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Abstract This paper describes a new instance library for Quadratic Program-
ming (QP), i.e., the family of continuous and (mixed)-integer optimization
problems where the objective function, the constrains, or both are quadratic.
QP is a very “varied” class of problems, comprising sub-classes of problems
ranging from trivial to undecidable. Solution methods for QP are very diverse,
ranging from entirely combinatorial ones to completely continuous ones, includ-
ing many for which both aspects are fundamental. Selecting a set of instances
of QP that is at the same time not overwhelmingly onerous but sufficiently
challenging for the many different interested communities is therefore important.
We propose a simple taxonomy for QP instances that leads to a systematic
problem selection mechanism. We then briefly survey the field of QP, giving an
overview of theory, methods and solvers. Finally, we describe how the library
was put together, and detail its final contents.

Keywords Instance Library, Quadratic Programming

Mathematics Subject Classification (2000) 90C06 · 90C25

1. Introduction

Quadratic Programming (QP) problems—mathematical optimization prob-
lems for which the objective function [150], the constraints [151], or both
are polynomial function of the variables of degree two—include a notably
diverse set of different instances. This is not surprising, given the vast scope
of practical applications of such problems, and of solution methods designed
to solve them [73]. Depending on the specifics of the formulation, solving a
QP may require primarily combinatorial techniques, ideas rooted in nonlinear
optimization principles, or a mix of the two. In this sense, QP is arguably
one of the classes of problems where collaboration between the communities
interested in combinatorial and in nonlinear optimization is most needed, and
potentially fruitful.

However, this diversity also implies that QP means very different things to
different researchers. This is illustrated by the fact that the class of problems
that we simply refer to here as “QP” might more accurately be called Mixed-
Integer Quadratically-Constrained Quadratic Programming (MIQCQP) in
the most general case. It is, therefore, perhaps not surprising that, unlike
for “simpler” problems classes [88], there has been, to date, no single library
devoted to all different kinds of instances of QP. While several specialised
libraries devoted to particular cases of QP are available, each of them is either
focussed on a particular application (a specific problem that can be modelled as
a QP), or on QPs with specific structural properties that make them suitable
for solution by some given class of algorithmic approaches. To the best of
our knowledge, collecting a set of QP instances that is at the same time not
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overwhelmingly onerous but sufficiently challenging for the many different
interested communities has not been attempted. This work constitutes a first
step in this direction.

In this paper, we report the steps that have been done to collect what we
consider to be a quality library of QP instances, filtering a much larger set of
currently available (or specifically provided) instances in order to end up with
a manageable set that still contains a meaningful sample of possible QP types.
A particularly thorny issue in this process was how to select instances that
are “interesting”. Our choice has been to take this to mean “challenging for a
significant set of solution methods”. Our filtering process has then been in part
based on the idea that, if a significant fraction of the solvers that can solve a QP
instance do so in a “short” time, then the instance is not challenging enough
to be included in the library. Conversely, if very few (maybe one) of the solvers
can solve it very efficiently by exploiting some specific structure, but most
other approaches cannot, then the instance should be deemed “interesting”.
Putting this approach into practice requires a nontrivial number of technical
steps and decisions that are detailed in the paper. We hope that our work can
provide useful guidelines for other researchers interested in the constructions
of benchmarks for mathematical optimization problems.

A consequence of our focus is that this paper is not concerned with the
performance of the very diverse available set of QP solvers; we will not report
any data comparing them. The only reason that solvers are used (and, therefore,
described) in this context is to ensure that the instances of the library are
nontrivial—at least for a significant fraction of the current solution methods.
Providing guidance about which solvers are most suited to some specific class
of QPs is entirely outside the scope of our work.

1.1 Motivation

Optimization problems with quadratic constraints and/or objective function
(QP) have been the subject of a considerable amount of research over the
last almost seventy years. At least some of the rationale for this interest is
likely due to the fact that QPs are the “least-nonlinear nonlinear problems”.
Hence, in particular for the convex case, tools and techniques that have been
honed during decades of research for Linear Programming (LP), typically with
integrality constraints (MILP), can often be extended to the quadratic case
more easily than would be required to tackle general (Mixed-Integer) Nonlinear
Programming ((MI)NLP) problems. This has indeed happened over-and-over
again with different algorithmic techniques, such as interior-point methods,
active-set methods (of which the simplex method is a prototypical example),
enumeration methods, cut-generation techniques, reformulation techniques, and
many others [29]. Similarly, nonconvex continuous QP is perhaps the “simplest”
class of problems that require features such as spatial enumeration techniques
for their solution. Hence, QPs are both a natural basis for the development
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of general techniques for nonconvex NLP, and a very specific class so that
specialized approaches can be developed [28, 46].

In addition, QP, with continuous or integer variables, is arguably a consid-
erably more expressive class than (MI)LP. Quadratic expressions are found,
either naturally or after appropriate reformulations, in very many optimization
problems [89]. Table 1 provides a certainly non-exhaustive collection of applica-
tions that lead to formulations with quadratic constraints, quadratic objective
function, or both. In general, any continuous function can be approximated
with arbitrary accuracy (over a compact set) by a polynomial of arbitrary
degree. In turn, every polynomial can be broken down to a system of quadratic
expressions. Hence, QP is, in some sense, roughly as expressive as MINLP. This
is, in principle, true for MILP as well, but at the cost of much larger and much
more complicated formulations. Hence, for many applications QP may repre-
sent the “sweet spot” between the effectiveness, but lower expressive power, of
MILP and the higher expressive power, but much higher computational cost of
MINLP.

Table 1: Application Domains of QP

Problem Discrete Contributions

Fundamental problems that can be formulated as MIQP

Quadratic assignment problem‡ X [8, 104]

Max-cut X [93, 125]

Maximum clique‡ X [24]

Computational chemistry & Molecular biology

Zeolites [75]

Computational geometry

Layout design X [7, 32, 41]

Maximizing polygon dimensions [9–13]

Packing circles‡ X [53, 59, 79, 134]

Nesting polygons [85, 124]

Cutting ellipses [86]

Finance

Portfolio optimization X [39, 53, 56–58, 84, 102,
106, 118, 127]

Process networks

Crude oil scheduling X [97–99, 111, 112]

Data reconciliation X [129]

Multi-commodity flow X [135]

‡Applications with many manuscripts cite reviews and recent works
continued
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Table 1 (Application Domains of QP) continued

Problem Discrete Contributions

Quadratic network design X [53, 59]

Multi-period blending X [91, 92]

Natural gas networks X [77, 100, 101]

Pooling‡ X [4, 33, 38, 49, 107, 108,
117, 119, 130]

Open-pit mine scheduling X [22]

Reverse osmosis X [131]

Supply chain X [116]

Water networks‡ X [3, 14, 26, 35, 61, 67,
83, 87, 123, 141]

Robotics

Traveling salesman problem
with neighborhoods X [62]

Telecommunications

Delay-constrained routing X [54, 55]

Energy

Unit-commitment X [53, 56, 58, 136]

Data confidentiality

Controlled Tabular Adjustment X [34]

Trust-region methods

Trust-region subproblem [2, 48, 68, 72, 76, 126]

PDE-constrained optimization

Optimal control problem [120, 132, 133]
‡Applications with many manuscripts cite reviews and recent works.

The structure of this paper is as follows. In §2 we review the basic notion of
QP. In particular, §2.1 sets out the notation, §2.2 proposes a new taxonomy of
QP that helps us in discussing the (very) different classes of QPs, and §2.3 very
briefly reviews the solution methods for QP and the solvers we have employed.
Next §3 describes the process used to obtain the library and its results. Some
conclusions are drawn in §4, after which Appendix A provides a complete
description of all the instances of the library, while Appendix B describes a
simple (QPLIB) file format that encodes all of our examples.

While no performance issues of solvers for QP problems are considered in this
paper, we refer to the comprehensive benchmark site http://plato.asu.edu/

bench.html. Of the result on this site, three deal exclusively with QP problems,
namely the (1) large SOCP, (2) MISOCP, and the (3) MIQ(C)P benchmarks,

http://plato.asu.edu/bench.html
http://plato.asu.edu/bench.html
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while three others contain have partial results for such problems, namely those
for (4) parallel barrier solvers on large LP/QP problems, (5) AMPL-NLP
and (6) MINLP. Benchmarks (1, 2 & 4) contain only convex instances, while
the others include nonconvex ones. Global optima are obtained by several
of the solvers in benchmarks (3 & 5), while all solvers in the latest addition
(6) compute global optima. Benchmark (6) is based on MINLPLib 2 [144], a
collection of currently 1388 instances. In order to give a first representative
impression of solver performance, care was taken there to reduce the number
of instances and allow all solvers to finish in a reasonable time. More than
half of the selected instances are QP or QCP. For details we refer to http:

//plato.asu.edu/ftp/minlp.html.

2. Quadratic Programming in a nutshell

2.1 Notation

In mathematical optimization, a Quadratic Program (QP) is an optimization
problem in which either the objective function, or some of the constraints, or
both, are quadratic functions. More specifically, the problem has the form

min or max 1
2x
>Q0x + b0x + q0

such that cil ≤ 1
2x
>Qix + bix ≤ ciu i ∈M,

lj ≤ xj ≤ uj j ∈ N ,

and xj ∈ Z j ∈ Z,

where

– N = {1, . . . , n} is the set of (indices) of variables, and M = {1, . . . ,m} is
the set of (indices) of constraints;

– x = [xj ]
n
j=1 is a finite vector of real variables;

– Qi for i ∈ {0} ∪ M are symmetric n × n real (Hessian) matrices: since
one is only interested in the value of quadratic forms of the type x>Qix,
symmetry can be assumed without loss of generality by just replacing off
diagonal pairs Qi

hk and Qi
kh with their average (Qi

hk + Qi
kh)/2;

– bi, ciu, cil for i ∈ {0} ∪M, and q0 are, respectively, real n-vectors and real
constants;

– −∞ ≤ lj ≤ uj ≤ ∞ are the (extended) real lower and upper bounds on
each variable xj for j ∈ N ;

– M = Q∪L where Qi = 0 for all i ∈ L (i.e., these are the linear constraints,
as opposed to the truly quadratic ones); and

– the variables in Z ⊆M are restricted to only attain integer values.

Due to the presence of integrality requirements on the variables and of quadratic
constraints, this class of problems is often referred to as Mixed-Integer Quadrat-
ically Constraint Quadratic Program (MIQCQP). It will be sometimes useful
to refer to the (sub)set B = { j ∈ Z : lj = 0, uj = 1 } ⊆ Z of the binary

http://plato.asu.edu/ftp/minlp.html
http://plato.asu.edu/ftp/minlp.html
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variables, and to R = N \ Z as the set of continuous ones. Similarly, it will
be sometimes useful to distinguish the (sub)set X = { j : lj > −∞∨ uj <∞}
of the box-constrained variables from U = N \ X of the unconstrained ones
(in the sense that finite bounds are not explicitly provided in the data of the
problem, although they may be implied by the other constraints).

The relative flexibility offered by quadratic functions, as opposed e.g. to
linear ones, allows several reformulation techniques to be applicable to this
family of problems in order to emphasize different properties of the various
components. Some of these reformulation techniques will be commented later on;
here we remark that, for instance, integrality requirements, in particular in the
form of binary variables could always be “hidden” by introducing (nonconvex)
quadratic constraints utilizing the celebrated relationship xj ∈ {0, 1} ⇐⇒
x2
j = xj . Therefore, when discussing these problems some effort has to be made

to distinguish between features that come from the original model, and those
that can be introduced by reformulation techniques in order to extract (and
algorithmically exploit) specific properties.

In the rest of this paper, we shall sometimes refer to exact solutions of
quadratic programs. In view of the fact that their solutions may be irrational,
this notation deserves a comment. If the decision version of the problem being
referred to is in NP (e.g. LP, MILP, QP [143]), then the assumption is that
all rational numbers can be represented exactly by a Turing Machine (TM). If
there is no known proof that the problem being solved (or its decision version)
is in NP, then there are four main approaches:

1. finding a representable solution x′ such that ‖x′−x∗‖∞ ≤ ε, where x∗ is the
true solution, ε > 0 is given, and representable means having a polynomially
sized description length (in function of the instance size) [80];

2. using the Thom encoding of an algebraic number [15, Prop. 2.28] (limited
to problems involving polynomials);

3. using the optimality gap: finding a representable solution x′ such that
|f(x′) − f(x∗)| ≤ ε, where f is the objective function, x∗ is the true
solution, ε > 0 is given (limited to optimization problems);

4. using a computational model according to which every elementary compu-
tation on the reals takes O(1) and returns a precise result [23, p. 24].

Approach 3 in the list above is the one most often used in computational
papers, including the present one.

2.2 Classification

Despite the apparent simplicity of the definition given in §2.1, Quadratic
Programming instances can be of several rather different “types” in practice,
depending on fine details of the data. In particular, many algorithmic approaches
can only be applied to QP when the data of the problem has specific properties.
A taxonomy of QP instances should thus strive to identify the set of properties
that an instance should have in order to apply the most relevant computational
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methods. However, the sheer number of different existing approaches, and
the fact that new ones are frequently proposed, makes it hard to provide a
taxonomy that is both simple and covers all possible special cases. This is why,
in this paper, we propose an approach that aims at finding a good balance
between simplicity and coverage of the main families of computational methods.

2.2.1 Taxonomy

Our taxonomy is based on a three-fields code of the form “OVC”, where O
indicates the type of objective function considered, V records the types of
variables, and C designates the types of constraints imposed on the variables.
The fields can be given the following values:

– objective function: (L)inear, (D)iagonal convex (if minimization) or concave
(if maximization) quadratic, (C )onvex (if minimization) or (C )oncave (if
maximization) quadratic, (Q)uadratic (all other cases);

– variables: (C )ontinuous only, (B)inary only, (M )ixed binary and continuous,
(I )nteger (including binary) only, (G)eneral (all other cases);

– constraints: (N )one, (B)ox, (L)inear, (D)iagonal convex quadratic, (C )on-
vex quadratic, nonconvex (Q)uadratic. Note that (D) and (C ) are intended
to mean that either Qi is positive semidefinite and cil = −∞, or Qi is nega-
tive semidefinite and ciu =∞. Note that (positive or negative) definiteness
of Qi is a sufficient, but not in general necessary, condition for convexity.
As detailed in §3.3, in our taxonomy we mark the constraints “C” based on
the sufficient condition alone, the rationale of this choice being discussed in
§2.2.2. Quadratic constraints with both finite bounds cannot ever be convex
(unless Qi = 0, i.e., they are not “truly” quadratic constraints).

The wildcard “*” will be used below to indicate any possible choice, and lists
of the form “{X, Y, Z}” will indicate that the value of the given field can freely
attain any of the specified values.

The ordering of the values in the previous lists is not irrelevant; in general,
problems become “harder” when going from left to right. More specifically, for
the O and C fields the order is that of strict containment between problem
classes: for instance, linear objective functions are strictly a special case of
diagonal convex quadratic ones (by allowing the diagonal elements all to be
zero), the latter are a strict subset of general convex quadratic objectives (by
allowing the off-diagonal elements all to be zero), and these are strictly subsets
of general nonconvex quadratic ones (since these permit any symmetric Hessian
including positive semidefinite ones). The only field for which the containment
relationship is not a total order is V, for which only the partial orderings

C ⊂ M ⊂ G , B ⊂ M ⊂ G , and B ⊂ I ⊂ G

hold. In the following discussion we will repeatedly exploit this by assuming
that, unless otherwise mentioned, when a method can be applied to a given
problem, it can be applied as well to all simpler problems where the value of
each field is arbitrarily replaced with a value denoting a less-general class.
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We note that, although the left-to-right progression in the above text marks
“harder problems”, this does not mean that every instance of a hard problem
is itself “difficult to solve”. As is well known, problems as infinite collections
of instances; and it is always possible to find subclasses that can be solved
efficiently.

2.2.2 Examples and reformulations

We now give a general discussion about the different problem classes that
our proposed taxonomy defines. For simplicity, we will assume minimization
problems for the remaining of this section. Some problem classes are actually
“too simple” to make sense in our context. For instance, D*B problems have only
diagonal quadratic (hence separable) objective function and bound constraints;
as such, they read

min
{ ∑

j∈N
(

1
2Q

0
jx

2
j + b0jxj

)
: lj ≤ xj ≤ uj j ∈ N , xj ∈ Z j ∈ Z

}
.

Hence, their solution only requires the independent minimization of a convex
quadratic univariate function in each single variable xj over a box constraint
and possibly integrality requirements, which can be attained trivially in O(1)
operations (per variable) by closed-form formulæ, projection and rounding
arguments. A fortiori, the even simpler cases L*B, D*N and L*N (the latter
obviously unbounded unless b0 = 0) will not be discussed here. Similarly, CCN
are immediately solved by linear algebra techniques, and therefore are of no
interest in this context. At the other end of the spectrum, in general QP
is a hard problem. Actually, LIQ—linear objective function and quadratic
constraints in integer variables with no finite bounds, i.e.

min
{
b0x : 1

2x
>Qix + bix ≤ ci i ∈M , xj ∈ Z j ∈ N

}
,

is not only NP-hard, but downright undecidable [82]. Hence so are the “harder”
{C,Q}IQ.

It is important to note that the relationships between the different classes
can be somehow blurred because reformulation techniques may allow one
to move an instance from one class to another. We already mentioned that
x2 = x ⇐⇒ x ∈ {0, 1}, and in general *M*—instances with only binary
and continuous variables—can be recast as *CQ ; here nonconvex quadratic
constraints take the place of binary variables. More generally, this is also
true for *G* as long as U = ∅, as bounded general integer variables can be
represented by binary ones. Hence, the nonconvexity due to binary variables
can always be expressed by means of (nonconvex) quadratic constraints. The
converse is also true: when only binary variables are present, all quadratic
constraints can be converted into convex ones [19, 20].

Another relevant reformulation trick concerns the fact that, as soon as
quadratic constraints are allowed, then there is no loss of generality in assuming
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a linear objective function. Indeed, any Q** (C*C ) problem can always be
rewritten as

min x0

−∞ ≤ 1
2x
>Q0x + b0x ≤ x0

cil ≤ 1
2x
>Qix + bix ≤ ciu i ∈M

lj ≤ xj ≤ uj j ∈ N
xj ∈ Z j ∈ Z

i.e., a L*Q (L*C ) pronlem. Hence, it is clear that quadratic constraints are, in
a well-defined sense, the most general situation (cf. also the result above about
hardness of LIQ).

When a Qi is positive semidefinite (PSD), i.e., the corresponding con-
straint/objective function is convex, general Hessians are in fact equivalent
to diagonal ones. In particular, since every PSD matrix can be factorized
as Qi = Li(Li)T , e.g. by the (incomplete) Cholesky factorization, the term
1
2x

TQix ≡ 1
2

∑
j∈N zi 2j where zi T = xTLi. Hence, one might maintain that

D** problems need not be distinguished from C** ones. However in reality, this
is only true for “complicated” constraints but not for “simple” ones, because
the above reformulation technique introduces additional linear constraints,
Li Tx− zi = 0. Indeed, while C*L (and, a fortiori, C*{C,Q}) can always be
brought to D*L (D*{C,Q}), using the above technique C*B becomes D*L,
which may be significantly different from D*B. In practice, a diagonal convex
objective function under linear constraints is found in many applications (e.g.,
[53, 56, 58, 59]), so that it still makes sense to distinguish the D*L case where
the objective function is “naturally” separable from that where separability is
artificially introduced.

Furthermore, as previously remarked, a not (positive or negative) definite
Qi does not necessarily correspond to a nonconvex feasible region. For instance,
it is well-known that Second-Order Cone Programs have convex feasible regions;
when represented in terms of quadratic constraints, however, they correspond
to Qi in one negative eigenvalue. In our taxonomy we still consider the corre-
sponding instances as ∗∗Q ones, with no attempt to detect the different special
structures that actually correspond to convex feasible regions. Although this
may lead to classify as “potentially nonconvex” some instances that are in fact
convex, our choice is justified by the fact that not all QP solvers are capable of
detecting and exploiting these structures, which means that the instance can
actually be treated as a nonconvex one even if it is not.

2.2.3 QP classes

The proposed taxonomy can then be used to describe the main classes of QP
according to the type of algorithms that can be applied for their solution:

– Linear Programs LCL and Mixed-Integer Linear Programs LGL have been
subject of an enormous amount of research and have their well-established
instance libraries [88], so they will not be explicitly addressed here.
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– Convex Continuous Quadratic Programs CCC can be solved in polynomial
time by Interior-Point techniques [152]; the simpler CCL can also be solved
by means of “simplex-like” techniques, usually referred to as active-set
methods [42]. Actually, a slightly larger class of problems can be solved
with Interior-Point methods: those that can be represented by Second-Order
Cone Programs. When written as QPs the corresponding Qi may not be
positive semidefinite, but nonetheless such problems can be efficiently solved.
Of course just as for LCL, these problems may still require considerable
computational effort when the size of the instance grows. In this sense, like
in the linear case, there is a significant distinction between solvers that
need all the data of QP to work, and those that are “matrix-free”, i.e.,
only require the application of simple operations (typically, matrix-vector
products) with the problem data. While when building our instance library
we never exploited such characteristics, since they are not amenable to
standard modelling tools, but this may be relevant for the solution of
very-large-scale CIC.

– Nonconvex Continuous Quadratic Programs QCQ are generally NP-hard,
even if the constraints are very specific (QCB) and only a single eigenvalue
of Q0 is negative [78]. They therefore require enumerative techniques, such
as spatial Branch&Bound [16, 52], to be solved to optimality. Of course,
local approaches are available that are able to efficiently provide saddle
points (hopefully, local optima) of the CQC, but providing global guarantees
about the quality of the obtained solutions is challenging. In our library we
have specifically focused on exact solution of the instances.

– Convex Integer Quadratic Programs CGC are, in general, NP-hard, and
therefore require enumerative techniques to be solved. However, convexity
of the objective function and constraints implies that efficient techniques
(see CCC ) can be used at least to solve continuous relaxations. The general
view is that CGC are not, all other things being equal, substantially more
difficult than LGL to solve, especially if the objective function and/or
the constraints have specific properties (e.g., DGL, CGL). Often integer
variables are in fact binary ones, so several CCC models are C{B,M }C
ones. In practice binary variables are considered to lead to somewhat easier
problems than general integer ones (cf. the cited result about hardness of
unbounded integer quadratic programs), and several algorithmic techniques
have been specifically developed for this special case. However, the general
approaches for CBC are basically the same as for CGC, so there is seldom
the need to distinguish between the two classes as far as solvability is
concerned, although matters can be different regarding actual solution cost.
Programs with only binary variables CBC can be easier than mixed-binary
or integer ones C{M,I }C because some techniques are specifically known
for the binary-only case, cf. the next point [20]. Absence of continuous
variables, even in the presence of integer ones CIC, can also lead to specific
techniques [19].

– Nonconvex Binary Quadratic Programs QB{B, N, L} obviously are NP-
hard. However, the special nature of binary variables combined with
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quadratic forms allows for quite specific techniques to be developed, one of
which is the reformulation of the problem as a LBL. Also, many well-known
combinatorial problems can be naturally reformulated as problems of this
class, and therefore a considerable number of results have been obtained by
exploiting specific properties of the set of constraints [105, 125].

– Nonconvex Integer Quadratic Programs QGQ is the most general, and
therefore is the most difficult, class. Due to the lack of convexity even
when integrality requirements are removed, solution methods must typically
combine several algorithmic ideas, such as enumeration (distinguishing
the role of integral variables from that of continuous ones involved into
nonconvex terms) and techniques (e.g., outer approximation, semidefinite
programming relaxation, . . . ) that allow the efficient computation of bounds.
As in the convex case, QBQ, QMQ, and QIQ can benefit from more specific
properties of the variables [27, 40].

This description is deliberately coarse; each of these classes can be subdivided
into several others on the grounds of more detailed information about structures
present in their constraints/objective function. These can have a significant
algorithmic impact, and therefore can be of interest to researchers. Common
structures are, e.g., network flows [53–55, 59, 135] or knapsack-type linear
constraints [53, 59, 60], and semi-continuous variables [53–59], or the fact that
a nonconvex quadratic objective function/constraint can be reformulated as
a second-order cone (hence, convex) one [53–55, 58, 59]. It would be very
hard to collect a comprehensive list of all types of structures that might be of
interest to any individual researcher, since these are as varied as the different
possible approaches for specialized sub-classes of QP. For this reason we do not
attempt such a more refined classification, and limit ourselves to the coarser
one described in this section.

2.3 Solution Methods and Solvers

In this section we provide a quick overview of existing solution methods for QP,
restricting ourselves to these implemented by the set of solvers considered in
this paper (see §2.3.1). For each approach we briefly describe the formulation
they address according to the classification set out in §2.2. We remark that
many solvers implement more than one algorithm, which the user can choose
at runtime. Moreover, algorithms are typically implemented in different ways
within different solvers, so that the same conceptual algorithm can sometimes
yield different results or performance measures on the same instances.

Solution methods for QP can be broadly organized in four categories [115]:
incomplete, asymptotically complete, complete, and rigorous.

– Incomplete methods are only able to identify solutions, often locally optimal
according to a suitable notion, and may even fail to find one even when
one exists; in particular, they are typically unable to determine that an
instance has no solution.
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– Asymptotically complete methods can find a globally optimal solution with
probability one in infinite time, but again they cannot prove that a given
instance is infeasible.

– Complete methods find an approximate globally optimal solution within a
prescribed optimality tolerance within finite time, or prove that none such
exists (but see §2.3.4 below); they are often referred to as exact methods in
the computational optimization community.

– Rigorous methods find globally optimal solutions within given tolerances
even in the presence of rounding errors, except for “near-degenerate cases”.
Since none of the solvers we are using can be classified as rigorous, we limit
ourselves to declaring solvers complete.

We refer the interested reader to [18] and [96] for further details on the
solution methods.

2.3.1 Solvers

When compiling QPLIB, we have worked with the QP solvers that come with
the GAMS distribution1. Table 2 provides a list of these solvers, together with
a classification of their algorithm, and references. For more details on the
solvers, we refer to the given references, solver manuals, and the survey [30].
In the table, we mark a pair (solver, problem) with “I” if the solver accepts
the problem as input but it is an incomplete solver for the problem, with “A”
if it is asymptotically complete, with “C” if it is complete, and leave it blank
if the solver won’t accept the provided problem. When a solver implements
several algorithms, we have chosen, for each problem class, the algorithm that
potentially provides the “strongest” results (“C” > “A” > “I” > blank).

2.3.2 Incomplete methods

Incomplete methods are usually realized as local search algorithms, asymptoti-
cally complete methods are usually realized by meta-heuristic methods such
as multi-start or simulated annealing, and complete methods for NP-hard
problems such as QP are typically realized as implicit exhaustive exploration
algorithms. However, these three categories may exhibit some overlap. For
example, any deterministic method for solving QCQ locally is incomplete in
general, but becomes complete for CCC, since any local optimum of a convex
QP is also global. Therefore, when we state that a given algorithm is incomplete
or (asymptotically) complete we mean that it is so the largest problem class
that the solver naturally targets, although it may be complete on specific
sub-classes. For example, interior point algorithms naturally target NLPs and
are incomplete on NLPs, and therefore on QCQ, but become complete for CCC.
In general, all complete methods for a problem class P must be complete for
any problem class Q ⊆ P , while a complete method for P might be incomplete
for a class R ⊃ P .

1 https://www.gams.com

https://www.gams.com
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CGL QGL CGC QGQ CCC QCQ

AlphaECP [148, 149] C I C I C I
ANTIGONE [109, 110] C C C C C C
BARON [138–140] C C C C C C
BONMIN [25] C I C I C I
CONOPT [43, 44] C I
Couenne [16] C C C C C C
Cplex [21, 81] C C C C
DICOPT [47, 90, 146] C I C I C I
Gurobi [128] C C C
Ipopt [147] C I
Knitro [31] C I C I C A
Lindo API [103] C C C C C C
LGO [121, 122] A A
MINOS [113, 114] C I
MOSEK [5, 6] C C C
MsNlp [95, 142] C A
OQNLP [95, 142] A A A A C A
SBB [45] C I C I C I
SCIP [1, 145] C C C C C C
SNOPT [64, 65] C I
Xpress-Optimizer [50] C C C

Table 2 Families of QP problems that can be tackled by each solver

The solvers in Table 2 which implement incomplete methods for NLPs (a
problem class containing QCQ) are CONOPT, Ipopt, MINOS, SNOPT, and
Knitro. Note that all these solvers tackle the more general class of NLP, while
we use them only for the considerably more restricted class of QP. Aside from
solvers provided by GAMS, there are a number of other, specialized, incomplete
QP solvers, such as CQP [69], DQP [71] and OOQP [63] for convex problems,
and BQPD [51], QPA [74] and QPB [36], QPC [70], SQIC [66] for nonconvex
ones.

2.3.3 Asymptotically complete methods

Asymptotically complete methods do not usually require a starting point, and,
if given sufficient time (infinite in the worst case) will identify a globally optimal
solution with probability one. Most often, these methods are meta-heuristics,
involving an element of random choice, which exploit a given (heuristic) local
search procedure.

The solvers in Table 2 which implement asymptotically complete methods
are OQNLP and Knitro (which apply to QGQ) as well as MsNlp and certain
sub-solvers of LGO (which apply to QCQ).

2.3.4 Complete methods

Complete methods are often referred to as exact in a large part of the math-
ematical optimization community. This term has to be used with care, as it
implicitly makes assumptions on the underlying computational model that may
not be acceptable in all cases. For example, te decision version of QCL is known
to be in the complexity class NP [143], whereas the same is not known about
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LCQ, even with zero objective. On the other hand, there exists a method for
deciding feasibility of systems of polynomial equations and inequalities [137],
including the solution of LCQ with zero objective function.

To explain this apparent contradiction, we remark that the two statements
refer to different computational models: the former is based on the Turing
Machine (TM), whereas the latter is based on a computational model that
allows operations on real numbers, e.g. the Real RAM (RRAM) machine [23].
Due to the potentially infinite nature of exact real arithmetic computations,
exact computations on the RRAM necessarily end up being approximate on
the TM. Analogously, a complete method may reasonably be called “exact”
on a RRAM; however, the computers we use in practice are more akin to
TMs than RRAMs, and therefore calling exact a solver that employs floating
point computations is, technically speaking, stretching the meaning of the word.
However, because the term is well understood in the computational optimization
community, in the following we shall loosen the distinction between complete
and exact methods, with either properties intended to mean “complete” in the
sense of [115].

Nearly all of the complete solvers in Table 2 that address NP-hard problems
(i.e. those in QGQrCCC ) are based on Branch-and-Bound (BB) [94]. When
the BB algorithm is allowed to branch on coordinate directions corresponding to
continuous variables, it is called spatial BB (sBB) [17, 37]. BB algorithms require
exponential time in the worst case, and their exponential behavior unfortunately
often shows up in practice. They can also be used heuristically (forsaking their
completeness guarantee) in a number of ways, e.g. by terminating them early.
The following solvers from Table 2 implement complete BB algorithms for
QGQ or some subclasses:

– ANTIGONE, BARON, Couenne, Lindo API, SCIP for QGQ ;
– Cplex for QGL and CGC ;
– Knitro, BONMIN, SBB, Xpress-Optimizer, Gurobi, and MOSEK

for CGC.

We remark that the latter category can be used as incomplete solvers for QGQ.
We also note that LGO implements an incomplete BB algorithm for QCQ by
using bounds obtained from sampling.

Cutting plane approaches construct and iteratively improve a MILP (LIL)
relaxation of the problem [47, 149]. The cutting planes for the MILP are gener-
ated by linearization (first-order Taylor approximation) of the nonlinearities. If
the latter are convex, the MILP provides a valid lower bound for the problem.
Additionally, incomplete methods can be used to provide local solutions. There-
fore, these methods are complete on CGC if a complete method is used to solve
the MILP. The latter is typically based on BB, which is therefore a crucial
technique also for this class of approaches. Solvers in Table 2 that implement
complete cutting plane methods for CGC are AlphaECP, BONMIN (in the
algorithmic mode B-OA), and DICOPT.
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3. Library Construction

In this section we present all the steps we performed in order to build the new
instance library. In §3.1, we describe the set of gathered instances, and in §3.2
we present the features used to classify the instances. We describe the selection
process used to filter the instances, and graphically present the main features
of the selected instances in §3.3, while in §3.4 we provide information on how
to access the test collection.

3.1 Instance Collection

In this section we describe the procedure we adopted to gather the instances. In
January 2014, we issued an online call for instances using the main international
mailing lists of the mathematical optimization and numerical analysis commu-
nities, reaching in this way the largest possible set of interested researchers and
practitioners. The call remained open for 10 months, during which we received
a large number of contributions of different nature. The instances we gathered
come both from theoretical studies as well as from real-world applications.

In addition to spontaneous contribution we analysed the other generic
libraries of instances available on internet and containing QP instances. Namely,
the libraries from which we gathered instances are

– the BARON library http://www.minlp.com/nlp-and-minlp-test-problems;
– the CUTEst library https://ccpforge.cse.rl.ac.uk/gf/project/cutest;
– the GAMS Performance libraries http://www.gamsworld.org/performance/

performlib.htm;
– the MacMINLP library https://wiki.mcs.anl.gov/leyffer/index.php/

MacMINLP;
– the Meszaros library http://www.doc.ic.ac.uk/~im/00README.QP;
– the MINLP library http://www.gamsworld.org/minlp/minlplib.htm;
– the POLIP library http://polip.zib.de/pipformat.php.

Other quadratic instances were found in online libraries devoted to specific
QP problems as Max-Cut, Quadratic Assignment, Portfolio Optimization,
and several others. In addition, we mention that other generic libraries exist,
e.g., Conic library CBLIB (http://cblib.zib.de) and MIPLIB 2010 (http:
//miplib.zib.de/), to mention just a few.

At the end of this process we had gathered more than eight thousand
instances. Three quarters of them contained discrete variables, while the re-
mainder contained only continuous variables. In more detail, we gathered
≈ 1800 Quadratic Binary Linear (QBL) instances, ≈ 2000 Quadratic Continu-
ous Quadratic (QCQ) instances, and and ≈ 2500 Quadratic General Quadratic
(QGQ) instances. We also received ≈ 1000 Convex General Convex (CGC)
instances. We obtained relatively fewer Quadratic Binary Quadratic (QBQ),
Convex Continuous Convex (CCC) and Convex Mixed Convex (CMC) in-
stances, (≈ 150, ≈ 200 and ≈ 200 instances respectively). Finally, we found

http://www.minlp.com/nlp-and-minlp-test-problems
https://ccpforge.cse.rl.ac.uk/gf/project/cutest
http://www.gamsworld.org/performance/performlib.htm
http://www.gamsworld.org/performance/performlib.htm
https://wiki.mcs.anl.gov/leyffer/index.php/MacMINLP
https://wiki.mcs.anl.gov/leyffer/index.php/MacMINLP
http://www.doc.ic.ac.uk/~im/00README.QP
http://www.gamsworld.org/minlp/minlplib.htm
http://polip.zib.de/pipformat.php
http://cblib.zib.de
http://miplib.zib.de/
http://miplib.zib.de/
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only 17 Quadratic Mixed Linear (QML) instances. In the call for instances, no
specific formats requirements were imposed for the submissions.

To evaluate the instances we decided, for practical reasons, to use GAMS
as common platform for all our final selection computations. For this reason,
we translated all the instances we received into the GAMS format (.gms).

For each instance in this large starting set, we collected important char-
acteristics which allowed us to classify the instances into the QP categories
described in §2. As far as the variable types are concerned, we collected the
following information:

– the number of binary variables;
– the number of integer variables; and
– the number of continuous variables.

If at least one binary or integer variable is present, then the instance is
categorized as discrete, otherwise it is categorized as continuous. As far as the
objective function is concerned, we gathered the following information:

– the percentage of positive and negative eigenvalues of the Hessian Q0; and
– the density of the Hessian Q0 (number of nonzero entries divided by the

total number of entries).

The number of positive (i.e., larger than 10−12) and negative (i.e., smaller
than −10−12) eigenvalues of Q0 allowed us to identify the objective function
type, as in presence of at least one negative (positive) eigenvalue the objective
function is nonconvex (nonconcave). Finally, as far as the constraint types are
concerned, we collected the following information:

– the number of linear constraints,
– the number of quadratic constraints,
– the number of convex constraints, and
– the number of variable bounds (for non-binary variables).

A constraint is considered quadratic if it contains at least one nonzero in a
quadratic term (if present). Among the quadratic constraints, the ones whose
Hessians have only non-negative eigenvalues (when ciu < ∞) and and non-
positive eigenvalues (when cil > −∞) are classified as convex constraints; thus, a
quadratic constraint with two sided, finite bounds is non-convex. Note that this
might occasionally lead us to classify some instances that have conic constraints
as non-convex ones, although their feasible region is in fact convex—fortunately,
only some solvers are capable of properly exploiting this property. All this
information allowed us to analyse the gathered instances and to perform the
filters described in the the next paragraph.

3.2 Instance Selection

During the development of the library, a discussion ensued about the expected
goals that we wished to achieve. The following four goals where finally identified:
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Starting set ≈ 8500 Instances
⇓

≈ 6000 Discr. Inst. ≈ 2500 Cont. Inst.
First Filter ⇓ ⇓

≈ 3000 Discr. Inst. ≈ 1000 Cont. Inst.
Second Filter ⇓ ⇓

319 Discr. Inst. 134 Cont. inst.

Table 3 Instance filter steps

1. to represent as far as possible all the different categories of QP problems;
2. to gather “challenging” instances, i.e., ones which can not be easily solved

by state-of-the-art solvers;
3. to include, for each of the categories, a set of well-diversified instances; and
4. to obtain a set of instances which is neither too small, so as to preserve sta-

tistical relevance, nor too large so as to being computationally manageable.

To achieve such goals, we performed the following two filters, applied in a
cascade.

– First Instances Filter.
The first filter was designed to drastically reduce the number of instances
by eliminating the “easy” ones. An empirical measure for the hardness of
an instance is the CPU time needed by a complete solver (cf. §2.3) to solve
it to global optimality. Accordingly, for each of the gathered instance we
ran the complete solvers in GAMS, which number depends on the category
of the instance under consideration, cf. Table 2. We then filtered according
to a first measure of computational difficulty, i.e., we discarded all instances
that are solved by at least 30% of the complete solvers within a time limit
of 30 seconds.

– Second Instances Filter.
The goal of the second filter was to eliminate “similar” instances. We
carefully analysed the instances one by one, and we clustered them according
to their features; for each cluster we kept only a few representatives (e.g., very
similar size, same donor,. . . ). Finally, in order to only keep computationally
challenging instances we ran a a complete solver for QGQ with a time
limit of 120 seconds; all the instances which have been solved to proven
optimality within this time limit were discarded.

In Table 3 we summarize the two filter steps, which allowed us to identify the
final set of 319 discrete instances and 134 continuous instances.

3.3 Analysis of the final set of instances

We now analyse the features of the instances selected to be part of the library.
In Table 4, we provide a global overview. The instances have been divided
in continuous vs discrete and convex vs non-convex, forming in this way, a
classification of 4 macro categories. As previously mentioned, an instance
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Variables Convexity #

continuous convex 32

continuous non-convex 102

discrete convex 31

discrete non-convex 288

Total 453

Table 4 Macro classification of the final set of instances

is classified discrete if it contains at least a binary or integer variable, and
continuous otherwise. On the other hand, an instance is classified as non-convex
if the objective function is non-convex and/or at least one of the constraints is
non-convex, and convex otherwise.

The detailed characteristics of the instances are presented in Table 5 for
discrete instances (*{B,M,I,G}* ) and in Table 6 for continuous ones (*C* ).
For each category, the tables report in column “#” the corresponding number of
instances. It can be seen that the final set well respects the original distribution
of the gathered instances among the different categories. Indeed, the discrete
categories (LMQ) or (QBL) are well represented by 118 and 59 instances,
respectively. Similarly, the continuous categories (LCQ) and (QCQ) are well
represented by 50 and 17 instances, respectively. Moreover, the library actually
covers the large majority of all possible categories of instances.

One of the nontrivial choices in our library is that we made no effort to
reformulate the instances, and inserted them in the library in the very same
format they have been provided to us by the original contributors. Section 2.2.2
is crucial in justifying this choice, as it shows that there are several degrees
of freedom to move the instances from one class to another. Tailoring the
structure of a problem to the solver is, however, a bias we do not want to add.

We now report some graphs that help in illustrating the main features of
the instances. In Figure 1 (left) we plot the number of variables (horizontal
axis) versus the number of constrains (vertical axis), both in logarithmic scale.
Continuous instances are marked with “+”, and discrete ones with “×”. The
figure shows that the library contains a quite diverse set of instances in terms
of number of variables and constraints. The maximal number of constraints is
100000, while the maximal number of variables is almost 40000. Figure 1 (right)
plots the number of nonzero elements in the gradient of the objective function
and the Jacobian and the number of these nonzeros corresponding to nonlinear
variables, that is, it counts the appearances of variables in objectives and
constraints and how often such an appearance is in a quadratic term.

Figure 2 describes how discrete and continuous variables are distributed
within the instances. The instances are sorted accordingly to the total number
of variables. For each instance we report the total number of variables with
a “+”, and the total number of discrete variables (binary or general integer)
with a “×”. The pictures clearly show that instances with different percentages
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Obj. Fun. Variables Constraints #

Linear

Binary Quadratic 9

Mixed
Convex 15

Quadratic 151

Integer Quadratic 2

General Quadratic 3

Convex (if min) Binary Linear 4

or
Mixed

Linear 12

Concave (if max) Quadratic 6

Quadratic

Binary

None 23

Linear 74

Quadratic 5

Mixed
Linear 11

Quadratic 1

Integer Linear 2

General Quadratic 1

Total 319

Table 5 Classification of the final set of discrete instances

Obj. Fun. Constraints #

Linear
Convex 13

Quadratic 52

Convex (if min) Box 3

or Linear 16

Concave (if max) Quadratic 11

Quadratic

Linear 6

Convex 3

Quadratic 30

Total 134

Table 6 Classification of the final set of continuous instances
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Fig. 1 Distribution of number of variables and constraints of QPLIB instances (left). Number
of (nonlinear) nonzeros of QPLIB instances (right).
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Fig. 2 Number of variables of QPLIB instances.

of integer and continuous variables are present in the library, and that these
differences are well distributed across the whole spectrum of variable sizes.

Similarly, Figure 3 (left) describes how the number of linear and quadratic
constraints are distributed within the instances. The instances are sorted ac-
cordingly to the total number of constraints. For each instance we report the
total number of constraints with a “+” and the total number of quadratic
constraints with a “×”. Also, in this case, different percentages of linear and
quadratic constraints are present and well-distributed across the spectrum of
constraint sizes, although both medium- and large-size instances show a preva-
lence of lower percentages of quadratic constraints. In particular, from Figure 3
(left) we learn that while the maximum number of linear constraints exceeds
100000, the maximum number of quadratic constraints tops up at around 10000.
This is, however, reasonable, considering how quadratic constraints can, in
general, be expected to be much more computationally challenging than linear
ones, especially if nonconvex.

Figure 3 (right) shows the instances with at least one quadratic constraint
sorted according to the number of quadratic constraints (vertical axis). For
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Fig. 3 Number of constraints, quadratic constraints, and nonconvex quadratic constraints
of QPLIB instances.
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Fig. 4 “Problematic” eigenvalues (left) and density (right) of the Hessian Q0 for QPLIB
instances with a quadratic objective function.

each instance we report the total number of constraints with a “+” and the
total number of nonconvex quadratic constraints with a “×”. It can be seen
that the majority of instances only have nonconvex constraints.

On the theme of nonconvexity, Figure 4 (left) focuses on the instances
with a quadratic objective function, ordered by percentage of “problematic”
(defined using a tollerance of XXX) eigenvalues in the Hessian Q0 (verticalplease

define
the tol-
erance
used to
iden-
tify the
“Prob-
lematic”
eigenval-
ues and
change
the label
of the
plot

please
define
the tol-
erance
used to
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tify the
“Prob-
lematic”
eigenval-
ues and
change
the label
of the
plot

axis), by which we mean negative eigenvalues in case of a minimization problem
and positive eigenvalues in case of a maximization problem. The instances are
mostly clustered around two values. About 25% of the instances have a convex
(if minimization) or concave (if maximization) objective function, i.e., they
have 0% of “problematic” eigenvalues. Among the others, a vast majority has
around 50% of “problematic” eigenvalues. However, instances with high or low
percentages of “problematic” eigenvalues are present, too.

Similarly, Figure 4 (right) shows the instances with a quadratic objective
function sorted according to the density of the Hessian Q0 (vertical axis). The
majority of the instances have either a very low or a rather high density: indeed,
about 30% of the instances have density smaller than 5%, and about 30% of
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Fig. 5 Example for the sparsity pattern of the Jacobian of the constraint functions (left)
and of the upper-right triangle of the Hessian of the Lagrangian function (right) for instance
QPLIB 2967. The gradient of the objective function is displayed as the first row of the
Jacobian matrix. Non-constant entries are shown in red.

the instances have density larger than 50%. However, also intermediate values
are present.

Additional details on the instance features can be found in Appendix A.

3.4 Website

The QPLIB instances are publicly accessible at the website http://qplib.zib.
de, which was created by extending scripts and tools initially developed for
MINLPLib 2 [144]. We provide all instances in GAMS (.gms), AMPL (.mod),
CPLEX (.lp) [81], and QPLIB (.qplib) formats. The latter is a new format
specifically for QP instances. In comparison to more high level formats such
as .gms and .lp, the new format offers three main advantages: it is easier to
read by a stand-alone parser (provided), it typically produces smaller files, and
it permits the inclusion of two-sided inequalities without needless repetition of
data. See Appendix B for more details.

Beyond the instances, the website provides a rich set of metadata for each
instance: the three letter problem classification (as described in §3.3), basic
properties such as the number of variables and constraints of different types,
the sense and convexity/concavity of the objective function, and information on
the nonzero structure of the problem. In addition, we display a visualization of
the sparsity patterns of the Jacobian and the Hessian matrix of the Lagrangian
function. In the plots of the Jacobian nonzero pattern, the linear and nonlinear
entries are distinguished by color. Figure 5 shows an example for instance
QPLIB 2967.

The entire set of instances can be explored in a searchable and sortable
table of selected instance features: problem classification, convexity of the
continuous relaxation, number of (all, binary, integer) variables, (all, quadratic)
constraints, nonzeros, hard eigenvalues in Q0, and density of Q0. Finally, a
statistics page displays diagrams on the composition of the library according to
different criteria: the number of instances according to problem type, variable
and constraint types, convexity, problem size, and density. A file containing the
relevant metadata for each instance can be downloaded in comma-separated-

http://qplib.zib.de
http://qplib.zib.de
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values (csv) format, so that researchers can easily compile their own subset of
instances according to these statistics.

The complete library can be downloaded as one archive, which contains the
website for offline browsing and exploration. In the future, we plan to extend
the website by the addition of contributor information and references to the
literature.

4. Conclusions

This manuscript describes the first comprehensive library of instances for
Quadratic Programming (QP). Since QP comprises different and “varied”
categories of problems, we proposed a classification and we briefly discuss the
main classes of solution methods for QP.

We then describe the steps of the adopted process used to filter the gathered
instances in order to build the new library. Our design goals were to build
a library which is computationally challenging and as broad as possible, i.e.,
it represents the largest possible categories of QP problems, while remaining
of manageable size. We have also proposed a stand-alone QP format that is
intended for the convenient exchange and use of our QP instances.

We want to stress once again that we intentionally avoid to perform a
computational comparison of the performances of the different solvers. Our
goal is instead to provide a common test-bed of instances for practitioners
and researchers in the field. This new library will hopefully serve as a point of
reference to test new ideas and algorithms for QP problems.
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drix (eds.) Proceedings of the XII global optimization workshop MAGO
2014, pp. 137–140 (2014). URL http://www.gamsworld.org/minlp/

minlplib2

145. Vigerske, S., Gleixner, A.: SCIP: Global optimization of mixed-integer
nonlinear programs in a branch-and-cut framework. ZIB Report 16-24,
Zuse Institute Berlin (2016). urn:nbn:de:0297-zib-59377

146. Viswanathan, J., Grossmann, I.E.: A combined penalty function and
outer-approximation method for MINLP optimization. Computers &
Chemical Engineering 14(7), 769–782 (1990)
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A. Instance details

Table 7 provides detailed data on all the instances of the final library. Column “name” is the
name of the instance with the prefix “QPLIB ” stripped. Column “type” is the classification
of the instance according to the taxonomy from §2.2.1. Column “% h.e.” provides the fraction
of hard eigenvalues of Q0, the coefficient matrix of the objective function: a positive number
implies that the instance is a Q**, “0.0” implies that the instance is a C**, a blank implies
that Q0 = 0, i.e., the objective function is linear (hence, the instance is a L**). Column
“% d.” describes the density of the Q0 matrix: a blank implies that the corresponding instance
has a linear objective function. For both columns (“% n.e.” and “% d.”), nonzeros values
below 0.1 were rounded up to 0.1. The following three columns describe the variables by
reporting the number of binary ones (“# b.”), general integer ones (“# i.”), and continuous
ones (“# c.”). Finally, the last four columns describe the constraints reporting the number of
linear ones (“# l.”), nonconvex quadratic ones (“# q.”), convex quadratic ones (“# c.”), and
variable bounds (“# v.”). The numbering of the instances reflects the initial order in which
we gathered them and the non-consecutiveness of the instance names is due to the filtering.

Table 7: Features of QPLIB instances.

Q0 Variables Constraints

name type % h.e. % d. # b. # i. # c. # l. # q. # c. # v.

0018 QCL 48.0 100.0 0 0 50 1 0 0 50
0031 QML 18.3 99.8 30 0 30 32 0 0 30
0032 QML 25.0 99.9 50 0 50 52 0 0 50
0067 QBL 47.5 88.9 80 0 0 1 0 0 0
0343 QCL 48.0 100.0 0 0 50 1 0 0 100
0633 QBL 58.7 98.7 75 0 0 1 0 0 0
0678 LMQ 9600 0 5537 7457 960 0 1474
0681 LMQ 72 0 143 419 48 0 200
0682 LMQ 71 0 190 501 96 0 296
0684 LMQ 101 0 260 815 128 0 408
0685 LMQ 256 0 519 1603 192 0 728
0686 LMQ 692 0 1512 4440 640 0 2200
0687 LMQ 672 0 1651 4875 800 0 2520
0688 LMQ 1964 0 3824 20568 1600 0 6256
0689 LMQ 756 0 1112 9800 288 0 1608
0690 LMQ 6428 0 10048 112400 3200 0 17376
0696 LMQ 187 0 207 390 33 0 260
0698 LMQ 55 0 63 126 15 0 56
0752 QBL 50.0 10.0 250 0 0 1 0 0 0
0911 QCQ 44.0 50.5 0 0 50 0 50 0 100
0975 QCQ 50.0 50.6 0 0 50 0 10 0 100
1055 QCQ 50.0 100.0 0 0 40 0 20 0 80
1143 QCQ 50.0 97.1 0 0 40 4 20 0 80
1157 QCQ 25.0 94.5 0 0 40 8 1 0 80
1353 QCQ 26.0 95.8 0 0 50 5 1 0 100
1423 QCQ 75.0 95.4 0 0 40 4 20 0 80
1437 QCQ 50.0 95.6 0 0 50 10 1 0 100
1451 QCQ 50.0 49.1 0 0 60 6 60 0 120
1493 QCQ 50.0 97.3 0 0 40 4 1 0 80
1507 QCQ 26.7 95.8 0 0 30 3 30 0 60
1535 QCQ 50.0 94.3 0 0 60 6 60 0 120
1619 QCQ 50.0 95.5 0 0 50 5 25 0 100
1661 QCQ 50.0 95.4 0 0 60 12 1 0 120
1675 QCQ 51.7 48.8 0 0 60 12 1 0 120
1703 QCQ 51.7 97.9 0 0 60 6 30 0 120
1745 QCQ 50.0 48.8 0 0 50 5 50 0 100
1773 QCQ 50.0 94.8 0 0 60 6 1 0 120
1886 QCQ 50.0 50.0 0 0 50 0 50 0 100
1913 QCQ 50.0 24.9 0 0 48 0 48 0 96
1922 QCQ 50.0 49.6 0 0 30 0 60 0 60
1931 QCQ 50.0 49.9 0 0 40 0 40 0 80
1940 QCQ 50.0 25.0 0 0 48 0 96 0 96
1967 QCQ 50.0 99.8 0 0 50 0 75 0 100
1976 QBQ 38.2 7.0 152 0 0 136 16 0 0
2017 QBQ 39.3 5.5 252 0 0 231 21 0 0
2022 QBQ 38.5 5.2 275 0 0 253 22 0 0
2029 QBQ 40.1 5.1 299 0 0 276 23 0 0
2036 QBQ 39.2 4.8 324 0 0 300 24 0 0
2047 LBQ 136 0 0 2040 17 0 0
2055 LBQ 153 0 0 2448 18 0 0
2060 LBQ 171 0 0 2907 19 0 0
2067 LBQ 190 0 0 3420 20 0 0
2073 LBQ 210 0 0 3990 21 0 0
2077 LBQ 231 0 0 4620 22 0 0
2085 LBQ 253 0 0 5313 23 0 0
2087 LBQ 276 0 0 6072 24 0 0
2096 LBQ 300 0 0 6900 25 0 0
2165 LMQ 683 0 1376 1366 683 0 683
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Table 7: Features of QPLIB instances (continued).

Q0 Variables Constraints

name type % h.e. % d. # b. # i. # c. # l. # q. # c. # v.

2166 LMQ 345 0 697 690 345 0 345
2167 LMQ 61 0 131 122 61 0 61
2168 LMQ 214 0 438 428 214 0 214
2169 LMQ 297 0 608 594 297 0 297
2170 LMQ 351 0 736 702 351 0 351
2171 LMQ 150 0 305 300 150 0 150
2173 LMQ 215 0 436 430 215 0 215
2174 LMQ 768 0 1545 1536 768 0 768
2181 LMQ 90 0 190 180 90 0 90
2187 LMQ 90 0 195 180 90 0 90
2192 LMQ 90 0 200 180 90 0 90
2195 LMQ 90 0 205 180 90 0 90
2202 LMQ 90 0 185 180 90 0 90
2203 LMQ 100 0 205 200 100 0 100
2204 LMQ 110 0 225 220 110 0 110
2205 LMQ 958 0 1926 1916 958 0 958
2206 LMQ 194 0 421 388 194 0 194
2315 QBL 44.7 7.5 595 0 0 13090 0 0 0
2353 QML 50.0 23.7 147 0 93 2240 0 0 186
2357 QBL 50.0 7.8 240 0 0 2240 0 0 0
2359 QBL 44.4 4.2 306 0 0 3264 0 0 0
2416 LCQ 0 0 25 153 527 6 48
2430 LCQ 0 0 125 27 65 0 240
2445 LCQ 0 0 143 14 66 0 160
2456 LCD 0 0 5477 4131 0 1369 0
2468 LCD 0 0 14885 11203 0 3721 0
2480 LCQ 0 0 399 199 200 1 400
2482 LCD 0 0 1806 1418 0 361 0
2483 LCQ 0 0 760 40 240 0 1320
2492 QBL 25.5 86.2 196 0 0 28 0 0 0
2505 LCQ 0 0 1039 302 480 0 540
2512 QBL 46.0 77.4 100 0 0 20 0 0 0
2519 LCD 0 0 4806 3802 0 961 0
2540 LCQ 0 0 498 341 210 0 130
2546 CCQ 0.0 0.7 0 0 1015 592 400 0 15
2590 LCQ 0 0 25 93 401 0 48
2626 LCD 0 0 22327 14763 0 3721 0
2635 LCQ 0 0 176 0 188 966 0
2650 LCQ 0 0 1110 228 904 0 1072
2658 LCQ 0 0 184 57 133 0 192
2676 LCD 0 0 1445 1095 0 361 0
2693 LCQ 0 0 791 183 631 0 754
2696 QCQ 1.4 2.5 0 0 3500 1995 1500 0 5
2698 LCQ 0 0 196 36 11 0 280
2702 QML 4.6 1.2 259 0 1 212 0 0 0
2703 LCQ 0 0 799 399 400 1 800
2707 LCQ 0 0 634 151 466 0 640
2708 LMQ 108 0 526 327 30 0 520
2712 QCL 50.0 100.0 0 0 200 1 0 0 400
2714 LCQ 0 0 352 301 298 0 1
2733 QBL 25.9 89.2 324 0 0 36 0 0 0
2738 LCQ 0 0 199 99 100 1 200
2758 LCQ 0 0 303 139 112 0 140
2761 QCL 50.0 100.0 0 0 500 1 0 0 1000
2784 LCD 0 0 4501 3680 0 900 0
2819 LCQ 0 0 334 24 132 0 500
2823 LCQ 0 0 390 103 283 0 396
2834 LCQ 0 0 156 14 72 0 200
2862 LCD 0 0 40501 32640 0 8100 0
2880 QBL 48.8 90.3 625 0 0 50 0 0 0
2881 LCQ 0 0 1512 0 700 20 0
2882 LMQ 56 0 88 257 16 0 32
2894 LCQ 0 0 17 55 154 0 32
2935 LMQ 72 0 108 325 18 0 36
2957 QBL 23.1 60.3 484 0 0 44 0 0 0
2958 LMQ 42 0 70 197 14 0 28
2967 QCC 47.4 5.0 0 0 38 1 0 190 38
2981 CCQ 0.0 0.7 0 0 2015 1192 800 0 15
2987 LCQ 0 0 208 114 90 0 90
2993 LCQ 0 0 266 235 84 0 66
3029 LCD 0 0 5767 3783 0 961 0
3034 LCQ 0 0 780 40 240 0 1320
3049 QCQ 0.8 2.5 0 0 7000 3995 3000 0 5
3060 QML 0.2 6.2 48 0 792 1192 0 0 0
3080 CCQ 0.0 0.7 0 0 4015 2392 1600 0 15
3083 LCQ 0 0 243 107 126 0 120
3088 LCD 0 0 3601 2780 0 900 0
3089 LCQ 0 0 132 12 72 0 228
3105 LCD 0 0 18606 14802 0 3721 0
3120 LCQ 0 0 662 40 204 0 924
3122 QML 2.8 0.1 17136 0 3988 36703 0 0 0
3147 LCQ 0 0 419 32 108 0 550
3170 LCQ 0 0 660 40 160 0 1160
3177 LCQ 0 0 1599 799 800 1 1600
3181 LMQ 84 0 308 180 16 0 222
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Table 7: Features of QPLIB instances (continued).

Q0 Variables Constraints

name type % h.e. % d. # b. # i. # c. # l. # q. # c. # v.

3185 LCD 0 0 18001 14560 0 3600 0
3192 LCQ 0 0 479 32 145 0 702
3225 LCQ 0 0 136 14 66 0 160
3240 LCQ 0 0 516 187 220 0 260
3247 LCQ 0 0 361 322 8 148 1
3279 LMQ 56 0 251 148 16 0 222
3297 CCQ 0.0 0.7 0 0 8015 4792 3200 0 15
3307 QBL 19.9 61.5 256 0 0 32 0 0 0
3312 LCD 0 0 41406 33002 0 8281 0
3318 LCQ 0 0 25 93 381 0 48
3326 QCQ 2.9 2.5 0 0 1750 995 750 0 5
3334 LCQ 0 0 715 40 210 0 990
3337 LCQ 0 0 297 0 198 0 396
3338 LCQ 0 0 320 26 110 0 432
3347 QBL 51.8 85.8 676 0 0 52 0 0 0
3358 LCQ 0 0 158 66 106 0 136
3361 QBL 28.3 35.5 1024 0 0 64 0 0 0
3369 LCQ 0 0 485 32 116 0 650
3380 QBL 3.4 0.1 8904 0 0 823 0 0 0
3385 LCQ 0 0 155 77 60 0 80
3387 LCQ 0 0 170 18 65 0 160
3402 QBL 47.2 81.5 144 0 0 24 0 0 0
3413 QBL 45.0 9.0 400 0 0 40 0 0 0
3416 LCQ 0 0 424 32 96 0 400
3496 LGQ 200 56 72 623 64 0 120
3502 LMQ 10920 0 2090 209 3130 0 2090
3505 LMQ 201 0 603 605 2 0 2
3506 QBN 48.4 0.8 496 0 0 0 0 0 0
3508 LMQ 2450 0 891 99 1332 0 891
3510 LMQ 105 0 919 4568 21 0 38
3511 LMQ 2450 0 3292 4950 1283 0 891
3512 LMQ 72 0 119 403 24 0 152
3513 LMQ 123 0 1897 2569 763 0 1880
3514 LMQ 15 0 1800 960 900 0 1800
3515 LMQ 352 0 382 720 48 0 540
3522 LMQ 42 0 588 212 42 0 588
3523 QML 50.0 13.2 155 0 27 1456 0 0 54
3524 LMQ 132 0 949 3165 192 0 288
3525 QGQ 47.5 0.1 0 1662 87 52 39 0 3324
3529 LMQ 38 0 1488 1580 544 0 800
3533 LMQ 240 0 143 176 25 0 8
3547 DML 0.0 16.7 462 0 1536 3137 0 0 6
3549 LMQ 650 0 1033 1326 583 0 408
3554 QML 12.0 100.0 14 0 370 556 0 0 0
3562 LIQ 7 56 0 35 7 0 112
3565 QBN 47.8 1.4 276 0 0 0 0 0 0
3580 LMQ 108 0 24 45 18 0 24
3582 LMQ 184 0 32 60 24 0 32
3584 QBL 43.9 8.0 528 0 0 10912 0 0 0
3587 QBL 50.0 12.7 240 0 0 46 0 0 0
3588 LMQ 600 0 392 49 584 0 392
3592 QML 50.0 0.2 225 0 225 255 0 0 0
3596 LMQ 104 0 921 1054 132 0 428
3600 LMQ 112 0 16 45 12 0 16
3605 LMQ 160 0 1076 4315 192 0 288
3614 QBL 50.0 12.7 210 0 0 44 0 0 0
3620 LMQ 187 0 3285 4071 1344 0 3398
3621 LMQ 109 0 1655 2213 665 0 1624
3622 LMQ 25 0 2000 1040 1000 0 2000
3624 LMQ 40 0 6400 3280 3200 0 6400
3625 LMQ 46 0 598 191 46 0 598
3631 LMQ 750 0 143 210 25 0 8
3642 QBN 48.9 0.4 1035 0 0 0 0 0 0
3643 LGQ 216 72 72 825 68 0 152
3645 LMQ 101 0 302 304 1 1 1
3646 LMQ 20 0 2000 1050 1000 0 2000
3648 LMQ 40 0 680 306 40 0 80
3650 QBN 48.8 0.4 946 0 0 0 0 0 0
3651 LMQ 137 0 2139 2942 861 0 2136
3659 LGQ 0 960 4577 5537 960 0 1474
3661 LMQ 10816 0 12997 11024 3221 0 12906
3662 LMQ 144 0 32 55 24 0 32
3670 LMQ 54 0 864 305 54 0 108
3676 LMQ 30 0 9000 4650 4500 0 9000
3677 LMQ 30 0 6000 3100 3000 0 6000
3678 LMD 200 0 400 402 0 1 0
3680 LMQ 92 0 16 40 12 0 16
3683 LMQ 126 0 24 48 18 0 24
3690 LMQ 20 0 6000 3150 3000 0 6000
3692 LMQ 128 0 1091 751 528 0 592
3693 QBN 48.9 0.3 1128 0 0 0 0 0 0
3694 DML 0.0 0.1 40 0 3200 3280 0 0 3200
3697 LMQ 168 0 32 58 24 0 32
3698 DML 0.0 0.1 30 0 3000 3100 0 0 3000
3699 LMQ 116 0 792 1668 192 0 288
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Table 7: Features of QPLIB instances (continued).

Q0 Variables Constraints

name type % h.e. % d. # b. # i. # c. # l. # q. # c. # v.

3701 LMQ 60 0 1080 377 60 0 120
3703 QBL 46.7 84.6 225 0 0 30 0 0 0
3705 QBN 48.1 1.0 378 0 0 0 0 0 0
3706 QBN 48.6 0.6 703 0 0 0 0 0 0
3708 DML 0.0 0.1 14 0 12916 12917 0 0 1008
3709 QBL 48.0 91.8 600 0 0 50 0 0 0
3713 LMQ 42 0 630 254 42 0 84
3714 QBL 97.5 32.5 120 0 0 40 0 0 0
3719 LMQ 133 0 28 51 21 0 28
3725 LMQ 81 0 1171 1552 469 0 1112
3726 LMQ 116 0 816 2190 192 0 288
3727 LMQ 20 0 1600 840 800 0 1600
3728 LMQ 72 0 16 35 12 0 16
3729 LMQ 650 0 408 51 608 0 408
3733 LMQ 46 0 644 237 46 0 92
3734 LMQ 38 0 7533 7690 2754 0 4050
3738 QBN 48.3 0.9 435 0 0 0 0 0 0
3745 QBN 48.0 1.2 325 0 0 0 0 0 0
3748 LMQ 75 0 20 37 15 0 20
3750 QBL 98.6 32.9 210 0 0 70 0 0 0
3751 QBL 98.0 32.7 150 0 0 50 0 0 0
3752 QBL 45.5 4.1 462 0 0 6160 0 0 0
3757 QBL 34.4 1.7 552 0 0 8096 0 0 0
3762 QBL 50.0 28.0 90 0 0 480 0 0 0
3772 QBL 50.0 3.8 380 0 0 4560 0 0 0
3775 QBL 98.3 32.8 180 0 0 60 0 0 0
3780 LIQ 12 156 0 60 12 0 312
3785 LMQ 200 0 32 62 24 0 32
3790 QML 9.7 100.0 7 0 188 283 0 0 0
3792 DML 0.0 0.1 20 0 3000 3150 0 0 3000
3794 LMQ 576 0 986 624 602 0 968
3797 LMQ 48 0 296 623 56 0 120
3798 LMQ 54 0 810 251 54 0 810
3803 QBL 42.6 14.1 190 0 0 2280 0 0 0
3809 LMQ 224 0 32 65 24 0 32
3813 LMQ 15 0 2400 1280 1200 0 2400
3814 QMQ 4.2 16.0 2 0 46 13 28 0 80
3815 QBL 50.0 3.1 192 0 0 64 0 0 0
3816 LMQ 70 0 117 363 24 0 148
3822 QBN 48.8 0.5 861 0 0 0 0 0 0
3825 LMQ 60 0 1020 317 60 0 1020
3832 QBN 48.5 0.7 561 0 0 0 0 0 0
3834 QBL 60.0 98.0 50 0 0 1 0 0 0
3838 QBN 48.7 0.5 780 0 0 0 0 0 0
3840 LMQ 2401 0 3334 2499 1374 0 3292
3841 QBL 44.0 10.2 300 0 0 4600 0 0 0
3850 QBN 49.0 0.3 1225 0 0 0 0 0 0
3852 QBN 47.6 1.6 231 0 0 0 0 0 0
3854 LMQ 40 0 640 266 40 0 640
3855 LMQ 400 0 2118 791 1284 0 428
3856 LMQ 168 0 183 50 267 0 174
3857 LMQ 201 0 602 604 1 1 1
3859 LMQ 600 0 968 1225 560 0 392
3860 QBL 44.8 8.7 435 0 0 8120 0 0 0
3861 DML 0.0 0.1 30 0 4500 4650 0 0 4500
3863 LMQ 625 0 1053 675 628 0 1033
3865 QBL 48.0 90.7 525 0 0 50 0 0 0
3870 QML 42.9 23.4 116 0 66 1456 0 0 132
3871 DML 0.0 0.1 25 0 1000 1040 0 0 1000
3872 LMQ 95 0 1413 1874 567 0 1368
3877 QBN 48.6 0.6 630 0 0 0 0 0 0
3879 LMQ 10920 0 12906 21945 3026 0 2090
3883 QBL 50.0 17.8 182 0 0 1456 0 0 0
3913 CBL 0.0 100.0 300 0 0 61 0 0 0
3923 QBL 53.7 8.0 395 0 0 80 0 0 0
3931 QBL 50.3 8.0 316 0 0 80 0 0 0
3980 CBL 0.0 100.0 235 0 0 48 0 0 0
4095 CMQ 0.0 100.0 400 0 1600 1603 400 0 400
4270 CML 0.0 25.1 400 0 1200 1603 0 0 800
4455 LMQ 3000 0 12000 9001 3000 0 3000
4722 LMQ 2000 0 8000 6001 2000 0 2000
4805 LMQ 2000 0 8000 6074 2000 0 4000
5023 LMQ 3000 0 12000 9155 3000 0 6000
5442 LMQ 2000 0 7999 6088 2000 0 3998
5527 DML 0.0 0.1 4492 0 21117 64348 0 0 4738
5543 DML 0.0 0.1 4514 0 21186 64096 0 0 4786
5554 LMQ 4492 0 30878 64769 4800 0 4958
5573 LMQ 4450 0 23692 72976 4800 0 4987
5577 DML 0.0 0.1 1118 0 4896 15690 0 0 1186
5721 QBN 49.0 76.8 300 0 0 0 0 0 0
5725 QBN 50.1 1.7 343 0 0 0 0 0 0
5755 QBN 50.0 1.0 400 0 0 0 0 0 0
5875 QBN 50.0 78.9 200 0 0 0 0 0 0
5881 QBN 49.2 29.5 120 0 0 0 0 0 0
5882 QBN 49.3 78.1 150 0 0 0 0 0 0
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Table 7: Features of QPLIB instances (continued).

Q0 Variables Constraints

name type % h.e. % d. # b. # i. # c. # l. # q. # c. # v.

5909 QBN 50.0 9.6 250 0 0 0 0 0 0
5922 QBN 49.8 9.8 500 0 0 0 0 0 0
5924 DML 0.0 0.7 300 0 15220 36060 0 0 150
5925 LMQ 100 0 1300 271 100 0 100
5926 LMQ 2400 0 31200 11923 2400 0 2400
5927 LMQ 2400 0 31200 11963 2400 0 2400
5935 QBL 49.0 99.0 100 0 0 1237 0 0 0
5944 QBL 49.0 99.0 100 0 0 2475 0 0 0
5962 QBL 49.3 99.3 150 0 0 2793 0 0 0
5971 QBL 49.3 99.3 150 0 0 5587 0 0 0
5980 QBL 49.3 99.3 150 0 0 8381 0 0 0
6287 LCQ 0 0 171 36 81 0 150
6310 LCQ 0 0 208 22 390 0 324
6311 LCQ 0 0 212 43 128 0 186
6324 QBL 50.6 31.3 640 0 0 16 0 0 0
6487 QBL 35.0 20.9 618 0 0 309 0 0 0
6597 QBL 45.7 97.3 600 0 0 60 0 0 0
6647 QBL 70.0 7.2 627 0 0 33 0 0 0
6757 QBL 18.5 4.7 2046 0 0 297 0 0 0
6764 QBL 19.1 4.7 2071 0 0 297 0 0 0
6799 QBL 18.7 4.7 2075 0 0 297 0 0 0
6941 QBL 18.7 4.5 2203 0 0 315 0 0 0
7127 QBL 50.6 6.8 1000 0 0 50 0 0 0
7139 QBL 53.3 89.2 180 0 0 100 0 0 0
7144 QBL 53.2 89.6 220 0 0 121 0 0 0
7149 QBL 53.0 89.6 264 0 0 144 0 0 0
7154 QBL 52.9 89.7 312 0 0 169 0 0 0
7159 QBL 52.5 89.7 364 0 0 196 0 0 0
7164 QBL 52.4 89.7 420 0 0 225 0 0 0
7579 LMD 100 0 200 202 0 1 0
8009 LMQ 101 0 303 305 2 0 2
8153 LMQ 31 0 93 95 2 0 2
8381 LMQ 51 0 153 155 2 0 2
8495 DCL 0.0 0.1 0 0 27543 8000 0 0 22743
8500 DCL 0.0 0.1 0 0 250997 250498 0 0 126002
8505 QCL 49.9 0.1 0 0 20050 10001 0 0 40100
8515 CCL 0.0 0.1 0 0 16002 8002 0 0 16002
8547 DCL 0.0 0.1 0 0 1003001 1001000 0 0 4002
8553 QCQ 0.0 0.1 0 0 79998 796 39601 0 158404
8559 CCL 0.0 0.1 0 0 10000 5000 0 0 20000
8567 CCL 0.0 0.1 0 0 10000 7500 0 0 20000
8585 DCQ 0.0 0.1 0 0 99999 0 49999 0 2
8595 DCQ 0.0 0.1 0 0 2500 0 1275 0 0
8602 DCL 0.0 0.1 0 0 34552 52983 0 0 69104
8605 DCQ 0.0 0.1 0 0 5000 0 1 0 1
8616 DCL 0.0 0.1 0 0 13870 10404 0 0 409
8683 DCQ 0.0 0.1 0 0 200008 0 140000 0 14
8685 DCQ 0.0 0.1 0 0 772 0 10000 0 0
8758 QCQ 4.3 50.0 0 0 2070 0 1981 0 0
8777 QCL 34.6 0.1 0 0 10000 2500 0 0 20000
8784 QCC 49.5 1.0 0 0 200 98 0 4950 204
8785 DCL 0.0 0.1 0 0 10399 11362 0 0 20798
8790 CCB 0.0 0.1 0 0 39204 0 0 0 39204
8792 CCB 0.0 0.1 0 0 15129 0 0 0 30258
8803 DCQ 0.0 0.1 0 0 150002 50000 50000 0 50003
8810 DCQ 0.0 0.1 0 0 150002 50000 50000 0 4
8815 QCD 0.1 25.0 0 0 30010 20004 0 5001 0
8845 CCL 0.0 59.8 0 0 1546 777 0 0 441
8906 CCL 0.0 3.0 0 0 5223 838 0 0 1941
8938 DCL 0.0 0.1 0 0 4001 11999 0 0 0
8991 CCB 0.0 0.1 0 0 14400 0 0 0 28800
9002 DCL 0.0 0.1 0 0 2890 1649 0 0 3617
9004 QCQ 25.0 0.1 0 0 40000 10001 10001 0 20000
9008 DCL 0.0 0.1 0 0 1009306 989604 0 0 39208
9030 QIL 0.1 0.1 0 10000 0 5000 0 0 20000
9048 QIL 29.7 18.2 0 202 0 1 0 0 404
10001 LMC 426 0 59 295 0 1 118
10002 LMC 426 0 59 295 0 1 118
10003 LMC 999 0 59 866 0 1 118
10004 LMC 150 0 250 100 0 1 500
10005 LMC 1000 0 1000 793 0 1 2000
10006 LMC 1875 0 1250 1489 0 1 2500
10007 LMC 2625 0 1750 2086 0 1 3500
10008 LMC 713 0 132 415 0 1 264
10009 LMC 473 0 132 245 0 1 264
10010 LMC 262 0 7 146 0 1 14
10011 LMC 1258 0 132 872 0 1 264
10012 LMC 835 0 132 537 0 1 264
10013 LMQ 3600 0 18106 55968 3600 0 3600
10014 LMQ 3600 0 18113 55834 3600 0 3600
10015 LMQ 3600 0 23527 50083 3600 0 3600
10016 LMQ 3600 0 23524 50427 3600 0 3600
10017 LMQ 4800 0 24149 74451 4800 0 4800
10018 LMQ 4800 0 24145 75293 4800 0 4800
10019 LMQ 4800 0 31370 66484 4800 0 4800



40 Fabio Furini et al.

Table 7: Features of QPLIB instances (continued).

Q0 Variables Constraints

name type % h.e. % d. # b. # i. # c. # l. # q. # c. # v.

10020 LMQ 4800 0 31372 66912 4800 0 4800
10021 LMQ 3000 0 12000 9155 3000 0 6000
10022 LMQ 3000 0 12000 9155 3000 0 6000
10023 LMQ 3000 0 12000 9155 3000 0 6000
10024 LMQ 3000 0 12000 9089 3000 0 6000
10025 CMQ 0.0 100.0 400 0 1600 1603 400 0 400
10026 CMQ 0.0 100.0 400 0 1600 1603 400 0 400
10027 CMQ 0.0 100.0 400 0 1600 1603 400 0 400
10028 CMQ 0.0 100.0 400 0 1600 1603 400 0 400
10029 CMQ 0.0 100.0 400 0 1600 1603 400 0 400
10030 LMQ 3000 0 12000 9001 3000 0 3000
10031 LMQ 3000 0 12000 9001 3000 0 3000
10032 LMQ 3000 0 12000 9001 3000 0 3000
10033 LMQ 3000 0 12000 9001 3000 0 3000
10034 DCL 0.0 0.2 0 0 40400 40200 0 0 802
10035 LCQ 0 0 40401 40000 200 1 1200
10036 LCQ 0 0 40401 40000 200 1 1200
10037 LCQ 0 0 40401 200 40000 1 400
10038 DCL 0.0 0.1 0 0 160800 160400 0 0 1602
10039 LCQ 0 0 12097 11713 193 0 384
10040 LMQ 125 0 1 6 1 0 0
10041 LMQ 125 0 1 6 1 0 0
10042 QBL 0.8 99.9 125 0 0 5 0 0 0
10043 LMQ 150 0 1 10 1 0 0
10044 QBL 8.0 97.0 150 0 0 6 0 0 0
10045 LMQ 150 0 1 10 1 0 0
10046 QBL 0.7 92.1 150 0 0 6 0 0 0
10047 LMQ 150 0 1 10 1 0 0
10048 QBL 1.3 99.9 150 0 0 5 0 0 0
10049 LMQ 150 0 1 10 1 0 0
10050 CBL 0.0 100.0 150 0 0 5 0 0 0
10051 LMQ 150 0 1 10 1 0 0
10052 QBL 1.3 99.9 150 0 0 6 0 0 0
10053 LMQ 150 0 1 10 1 0 0
10054 QBL 4.6 90.1 175 0 0 11 0 0 0
10055 QBL 2.9 91.5 175 0 0 5 0 0 0
10056 CBL 0.0 98.8 175 0 0 5 0 0 0
10057 LMQ 200 0 1 11 1 0 0
10058 QBL 7.5 88.0 200 0 0 11 0 0 0
10059 LMQ 200 0 1 10 1 0 0
10060 LMQ 200 0 1 10 1 0 0
10061 QBL 9.0 97.6 200 0 0 5 0 0 0
10062 LMQ 200 0 1 10 1 0 0
10063 QBL 3.0 99.5 200 0 0 5 0 0 0
10064 LMQ 200 0 1 11 1 0 0
10065 QBL 1.0 99.0 200 0 0 11 0 0 0
10066 QBL 1.5 100.0 200 0 0 11 0 0 0
10067 QBL 2.5 99.7 200 0 0 5 0 0 0
10068 QBL 2.0 99.9 200 0 0 11 0 0 0
10069 LMC 200 0 1 10 0 1 0
10070 QBL 1.5 99.9 200 0 0 11 0 0 0
10071 LMQ 200 0 1 11 1 0 0
10072 LMQ 75 0 1 10 1 0 0
10073 LMQ 75 0 1 6 1 0 0
10074 LMQ 75 0 1 10 1 0 0

B. The file format

The QPLIB format is defined in Table 8, with the notation of §2.
The data is in free format (blanks separate values), but must occur in the order given

here. Any blank lines, or lines starting with any of the characters !, % or # are ignored.
Each term in the first column of Table 8 denotes a required value. Any strings beyond
those required on a given line will be regarded as comments and ignored. Real values may
either by in decimal or exponential formats; for the latter, the exponent may be preceded by
either the character D or E, e.g. 12.56D+2 or 12.56E+2. Variable indices, j, must lie in the
range 1 ≤ j ≤ n, while constraint indices, i, must satisfy 1 ≤ i ≤ m, that is they are both
one-based. The case for character strings is irrelevant.
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Table 8: The QPLIB file format: refer to the notes after the table for more
details.

data description note
name problem name (character string)
type problem type (character string) [1]
sense one of the words minimize or maximize (character string)
n number of variables (integer)
m number of constraints (integer) [2]

nQ0
number of nonzeros (integer) in lower triangle of Q0 [3]

h k Q0
hk row and column indices (integers) and value (real) for each

nonzero entry of Q0, if nQ0
> 0, one triple on each line

[3]

b0d default value (real) for entries in b0

nb0 number of non-default entries (integer) in b0

j b0j index (integer) and value (real) for each non-default term in b0,

if nb0 > 0, one pair per line
q0 constant part of the objective function∑
i∈M

nQi
number of nonzeros (integer) in lower triangles of Qi, summed
over all i ∈M

[2,4]

i h k Qi
hk i, row and column indices (integers) and value (real) for each

entry of Qi for every i ∈ M, if nQi
> 0, one quadruple on each

line∑
i∈M

nbi number of nonzeros (integer) in bi, summed over all i ∈M [2]

i j bij i and index (integers) and value (real) for each nonzero entry of

bi for every i ∈M, if nbi > 0, one triple on each line

[2]

c∞ value (real) for infinity for constraint or variable bounds—any
bound greater than or equal to this in, absolute value, is infinite

cl,d default value (real) for entries in cl [2]
ncl,d number of non-default entries (integer) in cl [2]
i cil index (integer) and value (real) for each non-default term in cl,d,

if ncl,d > 0, one pair per line
[2]

cu,d default value (real) for entries in cu [2]
ncu,d number of non-default entries (integer) in cu [2]
i ciu index (integer) and value (real) for each non-default term in cu,d,

if ncu,d > 0, one pair per line
[2]

ld default value (real) for entries in l [6]
nld number of non-default entries (integer) in l [6]
i li index (integer) and value (real) for each non-default term in l, if

nld > 0, one pair per line
[6]

ud default value (real) for entries in u [6]
nud number of non-default entries (integer) in u [6]
i ui index (integer) and value (real) for each non-default term in u, if

nud > 0, one pair per line
[6]

vd default variable type (integer, 0 for continuous variables, 1 for
integer variables, 2 for binary variables)

[5]

nv number of non-default variables (integer) [5]
i vi index and type (integers) for each non-default variable type, if

nv > 0, one pair per line
[5]

x0
d default value (real) for the components of the starting point x0

for the variables x

nx0
number of non-default starting entries (integer) in x

i x0
i index (integer) and value (real) for each non-default starting

value in x0, if nx0
> 0, one pair per line
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Table 8: The QPLIB file format (continued)

data description note
y0
d default value (real) for the components of the starting point y0

for the Lagrange multipliers y for the general constraints
[2]

ny0
number of non-default starting entries (integer) in y [2]

i y0i index (integer) and value (real) for each non-default starting

value in y0, if ny0
> 0, one pair per line

[2]

z0
d default value (real) for the components of the starting point z0

for the dual variables z for the simple bound constraints

nz0 number of non-default starting entries (integer) in z
i z0i index (integer) and value (real) for each non-default starting

value in z0, if nz0 > 0, one pair per line
nx
d number of non-default names (integer) of variables—default for

variable i is the character string representing the numerical value
i

j var namej index (integer) and name (character string) for each non-default
variable name, if nx

d > 0, one pair per line
nc
d number of non-default names (integer) of general constraints—

default for constraint i is the character string representing the
numerical value i

i cons namei index (integer) and name (character string) for each non-default
constraint name, if nc

d > 0, one pair per line

[1] The problem type is represented by a three character string as given in §2.2.1
[2] For problems of type **N or **B, these lines/sections are omitted.
[3] For problems of type L**, this section is omitted.
[4] For problems of type **N, **B or **L, this section is omitted.
[5] For problems of type *C*, *B* or *I*, this section is omitted. For problems of type *I*,

binary variables should be specified as integer variables with lower and upper bounds 0
and 1.

[6] For problems of type *B*, this section is omitted.

Binary variables defined either implicitly via the type *B* or explicitly in the variable type
section will be assumed to have lower and upper bounds 0 and 1, and this will override any
explicit bounds ld, ud, li, and ui set in the lower and upper bound sections. To fix a binary
variable to 0 or 1, its variable type should be changed to continuous or general integer and
the corresponding lower and upper bounds set accordingly in the lower and upper bound
sections.

As a simple example, consider the mixed-integer QP

minx∈IR3 x2
1 + x2

2 + x2
3 − x1x2 − x2x3 − 0.2x1 − 0.4x2 − 0.2x3

subject to 1 ≤ x1 + x2, 1 ≤ x1 + x3, 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 2, and binary x3,

for which the Hessian of the objective function is

Q0 =

 2 −1 0
−1 2 −1
0 −1 2

 .

This may then be represent in QPLIB format as follows:

! ---------------

! example problem

! ---------------

MIPBAND # problem name

QML # problem is a mixed-integer quadratic program

Minimize # minimize the objective function
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3 # variables

2 # general linear constraints

5 # nonzeros in lower triangle of Q^0

1 1 2.0 5 lines row & column index & value of nonzero in lower triangle Q^0

2 1 -1.0 |

2 2 2.0 |

3 2 -1.0 |

3 3 2.0 |

-0.2 default value for entries in b_0

1 # non default entries in b_0

2 -0.4 1 line of index & value of non-default values in b_0

0.0 value of q^0

4 # nonzeros in vectors b^i (i=1,...,m)

1 1 1.0 4 lines constraint, index & value of nonzero in b^i (i=1,...,m)

1 2 1.0 |

2 1 1.0 |

2 3 1.0 |

1.0E+20 infinity

1.0 default value for entries in c_l

0 # non default entries in c_l

1.0E+20 default value for entries in c_u

0 # non default entries in c_u

0.0 default value for entries in l

0 # non default entries in l

1.0 default value for entries in u

1 # non default entries in u

2 2.0 1 line of non-default indices and values in u

0 default variable type is continuous

1 # non default variable types

3 2 variable 3 is binary

1.0 default value for initial values for x

0 # non default entries in x

0.0 default value for initial values for y

0 # non default entries in y

0.0 default value for initial values for z

0 # non default entries in z

0 # non default names for variables

0 # non default names for constraints


	Introduction
	Quadratic Programming in a nutshell
	Library Construction
	Conclusions
	Acknowledgements
	Instance details
	The file format

