

Probabilistic photovoltaic forecasting combining heterogeneous sources of input data for multiple time-frames

Thomas Carriere, Christophe Vernay, Sebastien Pitaval, François-Pascal Neirac, George Kariniotakis

ICEM, Copenhagen, 27th July 2019

Operational requirements for PV power forecasting:

- Provide both short- and long-term accurate forecasts
- Provide forecasts with small resolutions
- Probabilistic forecasts for decision under uncertainty
- As fast as possible

Many PV power forecasting models satisfy some of these requirements.

In this work we propose a single model to meet all these objectives at once.

 This effectively simplifies the usage of PV power forecasts in several decision-making processes

- Solution based on the Analog Ensemble (AnEn) method [Alessandrini2015]:
 - Provide both short-term and long-term accurate forecasts
 - Provide forecasts with small resolutions
 - Probabilistic forecasts for decision under uncertainty

> As fast as possible

[Alessandrini2015]: Stefano Alessandrini et al., An analog ensemble for short-term probabilistic solar power forecast, In: Applied Energy (2011)

To achieve short-term forecasts:

Use of different data sources:

- Measurements for very short-term
- Satellite data for short-term

Source: Solar Training 2016, OIE- Transvalor

Standard AnEn model:

$$||F_t, A_t|| = \sum_{i=1}^{N_v} \frac{w_i}{\sigma_{f_i}} \sqrt{\sum_{j=-k}^{k} (F_{i,t-j} - A_{i,t-j})^2}$$

The weights w_i are optimized on a training set ("wrapper")
We propose a "filter" approach to compute the weights directly from the history without an optimization loop

• When *h* is the forecast horizon:

$$||F_t, A_t^h|| = \sum_{i=1}^{N_v} w_i^h \sqrt{\sum_{j=-k}^k (F_{i,t-j} - A_{i,t-j}^h)^2}$$

The weights w^h_i are dependent on the forecast horizon.

- Compute the weight of each feature based on its Mutual Information (MI) with the measurements
- Normalize the weight so that the sum of all the weights coming from a same data source is not higher than a set limit.

- Satellite data: Estimation of GHI time series for each pixel from geostationary satellite images following [Blanc2011]
 - Very large number of redundant features
 - > Selection of representative pixels based on MI with the measurements

[Blanc2011]: Philippe Blanc et al., *The HelioClim project : Surface solar irradiance data for climate applications*, In: Remote Sensing 3.2 (2011)

11

Comparative results

Forecast performance for day-ahead 30-minute forecasts:

Forecast performance for intra-day 5-minute forecasts:

COMPUTATION TIME REQUIRED FOR PROVIDING THE FORECASTS FOR ONE GIVEN HORIZON, IN SECONDS

	30-minute resolution		5-minute resolution	
	Training	Forecasting	Training	Forecasting
AnEn	-	1.87	-	8.77
Persistence 1	-	5e-3	-	6e-3
Persistence 2	-	5e-3	-	6e-3
ARIMA	9.2e-2	2.5e-7	10e-2	3.7e-3
QRF	4.26	1.3e-2	68.0	4e-2
ARD	10.75	10e-3	154	1e-3

Added value from satellite data:

Forecast horizon (hour)

Conclusions and perspectives

 Forecast for an aggregation of 13 plants, 92 MW
Stochastic control of the aggregation participating in electricity markets with storage

- A single forecasting model that can quickly provide accurate forecast for temporal resolutions from 5-minute to 1-hour, and horizon from 5 minutes to 3 hours
- Added value from satellite data is still limited:
 - Correct residual weights for measurements at the 24-hour horizon
 - Add a Convolutional Neural Network to extract relevant features from satellite pictures
- Integrate all-sky imagers to further improve short-term forecasts
- T. Carriere, C. Vernay, S. Pitaval, F.P. Neirac, G. Kariniotakis, A Novel Approach for Probabilistic Photovoltaic Power Forecasting Covering Multiple Time Frames, Under revision for IEEE Transactions on Smart Grid, Preprint available at <u>https://hal.archives-ouvertes.fr/hal-02043353</u>