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= QOperational requirements for PV power forecasting:
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Provide both short- and long-term accurate forecasts
Provide forecasts with small resolutions
Probabilistic forecasts for decision under uncertainty

As fast as possible
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= Many PV power forecasting models satisfy some of these
requirements.

" |n this work we propose a single model to meet all these
objectives at once.

= This effectively simplifies the usage of PV power forecasts in
several decision-making processes
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= Solution based on the Analog Ensemble (AnEn) method [Alessandrini2015]:

»  Provide both short-term and long-term accurate forecasts

>  Provide forecasts with

»  Probabilistic forecasts for decision under uncertainty

» As as possible

[Alessandrini2015]: Stefano Alessandrini et al., An analog ensemble for short-term probabilistic solar power forecast, In: Applied
Energy (2011) 4
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= To achieve short-term forecasts:

statistical learning models
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Source: Solar Training 2016, OIE- Transvalor 6
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= Standard AnEn model:
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" The weights w; are optimized on a training set (“wrapper”)
» We propose a “filter” approach to compute the weights directly from the
history without an optimization loop
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= When h is the forecast horizon:
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= The weights w;* are dependent on the forecast horizon.

» Compute the weight of each feature based on its Mutual Information (M)
with the measurements

» Normalize the weight so that the sum of all the weights coming from a
same data source is not higher than a set limit.
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= Satellite data: Estimation of GHI time series for each pixel from
geostationary satellite images following [Blanc2011]
» Very large number of redundant features
» Selection of representative pixels based on Ml with the measurements
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[Blanc2011]: Philippe Blanc et al., The HelioClim project : Surface solar irradiance data for climate applications, In: Remote
Sensing 3.2 (2011)
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= Forecast performance for day-ahead 30-minute forecasts:
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= Forecast performance for intra-day 5-minute forecasts:
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COMPUTATION TIME REQUIRED FOR PROVIDING THE FORECASTS FOR

ONE GIVEN HORIZON, IN SECONDS

30-minute resolution
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= Added value from satellite data:

|
Lo

4.5

CRPS (%)

4.0

— With ground measurements and satellite data
= = With ground measurements only
| I I I | |

2 4 G 8 10 12

30
|

Forecast horizon (hour) 14



° ° /
Conclusions and perspectives AT, psix

ParisTech

» Forecast for an aggregation of 13 plants, 92 MW
» Stochastic control of the aggregation
participating in electricity markets with storage

Energy (kVvh)
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= Asingle forecasting model that can quickly provide accurate forecast for
temporal resolutions from 5-minute to 1-hour, and horizon from 5 minutes to 3
hours

= Added value from satellite data is still limited:
» Correct residual weights for measurements at the 24-hour horizon
» Add a Convolutional Neural Network to extract relevant features from satellite pictures

= Integrate all-sky imagers to further improve short-term forecasts

= T. Carriere, C. Vernay, S. Pitaval, F.P. Neirac, G. Kariniotakis, A Novel Approach
for Probabilistic Photovoltaic Power Forecasting Covering Multiple Time
Frames, Under revision for IEEE Transactions on Smart Grid, Preprint available
at https://hal.archives-ouvertes.fr/hal-02043353
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