Fabio Furini
email: fabio.furini@dauphine.fr

Emiliano Traversi
email: emiliano.traversi@lipn.fr

Pietro Belotti
email: pietrobelotti@fico.com

Antonio Frangioni
email: frangio@di.unipi.it

Ambros Gleixner
email: gleixner@zib.de

Nick Gould
email: nick.gould@stfc.ac.uk

Leo Liberti
email: liberti@lix.polytechnique.fr

Andrea Lodi
email: andrea.lodi@polymtl.ca

Ruth Misener
email: r.misener@imperial.ac.uk

Hans Mittelmann
email: mittelmann@asu.edu

Nikolaos V Sahinidis
email: sahinidis@cmu.edu

Stefan Vigerske
email: svigerske@gams.com

Angelika Wiegele
email: angelika.wiegele@aau.at

QPLIB: a library of quadratic programming instances

Keywords:

à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

QPLIB: A Library of Quadratic Programming Instances

Fabio Furini • Emiliano Traversi • Pietro Belotti • Antonio Frangioni • Ambros Gleixner • Nick Gould • Leo Liberti • Andrea Lodi • Ruth Misener • Hans Mittelmann • Nikolaos V Sahinidis • Stefan Vigerske • Angelika Wiegele 1. Introduction
Quadratic Programming (QP) problems-mathematical optimization problems for which the objective function [150], the constraints [151], or both are polynomial function of the variables of degree two-include a notably diverse set of different instances. This is not surprising, given the vast scope of practical applications of such problems, and of solution methods designed to solve them [START_REF] Gould | A quadratic programming bibliography[END_REF]. Depending on the specifics of the formulation, solving a QP may require primarily combinatorial techniques, ideas rooted in nonlinear optimization principles, or a mix of the two. In this sense, QP is arguably one of the classes of problems where collaboration between the communities interested in combinatorial and in nonlinear optimization is most needed, and potentially fruitful.

However, this diversity also implies that QP means very different things to different researchers. This is illustrated by the fact that the class of problems that we simply refer to here as "QP" might more accurately be called Mixed-Integer Quadratically-Constrained Quadratic Programming (MIQCQP) in the most general case. It is, therefore, perhaps not surprising that, unlike for "simpler" problems classes [START_REF] Koch | Miplib[END_REF], there has been, to date, no single library devoted to all different kinds of instances of QP. While several specialised libraries devoted to particular cases of QP are available, each of them is either focussed on a particular application (a specific problem that can be modelled as a QP), or on QPs with specific structural properties that make them suitable for solution by some given class of algorithmic approaches. To the best of our knowledge, collecting a set of QP instances that is at the same time not overwhelmingly onerous but sufficiently challenging for the many different interested communities has not been attempted. This work constitutes a first step in this direction.

In this paper, we report the steps that have been done to collect what we consider to be a quality library of QP instances, filtering a much larger set of currently available (or specifically provided) instances in order to end up with a manageable set that still contains a meaningful sample of possible QP types. A particularly thorny issue in this process was how to select instances that are "interesting". Our choice has been to take this to mean "challenging for a significant set of solution methods". Our filtering process has then been in part based on the idea that, if a significant fraction of the solvers that can solve a QP instance do so in a "short" time, then the instance is not challenging enough to be included in the library. Conversely, if very few (maybe one) of the solvers can solve it very efficiently by exploiting some specific structure, but most other approaches cannot, then the instance should be deemed "interesting". Putting this approach into practice requires a nontrivial number of technical steps and decisions that are detailed in the paper. We hope that our work can provide useful guidelines for other researchers interested in the constructions of benchmarks for mathematical optimization problems.

A consequence of our focus is that this paper is not concerned with the performance of the very diverse available set of QP solvers; we will not report any data comparing them. The only reason that solvers are used (and, therefore, described) in this context is to ensure that the instances of the library are nontrivial-at least for a significant fraction of the current solution methods. Providing guidance about which solvers are most suited to some specific class of QPs is entirely outside the scope of our work.

Motivation

Optimization problems with quadratic constraints and/or objective function (QP) have been the subject of a considerable amount of research over the last almost seventy years. At least some of the rationale for this interest is likely due to the fact that QPs are the "least-nonlinear nonlinear problems". Hence, in particular for the convex case, tools and techniques that have been honed during decades of research for Linear Programming (LP), typically with integrality constraints (MILP), can often be extended to the quadratic case more easily than would be required to tackle general (Mixed-Integer) Nonlinear Programming ((MI)NLP) problems. This has indeed happened over-and-over again with different algorithmic techniques, such as interior-point methods, active-set methods (of which the simplex method is a prototypical example), enumeration methods, cut-generation techniques, reformulation techniques, and many others [START_REF] Burer | The MILP road to MIQCP[END_REF]. Similarly, nonconvex continuous QP is perhaps the "simplest" class of problems that require features such as spatial enumeration techniques for their solution. Hence, QPs are both a natural basis for the development of general techniques for nonconvex NLP, and a very specific class so that specialized approaches can be developed [START_REF] Burer | Copositive programming[END_REF][START_REF] Dür | Copositive programming -a survey[END_REF].

In addition, QP, with continuous or integer variables, is arguably a considerably more expressive class than (MI)LP. Quadratic expressions are found, either naturally or after appropriate reformulations, in very many optimization problems [START_REF] Kochenberger | The unconstrained binary quadratic programming problem: a survey[END_REF]. Table 1 provides a certainly non-exhaustive collection of applications that lead to formulations with quadratic constraints, quadratic objective function, or both. In general, any continuous function can be approximated with arbitrary accuracy (over a compact set) by a polynomial of arbitrary degree. In turn, every polynomial can be broken down to a system of quadratic expressions. Hence, QP is, in some sense, roughly as expressive as MINLP. This is, in principle, true for MILP as well, but at the cost of much larger and much more complicated formulations. Hence, for many applications QP may represent the "sweet spot" between the effectiveness, but lower expressive power, of MILP and the higher expressive power, but much higher computational cost of MINLP.

Problem Discrete Contributions

Quadratic network design [START_REF] Frangioni | Approximated Perspective Relaxations: a Project & Lift Approach[END_REF][START_REF] Frangioni | Projected Perspective Reformulations with Applications in Design Problems[END_REF] Multi-period blending [START_REF] Kolodziej | Global optimization of bilinear programs with a multiparametric disaggregation technique[END_REF][START_REF] Kolodziej | A discretization-based approach for the optimization of the multiperiod blend scheduling problem[END_REF] while three others contain have partial results for such problems, namely those for (4) parallel barrier solvers on large LP/QP problems, (5) AMPL-NLP and (6) MINLP. Benchmarks (1, 2 & 4) contain only convex instances, while the others include nonconvex ones. Global optima are obtained by several of the solvers in benchmarks (3 & 5), while all solvers in the latest addition (6) compute global optima. Benchmark (6) is based on MINLPLib 2 [144], a collection of currently 1388 instances. In order to give a first representative impression of solver performance, care was taken there to reduce the number of instances and allow all solvers to finish in a reasonable time. More than half of the selected instances are QP or QCP. For details we refer to http: //plato.asu.edu/ftp/minlp.html.

Quadratic Programming in a nutshell

Notation

In mathematical optimization, a Quadratic Program (QP) is an optimization problem in which either the objective function, or some of the constraints, or both, are quadratic functions. More specifically, the problem has the form

min or max 1 2 x Q 0 x + b 0 x + q 0 such that c i l ≤ 1 2 x Q i x + b i x ≤ c i u i ∈ M, l j ≤ x j ≤ u j j ∈ N ,
and

x j ∈ Z j ∈ Z,
where -N = {1, . . . , n} is the set of (indices) of variables, and M = {1, . . . , m} is the set of (indices) of constraints; x = [x j] n j=1 is a finite vector of real variables; -Q i for i ∈ {0} ∪ M are symmetric n × n real (Hessian) matrices: since one is only interested in the value of quadratic forms of the type x Q i x, symmetry can be assumed without loss of generality by just replacing off diagonal pairs Q i hk and Q i kh with their average (Q i hk + Q i kh)/2; b i , c i u , c i l for i ∈ {0} ∪ M, and q 0 are, respectively, real n-vectors and real constants; --∞ ≤ l j ≤ u j ≤ ∞ are the (extended) real lower and upper bounds on each variable x j for j ∈ N ; -M = Q ∪ L where Q i = 0 for all i ∈ L (i.e., these are the linear constraints, as opposed to the truly quadratic ones); and the variables in Z ⊆ M are restricted to only attain integer values.

Due to the presence of integrality requirements on the variables and of quadratic constraints, this class of problems is often referred to as Mixed-Integer Quadratically Constraint Quadratic Program (MIQCQP). It will be sometimes useful to refer to the (sub)set B = { j ∈ Z : l j = 0, u j = 1 } ⊆ Z of the binary variables, and to R = N \ Z as the set of continuous ones. Similarly, it will be sometimes useful to distinguish the (sub)set X = { j : l j > -∞ ∨ u j < ∞ } of the box-constrained variables from U = N \ X of the unconstrained ones (in the sense that finite bounds are not explicitly provided in the data of the problem, although they may be implied by the other constraints).

The relative flexibility offered by quadratic functions, as opposed e.g. to linear ones, allows several reformulation techniques to be applicable to this family of problems in order to emphasize different properties of the various components. Some of these reformulation techniques will be commented later on; here we remark that, for instance, integrality requirements, in particular in the form of binary variables could always be "hidden" by introducing (nonconvex) quadratic constraints utilizing the celebrated relationship x j ∈ {0, 1} ⇐⇒ x 2 j = x j . Therefore, when discussing these problems some effort has to be made to distinguish between features that come from the original model, and those that can be introduced by reformulation techniques in order to extract (and algorithmically exploit) specific properties.

In the rest of this paper, we shall sometimes refer to exact solutions of quadratic programs. In view of the fact that their solutions may be irrational, this notation deserves a comment. If the decision version of the problem being referred to is in NP (e.g. LP, MILP, QP [143]), then the assumption is that all rational numbers can be represented exactly by a Turing Machine (TM). If there is no known proof that the problem being solved (or its decision version) is in NP, then there are four main approaches:

1. finding a representable solution x such that x -x * ∞ ≤ ε, where x * is the true solution, ε > 0 is given, and representable means having a polynomially sized description length (in function of the instance size) [START_REF] Hochbaum | Complexity and algorithms for nonlinear optimization problems[END_REF]; 2. using the Thom encoding of an algebraic number [15, Prop. 2.28] (limited to problems involving polynomials); 3. using the optimality gap: finding a representable solution x such that |f (x) -f (x *)| ≤ ε, where f is the objective function, x * is the true solution, ε > 0 is given (limited to optimization problems); 4. using a computational model according to which every elementary computation on the reals takes O(1) and returns a precise result [23, p. 24].

Approach 3 in the list above is the one most often used in computational papers, including the present one.

Classification

Despite the apparent simplicity of the definition given in §2.1, Quadratic Programming instances can be of several rather different "types" in practice, depending on fine details of the data. In particular, many algorithmic approaches can only be applied to QP when the data of the problem has specific properties.

A taxonomy of QP instances should thus strive to identify the set of properties that an instance should have in order to apply the most relevant computational methods. However, the sheer number of different existing approaches, and the fact that new ones are frequently proposed, makes it hard to provide a taxonomy that is both simple and covers all possible special cases. This is why, in this paper, we propose an approach that aims at finding a good balance between simplicity and coverage of the main families of computational methods.

Taxonomy

Our taxonomy is based on a three-fields code of the form "OVC ", where O indicates the type of objective function considered, V records the types of variables, and C designates the types of constraints imposed on the variables. The fields can be given the following values:

-

i l = -∞, or Q i is nega- tive semidefinite and c i u = ∞.
Note that (positive or negative) definiteness of Q i is a sufficient, but not in general necessary, condition for convexity. As detailed in §3.3, in our taxonomy we mark the constraints "C" based on the sufficient condition alone, the rationale of this choice being discussed in §2.2.2. Quadratic constraints with both finite bounds cannot ever be convex (unless Q i = 0, i.e., they are not "truly" quadratic constraints).

The wildcard "*" will be used below to indicate any possible choice, and lists of the form "{X, Y, Z }" will indicate that the value of the given field can freely attain any of the specified values.

The ordering of the values in the previous lists is not irrelevant; in general, problems become "harder" when going from left to right. More specifically, for the O and C fields the order is that of strict containment between problem classes: for instance, linear objective functions are strictly a special case of diagonal convex quadratic ones (by allowing the diagonal elements all to be zero), the latter are a strict subset of general convex quadratic objectives (by allowing the off-diagonal elements all to be zero), and these are strictly subsets of general nonconvex quadratic ones (since these permit any symmetric Hessian including positive semidefinite ones). The only field for which the containment relationship is not a total order is V, for which only the partial orderings

C ⊂ M ⊂ G, B ⊂ M ⊂ G, and
B ⊂ I ⊂ G hold.
In the following discussion we will repeatedly exploit this by assuming that, unless otherwise mentioned, when a method can be applied to a given problem, it can be applied as well to all simpler problems where the value of each field is arbitrarily replaced with a value denoting a less-general class.

We note that, although the left-to-right progression in the above text marks "harder problems", this does not mean that every instance of a hard problem is itself "difficult to solve". As is well known, problems as infinite collections of instances; and it is always possible to find subclasses that can be solved efficiently.

Examples and reformulations

We now give a general discussion about the different problem classes that our proposed taxonomy defines. For simplicity, we will assume minimization problems for the remaining of this section. Some problem classes are actually "too simple" to make sense in our context. For instance, D*B problems have only diagonal quadratic (hence separable) objective function and bound constraints; as such, they read

min j∈N 1 2 Q 0 j x 2 j + b 0 j x j : l j ≤ x j ≤ u j j ∈ N , x j ∈ Z j ∈ Z .
Hence, their solution only requires the independent minimization of a convex quadratic univariate function in each single variable x j over a box constraint and possibly integrality requirements, which can be attained trivially in O(1) operations (per variable) by closed-form formulae, projection and rounding arguments. A fortiori, the even simpler cases L*B, D*N and L*N (the latter obviously unbounded unless b 0 = 0) will not be discussed here. Similarly, CCN are immediately solved by linear algebra techniques, and therefore are of no interest in this context. At the other end of the spectrum, in general QP is a hard problem. Actually, LIQ-linear objective function and quadratic constraints in integer variables with no finite bounds, i.e.

min b 0 x : 1 2 x Q i x + b i x ≤ c i i ∈ M , x j ∈ Z j ∈ N ,
is not only N P-hard, but downright undecidable [START_REF] Jeroslow | There cannot be any algorithm for integer programming with quadratic constraints[END_REF]. Hence so are the "harder" {C,Q}IQ.

It is important to note that the relationships between the different classes can be somehow blurred because reformulation techniques may allow one to move an instance from one class to another. We already mentioned that x 2 = x ⇐⇒ x ∈ {0, 1}, and in general *M* -instances with only binary and continuous variables-can be recast as *CQ; here nonconvex quadratic constraints take the place of binary variables. More generally, this is also true for *G* as long as U = ∅, as bounded general integer variables can be represented by binary ones. Hence, the nonconvexity due to binary variables can always be expressed by means of (nonconvex) quadratic constraints. The converse is also true: when only binary variables are present, all quadratic constraints can be converted into convex ones [START_REF] Billionnet | An efficient compact quadratic convex reformulation for general integer quadratic programs[END_REF][START_REF] Billionnet | Improving the performance of standard solvers for quadratic 0-1 programs by a tight convex reformulation: The QCR method[END_REF].

Another relevant reformulation trick concerns the fact that, as soon as quadratic constraints are allowed, then there is no loss of generality in assuming a linear objective function. Indeed, any Q** (C*C) problem can always be rewritten as

min x 0 -∞ ≤ 1 2 x Q 0 x + b 0 x ≤ x 0 c i l ≤ 1 2 x Q i x + b i x ≤ c i u i ∈ M l j ≤ x j ≤ u j j ∈ N x j ∈ Z j ∈ Z i.e., a L*Q (L*C) pronlem.
Hence, it is clear that quadratic constraints are, in a well-defined sense, the most general situation (cf. also the result above about hardness of LIQ).

When a Q i is positive semidefinite (PSD), i.e., the corresponding constraint/objective function is convex, general Hessians are in fact equivalent to diagonal ones. In particular, since every PSD matrix can be factorized as Q i = L i (L i) T , e.g. by the (incomplete) Cholesky factorization, the term

1 2 x T Q i x ≡ 1 2 j∈N z i 2
j where z i T = x T L i . Hence, one might maintain that D** problems need not be distinguished from C** ones. However in reality, this is only true for "complicated" constraints but not for "simple" ones, because the above reformulation technique introduces additional linear constraints, L i T x -z i = 0. Indeed, while C*L (and, a fortiori, C* {C,Q}) can always be brought to D*L (D* {C,Q}), using the above technique C*B becomes D*L, which may be significantly different from D*B. In practice, a diagonal convex objective function under linear constraints is found in many applications (e.g., [START_REF] Frangioni | Approximated Perspective Relaxations: a Project & Lift Approach[END_REF][START_REF] Frangioni | Perspective Cuts for a Class of Convex 0-1 Mixed Integer Programs[END_REF][START_REF] Frangioni | A Computational Comparison of Reformulations of the Perspective Relaxation: SOCP vs[END_REF][START_REF] Frangioni | Projected Perspective Reformulations with Applications in Design Problems[END_REF]), so that it still makes sense to distinguish the D*L case where the objective function is "naturally" separable from that where separability is artificially introduced.

Furthermore, as previously remarked, a not (positive or negative) definite Q i does not necessarily correspond to a nonconvex feasible region. For instance, it is well-known that Second-Order Cone Programs have convex feasible regions; when represented in terms of quadratic constraints, however, they correspond to Q i in one negative eigenvalue. In our taxonomy we still consider the corresponding instances as * * Q ones, with no attempt to detect the different special structures that actually correspond to convex feasible regions. Although this may lead to classify as "potentially nonconvex" some instances that are in fact convex, our choice is justified by the fact that not all QP solvers are capable of detecting and exploiting these structures, which means that the instance can actually be treated as a nonconvex one even if it is not.

QP classes

The proposed taxonomy can then be used to describe the main classes of QP according to the type of algorithms that can be applied for their solution:

-Linear Programs LCL and Mixed-Integer Linear Programs LGL have been subject of an enormous amount of research and have their well-established instance libraries [START_REF] Koch | Miplib[END_REF], so they will not be explicitly addressed here.

-Convex Continuous Quadratic Programs CCC can be solved in polynomial time by Interior-Point techniques [152]; the simpler CCL can also be solved by means of "simplex-like" techniques, usually referred to as active-set methods [START_REF] Dostál | Optimal Quadratic Programming Algorithms: With Applications to Variational Inequalities[END_REF]. Actually, a slightly larger class of problems can be solved with Interior-Point methods: those that can be represented by Second-Order Cone Programs. When written as QPs the corresponding Q i may not be positive semidefinite, but nonetheless such problems can be efficiently solved.

Of course just as for LCL, these problems may still require considerable computational effort when the size of the instance grows. In this sense, like in the linear case, there is a significant distinction between solvers that need all the data of QP to work, and those that are "matrix-free", i.e., only require the application of simple operations (typically, matrix-vector products) with the problem data. While when building our instance library we never exploited such characteristics, since they are not amenable to standard modelling tools, but this may be relevant for the solution of very-large-scale CIC. -Nonconvex Continuous Quadratic Programs QCQ are generally N P-hard, even if the constraints are very specific (QCB) and only a single eigenvalue of Q 0 is negative [START_REF] Hemmecke | Nonlinear integer programming[END_REF]. They therefore require enumerative techniques, such as spatial Branch&Bound [START_REF] Belotti | Branching and bounds tightening techniques for non-convex MINLP[END_REF][START_REF] Floudas | A global optimization algorithm (GOP) for certain classes of nonconvex NLPs -I[END_REF], to be solved to optimality. Of course, local approaches are available that are able to efficiently provide saddle points (hopefully, local optima) of the CQC, but providing global guarantees about the quality of the obtained solutions is challenging. In our library we have specifically focused on exact solution of the instances. -Convex Integer Quadratic Programs CGC are, in general, N P-hard, and therefore require enumerative techniques to be solved. However, convexity of the objective function and constraints implies that efficient techniques (see CCC) can be used at least to solve continuous relaxations. The general view is that CGC are not, all other things being equal, substantially more difficult than LGL to solve, especially if the objective function and/or the constraints have specific properties (e.g., DGL, CGL). Often integer variables are in fact binary ones, so several CCC models are C {B,M }C ones. In practice binary variables are considered to lead to somewhat easier problems than general integer ones (cf. the cited result about hardness of unbounded integer quadratic programs), and several algorithmic techniques have been specifically developed for this special case. However, the general approaches for CBC are basically the same as for CGC, so there is seldom the need to distinguish between the two classes as far as solvability is concerned, although matters can be different regarding actual solution cost. Programs with only binary variables CBC can be easier than mixed-binary or integer ones C {M,I }C because some techniques are specifically known for the binary-only case, cf. the next point [START_REF] Billionnet | Improving the performance of standard solvers for quadratic 0-1 programs by a tight convex reformulation: The QCR method[END_REF]. Absence of continuous variables, even in the presence of integer ones CIC, can also lead to specific techniques [START_REF] Billionnet | An efficient compact quadratic convex reformulation for general integer quadratic programs[END_REF]. -Nonconvex Binary Quadratic Programs QB {B, N, L} obviously are N Phard. However, the special nature of binary variables combined with quadratic forms allows for quite specific techniques to be developed, one of which is the reformulation of the problem as a LBL. Also, many well-known combinatorial problems can be naturally reformulated as problems of this class, and therefore a considerable number of results have been obtained by exploiting specific properties of the set of constraints [105, 125]. -Nonconvex Integer Quadratic Programs QGQ is the most general, and therefore is the most difficult, class. Due to the lack of convexity even when integrality requirements are removed, solution methods must typically combine several algorithmic ideas, such as enumeration (distinguishing the role of integral variables from that of continuous ones involved into nonconvex terms) and techniques (e.g., outer approximation, semidefinite programming relaxation, . . .) that allow the efficient computation of bounds.

As in the convex case, QBQ, QMQ, and QIQ can benefit from more specific properties of the variables [START_REF] Buchheim | Semidefinite relaxations for non-convex quadratic mixed-integer programming[END_REF][START_REF] Dong | Relaxing nonconvex quadratic functions by multiple adaptive diagonal perturbations[END_REF].

This description is deliberately coarse; each of these classes can be subdivided into several others on the grounds of more detailed information about structures present in their constraints/objective function. These can have a significant algorithmic impact, and therefore can be of interest to researchers. Common structures are, e.g., network flows [START_REF] Frangioni | Approximated Perspective Relaxations: a Project & Lift Approach[END_REF][START_REF] Frangioni | Delay-Constrained Shortest Paths: Approximation Algorithms and Second-Order Cone Models[END_REF][START_REF] Frangioni | Delay-constrained routing problems: Accurate scheduling models and admission control[END_REF][START_REF] Frangioni | Projected Perspective Reformulations with Applications in Design Problems[END_REF], 135] or knapsack-type linear constraints [START_REF] Frangioni | Approximated Perspective Relaxations: a Project & Lift Approach[END_REF][START_REF] Frangioni | Projected Perspective Reformulations with Applications in Design Problems[END_REF][START_REF] Frangioni | A Library for Continuous Convex Separable Quadratic Knapsack Problems[END_REF], and semi-continuous variables [START_REF] Frangioni | Approximated Perspective Relaxations: a Project & Lift Approach[END_REF][START_REF] Frangioni | Delay-Constrained Shortest Paths: Approximation Algorithms and Second-Order Cone Models[END_REF][START_REF] Frangioni | Delay-constrained routing problems: Accurate scheduling models and admission control[END_REF][START_REF] Frangioni | Perspective Cuts for a Class of Convex 0-1 Mixed Integer Programs[END_REF][START_REF] Frangioni | SDP Diagonalizations and Perspective Cuts for a Class of Nonseparable MIQP[END_REF][START_REF] Frangioni | A Computational Comparison of Reformulations of the Perspective Relaxation: SOCP vs[END_REF][START_REF] Frangioni | Projected Perspective Reformulations with Applications in Design Problems[END_REF], or the fact that a nonconvex quadratic objective function/constraint can be reformulated as a second-order cone (hence, convex) one [53-55, 58, 59]. It would be very hard to collect a comprehensive list of all types of structures that might be of interest to any individual researcher, since these are as varied as the different possible approaches for specialized sub-classes of QP. For this reason we do not attempt such a more refined classification, and limit ourselves to the coarser one described in this section.

Solution Methods and Solvers

In this section we provide a quick overview of existing solution methods for QP, restricting ourselves to these implemented by the set of solvers considered in this paper (see §2.3.1). For each approach we briefly describe the formulation they address according to the classification set out in §2.2. We remark that many solvers implement more than one algorithm, which the user can choose at runtime. Moreover, algorithms are typically implemented in different ways within different solvers, so that the same conceptual algorithm can sometimes yield different results or performance measures on the same instances. Solution methods for QP can be broadly organized in four categories [115]: incomplete, asymptotically complete, complete, and rigorous.

-Incomplete methods are only able to identify solutions, often locally optimal according to a suitable notion, and may even fail to find one even when one exists; in particular, they are typically unable to determine that an instance has no solution.

-Asymptotically complete methods can find a globally optimal solution with probability one in infinite time, but again they cannot prove that a given instance is infeasible. -Complete methods find an approximate globally optimal solution within a prescribed optimality tolerance within finite time, or prove that none such exists (but see §2.3.4 below); they are often referred to as exact methods in the computational optimization community. -Rigorous methods find globally optimal solutions within given tolerances even in the presence of rounding errors, except for "near-degenerate cases". Since none of the solvers we are using can be classified as rigorous, we limit ourselves to declaring solvers complete.

We refer the interested reader to [START_REF] Best | Quadratic programming with computer programs, 1st edn[END_REF] and [START_REF] Lee | Quadratic Programming and Affine Variational Inequalities: A Qualitative Study[END_REF] for further details on the solution methods.

Solvers

When compiling QPLIB, we have worked with the QP solvers that come with the GAMS distribution 1 . Table 2 provides a list of these solvers, together with a classification of their algorithm, and references. For more details on the solvers, we refer to the given references, solver manuals, and the survey [START_REF] Bussieck | MINLP solver software[END_REF]. In the table, we mark a pair (solver, problem) with "I" if the solver accepts the problem as input but it is an incomplete solver for the problem, with "A" if it is asymptotically complete, with "C" if it is complete, and leave it blank if the solver won't accept the provided problem. When a solver implements several algorithms, we have chosen, for each problem class, the algorithm that potentially provides the "strongest" results ("C" > "A" > "I" > blank).

Incomplete methods

Incomplete methods are usually realized as local search algorithms, asymptotically complete methods are usually realized by meta-heuristic methods such as multi-start or simulated annealing, and complete methods for N P-hard problems such as QP are typically realized as implicit exhaustive exploration algorithms. However, these three categories may exhibit some overlap. For example, any deterministic method for solving QCQ locally is incomplete in general, but becomes complete for CCC, since any local optimum of a convex QP is also global. Therefore, when we state that a given algorithm is incomplete or (asymptotically) complete we mean that it is so the largest problem class that the solver naturally targets, although it may be complete on specific sub-classes. For example, interior point algorithms naturally target NLPs and are incomplete on NLPs, and therefore on QCQ, but become complete for CCC.

In general, all complete methods for a problem class P must be complete for any problem class Q ⊆ P , while a complete method for P might be incomplete for a class R ⊃ P .

CGL QGL CGC QGQ CCC QCQ AlphaECP [148, 149] C I C I C I ANTIGONE [109, 110] C C C C C C BARON [138-140] C C C C C C BONMIN [25] C I C I C I CONOPT [43, 44] C I Couenne [16] C C C C C C Cplex [21, 81] C C C C DICOPT [47, 90, 146] C I C I C I Gurobi [128] C C C Ipopt [147] C I Knitro [31] C I C I C A Lindo API [103] C C C C C C LGO [121, 122] A A MINOS [113, 114] C I MOSEK [5, 6] C C C MsNlp [95, 142] C A OQNLP [95, 142] A A A A C A SBB [45] C I C I C I SCIP [1, 145] C C C C C C SNOPT [64, 65] C I Xpress-Optimizer [50] C C C
Table 2 Families of QP problems that can be tackled by each solver

The solvers in Table 2 which implement incomplete methods for NLPs (a problem class containing QCQ) are CONOPT, Ipopt, MINOS, SNOPT, and Knitro. Note that all these solvers tackle the more general class of NLP, while we use them only for the considerably more restricted class of QP. Aside from solvers provided by GAMS, there are a number of other, specialized, incomplete QP solvers, such as CQP [START_REF] Gould | Trajectory-following methods for large-scale degenerate convex quadratic programming[END_REF], DQP [START_REF] Gould | A dual gradient-projection method for large-scale strictly convex quadratic problems[END_REF] and OOQP [START_REF] Gertz | Object-oriented software for quadratic programming[END_REF] for convex problems, and BQPD [START_REF] Fletcher | Stable reduced hessian updates for indefinite quadratic programming[END_REF], QPA [START_REF] Gould | An iterative working-set method for largescale non-convex quadratic programming[END_REF] and QPB [START_REF] Conn | A primal-dual trustregion algorithm for non-convex nonlinear programming[END_REF], QPC [START_REF] Gould | GALAHAD-a library of threadsafe fortran 90 packages for large-scale nonlinear optimization[END_REF], SQIC [START_REF] Gill | Methods for convex and general quadratic programming[END_REF] for nonconvex ones.

Asymptotically complete methods

Asymptotically complete methods do not usually require a starting point, and, if given sufficient time (infinite in the worst case) will identify a globally optimal solution with probability one. Most often, these methods are meta-heuristics, involving an element of random choice, which exploit a given (heuristic) local search procedure.

The solvers in Table 2 which implement asymptotically complete methods are OQNLP and Knitro (which apply to QGQ) as well as MsNlp and certain sub-solvers of LGO (which apply to QCQ).

Complete methods

Complete methods are often referred to as exact in a large part of the mathematical optimization community. This term has to be used with care, as it implicitly makes assumptions on the underlying computational model that may not be acceptable in all cases. For example, te decision version of QCL is known to be in the complexity class NP [143], whereas the same is not known about LCQ, even with zero objective. On the other hand, there exists a method for deciding feasibility of systems of polynomial equations and inequalities [137], including the solution of LCQ with zero objective function.

To explain this apparent contradiction, we remark that the two statements refer to different computational models: the former is based on the Turing Machine (TM), whereas the latter is based on a computational model that allows operations on real numbers, e.g. the Real RAM (RRAM) machine [START_REF] Blum | On a theory of computation and complexity over the real numbers: NP -completeness, recursive functions, and universal machines[END_REF]. Due to the potentially infinite nature of exact real arithmetic computations, exact computations on the RRAM necessarily end up being approximate on the TM. Analogously, a complete method may reasonably be called "exact" on a RRAM; however, the computers we use in practice are more akin to TMs than RRAMs, and therefore calling exact a solver that employs floating point computations is, technically speaking, stretching the meaning of the word. However, because the term is well understood in the computational optimization community, in the following we shall loosen the distinction between complete and exact methods, with either properties intended to mean "complete" in the sense of [115].

Nearly all of the complete solvers in Table 2 that address N P-hard problems (i.e. those in QGQ CCC) are based on Branch-and-Bound (BB) [START_REF] Land | An automatic method of solving discrete programming problems[END_REF]. When the BB algorithm is allowed to branch on coordinate directions corresponding to continuous variables, it is called spatial BB (sBB) [START_REF] Belotti | Branching and bounds tightening techniques for non-convex MINLP[END_REF][START_REF] Dakin | A tree search algorithm for mixed programming problems[END_REF]. BB algorithms require exponential time in the worst case, and their exponential behavior unfortunately often shows up in practice. They can also be used heuristically (forsaking their completeness guarantee) in a number of ways, e.g. by terminating them early. The following solvers from Table 2 implement complete BB algorithms for QGQ or some subclasses:

-ANTIGONE, BARON, Couenne, Lindo API, SCIP for QGQ; -Cplex for QGL and CGC ; -Knitro, BONMIN, SBB, Xpress-Optimizer, Gurobi, and MOSEK for CGC.

We remark that the latter category can be used as incomplete solvers for QGQ.

We also note that LGO implements an incomplete BB algorithm for QCQ by using bounds obtained from sampling. Cutting plane approaches construct and iteratively improve a MILP (LIL) relaxation of the problem [START_REF] Duran | An outer-approximation algorithm for a class of mixed-integer nonlinear programs[END_REF]149]. The cutting planes for the MILP are generated by linearization (first-order Taylor approximation) of the nonlinearities. If the latter are convex, the MILP provides a valid lower bound for the problem. Additionally, incomplete methods can be used to provide local solutions. Therefore, these methods are complete on CGC if a complete method is used to solve the MILP. The latter is typically based on BB, which is therefore a crucial technique also for this class of approaches. Solvers in Table 2 that implement complete cutting plane methods for CGC are AlphaECP, BONMIN (in the algorithmic mode B-OA), and DICOPT.

Library Construction

In this section we present all the steps we performed in order to build the new instance library. In §3.1, we describe the set of gathered instances, and in §3.2 we present the features used to classify the instances. We describe the selection process used to filter the instances, and graphically present the main features of the selected instances in §3.3, while in §3.4 we provide information on how to access the test collection.

Instance Collection

In this section we describe the procedure we adopted to gather the instances. In January 2014, we issued an online call for instances using the main international mailing lists of the mathematical optimization and numerical analysis communities, reaching in this way the largest possible set of interested researchers and practitioners. The call remained open for 10 months, during which we received a large number of contributions of different nature. The instances we gathered come both from theoretical studies as well as from real-world applications.

In addition to spontaneous contribution we analysed the other generic libraries of instances available on internet and containing QP instances. Namely, the libraries from which we gathered instances are the BARON library http://www.minlp.com/nlp-and-minlp-test-problems; the CUTEst library https://ccpforge.cse.rl.ac.uk/gf/project/cutest; the GAMS Performance libraries http://www.gamsworld.org/performance/ performlib.htm; the MacMINLP library https://wiki.mcs.anl.gov/leyffer/index.php/ MacMINLP; the Meszaros library http://www.doc.ic.ac.uk/ ~im/00README.QP; the MINLP library http://www.gamsworld.org/minlp/minlplib.htm; the POLIP library http://polip.zib.de/pipformat.php.

Other quadratic instances were found in online libraries devoted to specific QP problems as Max-Cut, Quadratic Assignment, Portfolio Optimization, and several others. In addition, we mention that other generic libraries exist, e.g., Conic library CBLIB (http://cblib.zib.de) and MIPLIB 2010 (http: //miplib.zib.de/), to mention just a few.

At the end of this process we had gathered more than eight thousand instances. Three quarters of them contained discrete variables, while the remainder contained only continuous variables. In more detail, we gathered ≈ 1800 Quadratic Binary Linear (QBL) instances, ≈ 2000 Quadratic Continuous Quadratic (QCQ) instances, and and ≈ 2500 Quadratic General Quadratic (QGQ) instances. We also received ≈ 1000 Convex General Convex (CGC) instances. We obtained relatively fewer Quadratic Binary Quadratic (QBQ), Convex Continuous Convex (CCC) and Convex Mixed Convex (CMC) instances, (≈ 150, ≈ 200 and ≈ 200 instances respectively). Finally, we found only 17 Quadratic Mixed Linear (QML) instances. In the call for instances, no specific formats requirements were imposed for the submissions.

To evaluate the instances we decided, for practical reasons, to use GAMS as common platform for all our final selection computations. For this reason, we translated all the instances we received into the GAMS format (.gms).

For each instance in this large starting set, we collected important characteristics which allowed us to classify the instances into the QP categories described in §2. As far as the variable types are concerned, we collected the following information:

the number of binary variables; the number of integer variables; and the number of continuous variables.

If at least one binary or integer variable is present, then the instance is categorized as discrete, otherwise it is categorized as continuous. As far as the objective function is concerned, we gathered the following information:

the percentage of positive and negative eigenvalues of the Hessian Q 0 ; and the density of the Hessian Q 0 (number of nonzero entries divided by the total number of entries).

The number of positive (i.e., larger than 10 -12) and negative (i.e., smaller than -10 -12) eigenvalues of Q 0 allowed us to identify the objective function type, as in presence of at least one negative (positive) eigenvalue the objective function is nonconvex (nonconcave). Finally, as far as the constraint types are concerned, we collected the following information:

the number of linear constraints, the number of quadratic constraints, the number of convex constraints, and the number of variable bounds (for non-binary variables).

A constraint is considered quadratic if it contains at least one nonzero in a quadratic term (if present). Among the quadratic constraints, the ones whose Hessians have only non-negative eigenvalues (when c i u < ∞) and and nonpositive eigenvalues (when c i l > -∞) are classified as convex constraints; thus, a quadratic constraint with two sided, finite bounds is non-convex. Note that this might occasionally lead us to classify some instances that have conic constraints as non-convex ones, although their feasible region is in fact convex-fortunately, only some solvers are capable of properly exploiting this property. All this information allowed us to analyse the gathered instances and to perform the filters described in the the next paragraph.

Instance Selection

During the development of the library, a discussion ensued about the expected goals that we wished to achieve. The following four goals where finally identified: 1. to represent as far as possible all the different categories of QP problems; 2. to gather "challenging" instances, i.e., ones which can not be easily solved by state-of-the-art solvers; 3. to include, for each of the categories, a set of well-diversified instances; and 4. to obtain a set of instances which is neither too small, so as to preserve statistical relevance, nor too large so as to being computationally manageable.

To achieve such goals, we performed the following two filters, applied in a cascade.

-First Instances Filter.

The first filter was designed to drastically reduce the number of instances by eliminating the "easy" ones. An empirical measure for the hardness of an instance is the CPU time needed by a complete solver (cf. §2.3) to solve it to global optimality. Accordingly, for each of the gathered instance we ran the complete solvers in GAMS, which number depends on the category of the instance under consideration, cf. Table 2. We then filtered according to a first measure of computational difficulty, i.e., we discarded all instances that are solved by at least 30% of the complete solvers within a time limit of 30 seconds. -Second Instances Filter.

The goal of the second filter was to eliminate "similar" instances. We carefully analysed the instances one by one, and we clustered them according to their features; for each cluster we kept only a few representatives (e.g., very similar size, same donor,. . .). Finally, in order to only keep computationally challenging instances we ran a a complete solver for QGQ with a time limit of 120 seconds; all the instances which have been solved to proven optimality within this time limit were discarded.

In Table 3 we summarize the two filter steps, which allowed us to identify the final set of 319 discrete instances and 134 continuous instances.

Analysis of the final set of instances

We now analyse the features of the instances selected to be part of the library.

In Table 4 The detailed characteristics of the instances are presented in Table 5 for discrete instances (* {B,M,I,G}*) and in Table 6 for continuous ones (*C*). For each category, the tables report in column "#" the corresponding number of instances. It can be seen that the final set well respects the original distribution of the gathered instances among the different categories. Indeed, the discrete categories (LMQ) or (QBL) are well represented by 118 and 59 instances, respectively. Similarly, the continuous categories (LCQ) and (QCQ) are well represented by 50 and 17 instances, respectively. Moreover, the library actually covers the large majority of all possible categories of instances.

One of the nontrivial choices in our library is that we made no effort to reformulate the instances, and inserted them in the library in the very same format they have been provided to us by the original contributors. Section 2.2.2 is crucial in justifying this choice, as it shows that there are several degrees of freedom to move the instances from one class to another. Tailoring the structure of a problem to the solver is, however, a bias we do not want to add.

We now report some graphs that help in illustrating the main features of the instances. In Figure 1 (left) we plot the number of variables (horizontal axis) versus the number of constrains (vertical axis), both in logarithmic scale. Continuous instances are marked with "+", and discrete ones with "×". The figure shows that the library contains a quite diverse set of instances in terms of number of variables and constraints. The maximal number of constraints is 100000, while the maximal number of variables is almost 40000. Figure 1 (right) plots the number of nonzero elements in the gradient of the objective function and the Jacobian and the number of these nonzeros corresponding to nonlinear variables, that is, it counts the appearances of variables in objectives and constraints and how often such an appearance is in a quadratic term.

Figure 2 describes how discrete and continuous variables are distributed within the instances. The instances are sorted accordingly to the total number of variables. For each instance we report the total number of variables with a "+", and the total number of discrete variables (binary or general integer) with a "×". The pictures clearly show that instances with different percentages of integer and continuous variables are present in the library, and that these differences are well distributed across the whole spectrum of variable sizes.

Similarly, Figure 3 (left) describes how the number of linear and quadratic constraints are distributed within the instances. The instances are sorted accordingly to the total number of constraints. For each instance we report the total number of constraints with a "+" and the total number of quadratic constraints with a "×". Also, in this case, different percentages of linear and quadratic constraints are present and well-distributed across the spectrum of constraint sizes, although both medium-and large-size instances show a prevalence of lower percentages of quadratic constraints. In particular, from Figure 3 (left) we learn that while the maximum number of linear constraints exceeds 100000, the maximum number of quadratic constraints tops up at around 10000. This is, however, reasonable, considering how quadratic constraints can, in general, be expected to be much more computationally challenging than linear ones, especially if nonconvex.

Figure 3 (right) shows the instances with at least one quadratic constraint sorted according to the number of quadratic constraints (vertical axis). For each instance we report the total number of constraints with a "+" and the total number of nonconvex quadratic constraints with a "×". It can be seen that the majority of instances only have nonconvex constraints.

On the theme of nonconvexity, Figure 4 (left) focuses on the instances with a quadratic objective function, ordered by percentage of "problematic" (defined using a tollerance of XXX) eigenvalues in the Hessian Q 0 (vertical please define the tolerance used to identify the "Problematic" eigenvalues and change the label of the plot please define the tolerance used to identify the "Problematic" eigenvalues and change the label of the plot axis), by which we mean negative eigenvalues in case of a minimization problem and positive eigenvalues in case of a maximization problem. The instances are mostly clustered around two values. About 25% of the instances have a convex (if minimization) or concave (if maximization) objective function, i.e., they have 0% of "problematic" eigenvalues. Among the others, a vast majority has around 50% of "problematic" eigenvalues. However, instances with high or low percentages of "problematic" eigenvalues are present, too.

Similarly, Figure 4 (right) shows the instances with a quadratic objective function sorted according to the density of the Hessian Q 0 (vertical axis). The majority of the instances have either a very low or a rather high density: indeed, about 30% of the instances have density smaller than 5%, and about 30% of Additional details on the instance features can be found in Appendix A.

Website

The QPLIB instances are publicly accessible at the website http://qplib.zib. de, which was created by extending scripts and tools initially developed for MINLPLib 2 [144]. We provide all instances in GAMS (.gms), AMPL (.mod), CPLEX (.lp) [START_REF]IBM ILOG: CPLEX Optimization Studio[END_REF], and QPLIB (.qplib) formats. The latter is a new format specifically for QP instances. In comparison to more high level formats such as .gms and .lp, the new format offers three main advantages: it is easier to read by a stand-alone parser (provided), it typically produces smaller files, and it permits the inclusion of two-sided inequalities without needless repetition of data. See Appendix B for more details.

Beyond the instances, the website provides a rich set of metadata for each instance: the three letter problem classification (as described in §3.3), basic properties such as the number of variables and constraints of different types, the sense and convexity/concavity of the objective function, and information on the nonzero structure of the problem. In addition, we display a visualization of the sparsity patterns of the Jacobian and the Hessian matrix of the Lagrangian function. In the plots of the Jacobian nonzero pattern, the linear and nonlinear entries are distinguished by color. Figure 5 shows an example for instance QPLIB 2967.

The entire set of instances can be explored in a searchable and sortable table of selected instance features: problem classification, convexity of the continuous relaxation, number of (all, binary, integer) variables, (all, quadratic) constraints, nonzeros, hard eigenvalues in Q 0 , and density of Q 0 . Finally, a statistics page displays diagrams on the composition of the library according to different criteria: the number of instances according to problem type, variable and constraint types, convexity, problem size, and density. A file containing the relevant metadata for each instance can be downloaded in comma-separated-values (csv) format, so that researchers can easily compile their own subset of instances according to these statistics.

The complete library can be downloaded as one archive, which contains the website for offline browsing and exploration. In the future, we plan to extend the website by the addition of contributor information and references to the literature.

Conclusions

This manuscript describes the first comprehensive library of instances for Quadratic Programming (QP). Since QP comprises different and "varied" categories of problems, we proposed a classification and we briefly discuss the main classes of solution methods for QP.

We then describe the steps of the adopted process used to filter the gathered instances in order to build the new library. Our design goals were to build a library which is computationally challenging and as broad as possible, i.e., it represents the largest possible categories of QP problems, while remaining of manageable size. We have also proposed a stand-alone QP format that is intended for the convenient exchange and use of our QP instances.

We want to stress once again that we intentionally avoid to perform a computational comparison of the performances of the different solvers. Our goal is instead to provide a common test-bed of instances for practitioners and researchers in the field. This new library will hopefully serve as a point of reference to test new ideas and algorithms for QP problems.

Acknowledgements

We are grateful to all the donors who provided instances for the library. We gratefully acknowledge the financial support of the Gaspard Monge Program for Optimization and operations research (PGMO) and the logistic support of GAMS for having provided us with the license of their software. Finally, we would like to acknowledge the financial and networking support by the COST Action TD1207. The work of the fifth and twelfth author was supported by the Research Campus MODAL Mathematical Optimization and Data Analysis Laboratories funded by the Federal Ministry of Education and Research (BMBF Grant 05M14ZAM). The work of the sixth author was supported by the EPSRC grant EP/M025179/1. All responsibilty for the content of this publication is assumed by the authors.

B. The file format

The QPLIB format is defined in Table 8, with the notation of §2.

The data is in free format (blanks separate values), but must occur in the order given here. Any blank lines, or lines starting with any of the characters !, % or # are ignored. Each term in the first column of Table 8 denotes a required value. Any strings beyond those required on a given line will be regarded as comments and ignored. Real values may either by in decimal or exponential formats; for the latter, the exponent may be preceded by either the character D or E, e.g. 12.56D+2 or 12.56E+2. Variable indices, j, must lie in the range ≤ j ≤ n, while constraint indices, i, must satisfy 1 ≤ i ≤ m, that is they are both one-based. The case for character strings is irrelevant. v d default variable type (integer, 0 for continuous variables, 1 for integer variables, 2 for binary variables) [START_REF] Andersen | On implementing a primal-dual interior-point method for conic quadratic optimization[END_REF] n v number of non-default variables (integer) [START_REF] Andersen | On implementing a primal-dual interior-point method for conic quadratic optimization[END_REF] i v i index and type (integers) for each non-default variable type, if n v > 0, one pair per line [START_REF] Andersen | On implementing a primal-dual interior-point method for conic quadratic optimization[END_REF] x 0 d default value (real) for the components of the starting point x 0 for the variables x n x 0 number of non-default starting entries (integer) in x i x 0 i index (integer) and value (real) for each non-default starting value in x 0 , if n x 0 > 0, one pair per line default value (real) for the components of the starting point y 0 for the Lagrange multipliers y for the general constraints [START_REF] Adachi | Solving the trustregion subproblem by a generalized eigenvalue problem[END_REF] n y 0 number of non-default starting entries (integer) in y [2] i y 0 i index (integer) and value (real) for each non-default starting value in y 0 , if n y 0 > 0, one pair per line [START_REF] Adachi | Solving the trustregion subproblem by a generalized eigenvalue problem[END_REF] z 0 d default value (real) for the components of the starting point z 0 for the dual variables z for the simple bound constraints n z 0 number of non-default starting entries (integer) in z i z 0 i index (integer) and value (real) for each non-default starting value in z 0 , if n z 0 > 0, one pair per line n x d number of non-default names (integer) of variables-default for variable i is the character string representing the numerical value i j var name j index (integer) and name (character string) for each non-default variable name, if n x d > 0, one pair per line n c d number of non-default names (integer) of general constraintsdefault for constraint i is the character string representing the numerical value i i cons name i index (integer) and name (character string) for each non-default constraint name, if n c d > 0, one pair per line [START_REF] Achterberg | SCIP: Solving Constraint Integer Programs[END_REF] The problem type is represented by a three character string as given in §2.2.1 [START_REF] Adachi | Solving the trustregion subproblem by a generalized eigenvalue problem[END_REF] For problems of type **N or **B, these lines/sections are omitted.

[3] For problems of type L**, this section is omitted.

[4] For problems of type **N, **B or **L, this section is omitted.

[5] For problems of type *C*, *B* or *I*, this section is omitted. For problems of type *I*, binary variables should be specified as integer variables with lower and upper bounds 0 and 1. [START_REF] Andersen | The mosek interior point optimizer for linear programming: An implementation of the homogeneous algorithm[END_REF] For problems of type *B*, this section is omitted.

Binary variables defined either implicitly via the type *B* or explicitly in the variable type section will be assumed to have lower and upper bounds 0 and 1, and this will override any explicit bounds l d , u d , l i , and u i set in the lower and upper bound sections. To fix a binary variable to 0 or 1, its variable type should be changed to continuous or general integer and the corresponding lower and upper bounds set accordingly in the lower and upper bound sections.

As a simple example, consider the mixed-integer QP min x∈IR 3 x 2 1 + x 2 2 + x 2 3 -x 1 x 2 -x 2 x 3 -0.2x 1 -0.4x 2 -0.2x 3 subject to 1 ≤ x 1 + x 2 , 1 ≤ x 1 + x 3 , 0 ≤ x 1 ≤ 1, 0 ≤ x 2 ≤ 2, and binary x 3 , for which the Hessian of the objective function is

Q 0 =   2 -1 0 -1 2 -1 0 -1 2   .
This may then be represent in QPLIB format as follows: ! ---------------! example problem ! ---------------MIPBAND # problem name QML # problem is a mixed-integer quadratic program Minimize # minimize the objective function

Fig. 1 Fig. 2

 12 Fig. 1 Distribution of number of variables and constraints of QPLIB instances (left). Number of (nonlinear) nonzeros of QPLIB instances (right).

Fig. 3

 3 Fig. 3 Number of constraints, quadratic constraints, and nonconvex quadratic constraints of QPLIB instances.

 objective coef. matrix

Fig. 4 "

 4 Fig. 4 "Problematic" eigenvalues (left) and density (right) of the Hessian Q 0 for QPLIB instances with a quadratic objective function.

Fig. 5

 5 Fig. 5 Example for the sparsity pattern of the Jacobian of the constraint functions (left) and of the upper-right triangle of the Hessian of the Lagrangian function (right) for instance QPLIB 2967. The gradient of the objective function is displayed as the first row of the Jacobian matrix. Non-constant entries are shown in red.

 indices (integers) and value (real) for each nonzero entry of Q 0 , if n Q 0 > 0, one triple on each line [3] b 0 d default value (real) for entries in b 0 n b 0 number of non-default entries (integer) in b 0 j b 0 j index (integer) and value (real) for each non-default term in b 0 , if n b 0 > 0, one pair per line q 0constant part of the objective function

Table 1 :

 1 Application Domains of QP

	Problem	Discrete Contributions
	Fundamental problems that can be formulated as MIQP
	Quadratic assignment problem ‡	[8, 104]

Table 1 (

 1 Application Domains of QP) continued

Table 3

 3 Instance filter steps

Table 4

 4 , we provide a global overview. The instances have been divided in continuous vs discrete and convex vs non-convex, forming in this way, a classification of 4 macro categories. As previously mentioned, an instance Macro classification of the final set of instances is classified discrete if it contains at least a binary or integer variable, and continuous otherwise. On the other hand, an instance is classified as non-convex if the objective function is non-convex and/or at least one of the constraints is non-convex, and convex otherwise.

	Variables	Convexity	#
	continuous	convex	32
	continuous	non-convex	102
	discrete	convex	31
	discrete	non-convex	288
	Total		453

Table 5

 5 Classification of the final set of discrete instances

	Obj. Fun.	Variables	Constraints	#
		Binary	Quadratic	
	Linear	Mixed	Convex	
			Quadratic	
		Integer	Quadratic	
		General	Quadratic	
	Convex (if min)	Binary	Linear	
	or	Mixed	Linear	
	Concave (if max)		Quadratic	
			None	
		Binary	Linear	
	Quadratic		Quadratic	
		Mixed	Linear	
			Quadratic	
		Integer	Linear	
		General	Quadratic	
	Total			
	Obj. Fun.	Constraints	#
	Linear	Convex		13
		Quadratic	52
	Convex (if min)	Box		3
	or	Linear		16
	Concave (if max)	Quadratic	11
		Linear		6
	Quadratic	Convex		3
		Quadratic	30
	Total			134

Table 6

 6 Classification of the final set of continuous instances

Table 7 :

 7 Features of QPLIB instances (continued).

			Q 0			Variables			Constraints	
	name	type	% h.e.	% d.	# b.	# i.	# c.	# l.	# q.	# c.	# v.
	2166	LMQ			345	0	697	690	345	0	
	2167	LMQ			61	0	131	122	61	0	
	2168	LMQ			214	0	438	428	214	0	
	2169	LMQ			297	0	608	594	297	0	
	2170	LMQ			351	0	736	702	351	0	
	2171	LMQ			150	0	305	300	150	0	
	2173	LMQ			215	0	436	430	215	0	
	2174	LMQ			768	0	1545	1536	768	0	
	2181	LMQ			90	0	190	180	90	0	
	2187	LMQ			90	0	195	180	90	0	
	2192	LMQ			90	0	200	180	90	0	
	2195	LMQ			90	0	205	180	90	0	
	2202	LMQ			90	0	185	180	90	0	
	2203	LMQ			100	0	205	200	100	0	
	2204	LMQ			110	0	225	220	110	0	
	2205	LMQ			958	0	1926	1916	958	0	
	2206	LMQ			194	0	421	388	194	0	
	2315	QBL	44.7	7.5	595	0	0	13090	0	0	
	2353	QML	50.0	23.7	147	0	93	2240	0	0	
	2357	QBL	50.0	7.8	240	0	0	2240	0	0	
	2359	QBL	44.4	4.2	306	0	0	3264	0	0	
	2416	LCQ			0	0	25	153	527	6	
	2430	LCQ			0	0	125	27	65	0	
	2445	LCQ			0	0	143	14	66	0	
	2456	LCD			0	0	5477	4131	0	1369	
	2468	LCD			0	0	14885	11203	0	3721	
	2480	LCQ			0	0	399	199	200	1	
	2482	LCD			0	0	1806	1418	0	361	
	2483	LCQ			0	0	760	40	240	0	
	2492	QBL	25.5	86.2	196	0	0	28	0	0	
	2505	LCQ			0	0	1039	302	480	0	
	2512	QBL	46.0	77.4	100	0	0	20	0	0	
	2519	LCD			0	0	4806	3802	0	961	
	2540	LCQ			0	0	498	341	210	0	
	2546	CCQ	0.0	0.7	0	0	1015	592	400	0	
	2590	LCQ			0	0	25	93	401	0	
	2626	LCD			0	0	22327	14763	0	3721	
	2635	LCQ			0	0	176	0	188	966	
	2650	LCQ			0	0	1110	228	904	0	
	2658	LCQ			0	0	184	57	133	0	
	2676	LCD			0	0	1445	1095	0	361	
	2693	LCQ			0	0	791	183	631	0	
	2696	QCQ	1.4	2.5	0	0	3500	1995	1500	0	
	2698	LCQ			0	0	196	36	11	0	
	2702	QML	4.6	1.2	259	0	1	212	0	0	
	2703	LCQ			0	0	799	399	400	1	
	2707	LCQ			0	0	634	151	466	0	
	2708	LMQ			108	0	526	327	30	0	
	2712	QCL	50.0	100.0	0	0	200	1	0	0	
	2714	LCQ			0	0	352	301	298	0	
	2733	QBL	25.9	89.2	324	0	0	36	0	0	
	2738	LCQ			0	0	199	99	100	1	
	2758	LCQ			0	0	303	139	112	0	
	2761	QCL	50.0	100.0	0	0	500	1	0	0	
	2784	LCD			0	0	4501	3680	0	900	
	2819	LCQ			0	0	334	24	132	0	
	2823	LCQ			0	0	390	103	283	0	
	2834	LCQ			0	0	156	14	72	0	
	2862	LCD			0	0	40501	32640	0	8100	
	2880	QBL	48.8	90.3	625	0	0	50	0	0	
	2881	LCQ			0	0	1512	0	700	20	
	2882	LMQ			56	0	88	257	16	0	
	2894	LCQ			0	0	17	55	154	0	
	2935	LMQ			72	0	108	325	18	0	
	2957	QBL	23.1	60.3	484	0	0	44	0	0	
	2958	LMQ			42	0	70	197	14	0	
	2967	QCC	47.4	5.0	0	0	38	1	0	190	
	2981	CCQ	0.0	0.7	0	0	2015	1192	800	0	
	2987	LCQ			0	0	208	114	90	0	
	2993	LCQ			0	0	266	235	84	0	
	3029	LCD			0	0	5767	3783	0	961	
	3034	LCQ			0	0	780	40	240	0	
	3049	QCQ	0.8	2.5	0	0	7000	3995	3000	0	
	3060	QML	0.2	6.2	48	0	792	1192	0	0	
	3080	CCQ	0.0	0.7	0	0	4015	2392	1600	0	
	3083	LCQ			0	0	243	107	126	0	
	3088	LCD			0	0	3601	2780	0	900	
	3089	LCQ			0	0	132	12	72	0	
	3105	LCD			0	0	18606	14802	0	3721	
	3120	LCQ			0	0	662	40	204	0	
	3122	QML	2.8	0.1	17136	0	3988	36703	0	0	
	3147	LCQ			0	0	419	32	108	0	
	3170	LCQ			0	0	660	40	160	0	
	3177	LCQ			0	0	1599	799	800	1	
	3181	LMQ			84	0	308	180	16	0	

Table 7 :

 7 Features of QPLIB instances (continued).

			Q 0			Variables			Constraints	
	name	type	% h.e.	% d.	# b.	# i.	# c.	# l.	# q.	# c.	# v.
		LMQ			4800	0	31372	66912	4800	0	4800
		LMQ			3000	0	12000	9155	3000	0	6000
		LMQ			3000	0	12000	9155	3000	0	6000
		LMQ			3000	0	12000	9155	3000	0	6000
		LMQ			3000	0	12000	9089	3000	0	6000
		CMQ	0.0	100.0	400	0	1600	1603	400	0	400
		CMQ	0.0	100.0	400	0	1600	1603	400	0	400
		CMQ	0.0	100.0	400	0	1600	1603	400	0	400
		CMQ	0.0	100.0	400	0	1600	1603	400	0	400
		CMQ	0.0	100.0	400	0	1600	1603	400	0	400
		LMQ			3000	0	12000	9001	3000	0	3000
		LMQ			3000	0	12000	9001	3000	0	3000
		LMQ			3000	0	12000	9001	3000	0	3000
		LMQ			3000	0	12000	9001	3000	0	3000
		DCL	0.0	0.2	0	0	40400	40200	0	0	802
		LCQ			0	0	40401	40000	200	1	1200
		LCQ			0	0	40401	40000	200	1	1200
		LCQ			0	0	40401	200	40000	1	400
		DCL	0.0	0.1	0	0	160800	160400	0	0	1602
		LCQ			0	0	12097	11713	193	0	384
		LMQ			125	0	1	6	1	0	0
		LMQ			125	0	1	6	1	0	0
		QBL	0.8	99.9	125	0	0	5	0	0	0
		LMQ			150	0	1	10	1	0	0
		QBL	8.0	97.0	150	0	0	6	0	0	0
		LMQ			150	0	1	10	1	0	0
		QBL	0.7	92.1	150	0	0	6	0	0	0
		LMQ			150	0	1	10	1	0	0
		QBL	1.3	99.9	150	0	0	5	0	0	0
		LMQ			150	0	1	10	1	0	0
		CBL	0.0	100.0	150	0	0	5	0	0	0
		LMQ			150	0	1	10	1	0	0
		QBL	1.3	99.9	150	0	0	6	0	0	0
		LMQ			150	0	1	10	1	0	0
		QBL	4.6	90.1	175	0	0	11	0	0	0
		QBL	2.9	91.5	175	0	0	5	0	0	0
		CBL	0.0	98.8	175	0	0	5	0	0	0
		LMQ			200	0	1	11	1	0	0
		QBL	7.5	88.0	200	0	0	11	0	0	0
		LMQ			200	0	1	10	1	0	0
		LMQ			200	0	1	10	1	0	0
		QBL	9.0	97.6	200	0	0	5	0	0	0
		LMQ			200	0	1	10	1	0	0
		QBL	3.0	99.5	200	0	0	5	0	0	0
		LMQ			200	0	1	11	1	0	0
		QBL	1.0	99.0	200	0	0	11	0	0	0
		QBL	1.5	100.0	200	0	0	11	0	0	0
		QBL	2.5	99.7	200	0	0	5	0	0	0
		QBL	2.0	99.9	200	0	0	11	0	0	0
		LMC			200	0	1	10	0	1	0
		QBL	1.5	99.9	200	0	0	11	0	0	0
		LMQ			200	0	1	11	1	0	0
		LMQ			75	0	1	10	1	0	0
		LMQ			75	0	1	6	1	0	0
		LMQ			75	0	1	10	1	0	0

Table 8 :

 8 The QPLIB file format: refer to the notes after the table for more details.

	data	description

 row and column indices (integers) and value (real) for each entry ofQ i for every i ∈ M, if n Q i > 0,one quadruple on each line i∈M n b i number of nonzeros (integer) in b i , summed over all i ∈ M [2] i j b i j i and index (integers) and value (real) for each nonzero entry of b i for every i ∈ M, if n b i > 0, one triple on each line [2] c∞ value (real) for infinity for constraint or variable bounds-any bound greater than or equal to this in, absolute value, is infinite c l,d default value (real) for entries in c l [2] n c l,d number of non-default entries (integer) in c l [2] i c i l index (integer) and value (real) for each non-default term in c l,d , if n c l,d > 0, one pair per line index (integer) and value (real) for each non-default term in c u,d , if n c u,d > 0, one pair per line

	n Q i	number of nonzeros (integer) in lower triangles of Q i , summed	[2,4]
	i∈M	over all i ∈ M	
	i h k Q i hk	i, [2]
	c u,d n c u,d	default value (real) for entries in cu number of non-default entries (integer) in cu	[2] [2]
	i c i u		[2]
	l d	default value (real) for entries in l	[6]
	n l d	number of non-default entries (integer) in l	[6]
	i l i	index (integer) and value (real) for each non-default term in l, if	[6]
		n l d > 0, one pair per line	
	u d	default value (real) for entries in u	[6]
	n u d	number of non-default entries (integer) in u	[6]
	i u i	index (integer) and value (real) for each non-default term in u, if	[6]
		n u d > 0, one pair per line	

Table 8 :

 8 The QPLIB file format (continued)

	data	description

https://www.gams.com

A. Instance details

Table 7 provides detailed data on all the instances of the final library. Column "name" is the name of the instance with the prefix "QPLIB " stripped. Column "type" is the classification of the instance according to the taxonomy from §2.2.1. Column "% h.e." provides the fraction of hard eigenvalues of Q 0 , the coefficient matrix of the objective function: a positive number implies that the instance is a Q**, "0.0" implies that the instance is a C**, a blank implies that Q 0 = 0, i.e., the objective function is linear (hence, the instance is a L**). Column "% d." describes the density of the Q 0 matrix: a blank implies that the corresponding instance has a linear objective function. For both columns ("% n.e." and "% d."), nonzeros values below 0.1 were rounded up to 0.1. The following three columns describe the variables by reporting the number of binary ones ("# b."), general integer ones ("# i."), and continuous ones ("# c."). Finally, the last four columns describe the constraints reporting the number of linear ones ("# l."), nonconvex quadratic ones ("# q."), convex quadratic ones ("# c."), and variable bounds ("# v."). The numbering of the instances reflects the initial order in which we gathered them and the non-consecutiveness of the instance names is due to the filtering.