(P N • T )(e i ) = x i ≥ 1 2M s I N > 0, ∀i ∈ τ 1 .
Therefore, by [23, Remark following Theorem 3.4], there exists τ 2 ⊂ τ 1 such that |τ 2 | = τ and P N • T |c 0 (τ 2 ) is an isomophism onto its image; hence, (x i ) i∈τ 2 = (P N (T (e i )) i∈τ 2 is equivalent to the unit-vector basis of c 0 (τ 2 ). Finally, given x ∈ X, observe that

(x * i (x)) i∈τ 2 = (ψ i (I N (x))) i∈τ 2 ∈ c 0 (τ 2 ),
since (ψ i ) i∈τ is weak * -null by hypothesis. This shows that (x * i ) i∈τ 2 is weak *null in X * .

Combining these facts with (3.2), an appeal to Theorem 6 yields a complemented copy of c 0 (τ ) in X.

Complemented copies of c

0 (τ ) in L p ([0, 1], X) spaces Let ρ : L p [0, 1] ⊗ ∆p X → L p ([0, 1 
], X) be the unique linear extension of the natural mapping g ⊗ x → g(•)x, where g ∈ L p [0, 1] and x ∈ X. By [9, Chapters 7.1 and 7.2], ρ is a linear isometry from

L p [0, 1] ⊗ ∆p X onto L p ([0, 1], X).
For every integer m and u ∈ L p [0, 1] we dene

σ m (u) = m n=1 c n χ n (.) 1 0 χ n (s)u(s)ds where c 1 = 1 and c 2 k +j = 2 k , for each k ≥ 0 and 1 ≤ j ≤ 2 k .
We dene also the function

H m on [0, 1] × [0, 1] by H m (t, s) = m n=1 c n χ n (t)χ n (s).
For every integer k ≥ 1 we denote

I k,l = l-1 2 k , l 2 k if 1 ≤ l ≤ 2 k -1 1 -1 2 k , 1 if l = 2 k . We also write I 0,1 = [0, 1] and C k,l = I k,l × I k,l .
It is easy to check by induction that for each k ≥ 0, 1 ≤ l ≤ 2 k and m = 2 k + l we have for every u ∈ L p [0, 1] ⊗ ∆p X. The result then follows from the fact that ρ is a linear isometry onto L p ([0, 1], X).

We are now ready to prove the main result of this section. Proof. By Theorem 6, there exist families (f i ) i∈τ in L p ([0, 1], X) and (ψ i ) i∈τ in L p ([0, 1], X) * such that (f i ) i∈τ is equivalent to the usual unit-vector basis of c 0 (τ ), (ψ i ) i∈τ is weak * -null and ψ(f j ) = δ ij , for each i, j ∈ τ . Let s = sup i∈τ ψ i < ∞.

By Lemma 19, for each i ∈ τ we have Next, for each i ∈ τ 1 there exists 1 ≤ n i ≤ M satisfying

1 = |ψ i (f i )| ≤ ∞ n=1 c n |ψ i (χ n (•)x i n )|,
1 2M < c n i |ψ i (χ n i (•)x i n i )|.
Let N = {n i : i ∈ τ 1 } and for each n ∈ N consider β n = {i ∈ τ 1 : n i = n}.

Since N is nite, there exists N ∈ N such that |β N | = τ . Setting τ 2 = β N , we obtain (4.2)

1 2M c N < |ψ i (χ N (•)x i N )|, ∀i ∈ τ 2 .
For each i ∈ τ 2 , write x i = x i N and consider the linear functional x * i ∈ X * dened by

x * i (x) = ψ i (χ N (•)(x)), ∀x ∈ X.

H m = 2 k+1 2l i=1 1 C

 1 k+1,i + 2 k 2 k i=l+1 1 C k,i ,[21, p.17], where 1 A denotes the characteristic function of A ⊂ [0, 1], and thus H m is a positive function on [0, 1] × [0, 1]. Since one has σ m (g) =

1 0H 1 0

 11 m (•, s)g(s)ds, for each g ∈ L p [0, 1], we conclude that σ m is a positive operator on L p [0, 1]. Furthermore, σ m = 1 and (4.1)lim m→∞ σ m (g) -g p = 0, for each f ∈ L p [0, 1], by [18, p. 3] or [25, Example 2.3, p. 13]. Lemma 19. Given X a Banach space, p ∈ [1, ∞) and f ∈ L p ([0, 1], X), the series ∞ n=1 c n χ n (•) χ n (s)f (s)ds converges to f in L p ([0, 1], X), where c 1 = 1 and c 2 k +j = 2 k , for each k ≥ 0 and 1 ≤ j ≤ 2 k .Proof. natural tensor norm • ∆p is not an uniform cross norm, nevertheless the operator s m = σ m ⊗ I X is bounded and s m = 1 by [9, Chapter 7.2]. By (4.1), we have lim m→∞ s m (g ⊗ x) -g ⊗ x ∆p = 0 and hence lim m→∞ s m (u) -u ∆p = 0

Theorem 20 .

 20 Let X be a Banach space, τ be an innite cardinal andp ∈ [1, ∞). If cf(τ ) > ℵ 0 , then c 0 (τ ) c → L p ([0, 1], X) =⇒ c 0 (τ ) c → X.

where x i n = 1 0cc

 1 χ n (s)f i (s)ds, and thus there existsm i ≥ 1 such that n |ψ i (χ n (•)x i n )|. Put M = {m i : i ∈ τ } and for each m ∈ M dene α m = {i ∈ τ : m i = m}.Since M is countable and τ has uncountable conality, there existsM ∈ M such that |α M | = τ . Setting τ 1 = α M , we have n |ψ i (χ n (•)x i n )|, ∀i ∈ τ 1 .
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By (4.2), we obtain

and therefore

where ∆ = (2M sc N χ N p ) -1 . Next, let (e i ) i∈τ be the unit-vector basis of c 0 (τ ) and T : c 0 (τ ) → L p ([0, 1], X) be an isomorphism from c 0 (τ ) onto its image such that T (e i ) = f i , for each i ∈ τ . Consider P : L p ([0, 1], X) → X the linear operator dened by

By (4.3), we have

Therefore, by [23, Remark following Theorem 3.4], there exists τ 3 ⊂ τ 2 such that |τ 3 | = τ and P • T |c 0 (τ 3 ) is an isomophism onto its image; hence,

is equivalent to the unit-vector basis of c 0 (τ 3 ).

Finally, given x ∈ X, observe that

since (ψ i ) i∈τ is weak * -null by hypothesis. This proves that (x * i ) i∈τ 3 is weak *null in X * .

Combining these facts with (2.1), an appeal to Theorem 6 yields a complemented copy of c 0 (τ ) in X.

We do not know if the statement of Theorem 20 remains true in the case p = ∞.