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Cost Function Networks to Solve Large
Computational Protein Design Problems

David Allouche, Sophie Barbe, Simon de Givry, George Katsirelos, Yahia Lebbah,
Samir Loudni, Abdelkader Ouali, Thomas Schiex∗, David Simoncini, and Matthias
Zytnicki

1 Introduction

A protein is a sequence of basic building blocks called amino acids. There are 20
natural amino acids. Proteins are involved in nearly all structural, catalytic, sensory,
and regulatory functions of living systems [21]. Performing these functions generally
requires that proteins are assembled into well-defined three-dimensional structures
specified by their amino acid sequence. Over millions of years, natural evolutionary
processes have shaped and created proteins with novel structures and functions by
means of sequence variations, includingmutations, recombinations and duplications.
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Protein engineering techniques coupled with high-throughput automated procedures
make it possible to mimic the evolutionary process on a greatly accelerated time-
scale, and thus increase the odds to identify the proteins of interest for technological
uses [60]. This holds great interest for medicine, synthetic biology, nanotechnologies
and biotechnologies [55, 63, 32]. In particular, protein engineering has become a
key technology to generate tailored enzymes able to perform novel specific trans-
formations under specific conditions. Such biochemical transformations enable to
access a large repertoire of small molecules for various applications such as bio-
fuels, chemical feedstocks and therapeutics [38, 8]. The development of enzymes
with required substrate selectivity, specificity and stability can also be profitable to
overcome some of the difficulties encountered in synthetic chemistry. In this field,
the in vitro use of artificial enzymes in combination with organic chemistry has led
to innovative and efficient routes for the production of high value molecules while
meeting the increasing demand for ecofriendly processes [49, 10, 70]. Nowadays,
protein engineering is also being explored to create non-natural enzymes that can be
combined in vivo with existing biosynthetic pathways, or be used to create entirely
new synthetic metabolic pathways not found in nature to access novel (bio)chemical
products [25]. These latest approaches are central to the development of synthetic
biology. One significant example in this field is the full-scale production of the
antimalarial drug (artemisinin) from the engineered bacteria Escherichia coli [53].

With a choice among 20 naturally occurring amino acids at every position, the size
of the combinatorial sequence space is out of reach for current experimental methods,
even for short sequences. Computational protein design (CPD) methods therefore
try to intelligently guide the protein design process by producing a collection of
proteins, that is rich in functional proteins, but small enough to be experimentally
evaluated. The challenge of choosing a sequence of amino acids to perform a given
task is formulated as an optimization problem, solvable computationally. It is often
described as the inverse problem of protein folding [59]: the three-dimensional
structure is known and we have to find amino acid sequences that fold into it. It can
also be considered as a highly combinatorial variant of side-chain positioning [67]
because of possible amino acid mutations.

Various computational methods have been proposed over the years to solve this
problem and several success stories have demonstrated the outstanding potential
of CPD methods to engineer proteins with improved or novel properties. CPD has
been successfully applied to increase protein thermostability and solubility; to alter
specificity towards some other molecules; and to design various binding sites and
construct de novo enzymes (see for example [39]).

Despite these significant advances, CPD methods must still mature in order to
better guide and accelerate the construction of tailored proteins. In particular, more
efficient computational optimization techniques are needed to explore the vast com-
binatorial space, and to facilitate the incorporation of more realistic, flexible protein
models. These methods need to be capable of not only identifying the optimal model,
but also of enumerating solutions close to the optimum [69].

We begin by defining the CPD problem with rigid backbone, and then introduce
the approach commonly used in structural biology to exactly solve CPD. This ap-
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proach relies on dead-end elimination (DEE), a specific form of dominance analysis
that was introduced in [19], and later strengthened in [30]. If this polynomial-time
analysis does not solve the problem, an A∗ algorithm is used to identify an optimal
protein design.

We observe that the rigid backbone CPD problem can be naturally expressed as
a Cost Function Network (CFN) and solved as a Weighted Constraint Satisfaction
Problem. In this context, DEE is similar to neighborhood substitutability [23, 48, 29].

To evaluate the efficiency of the CFN approach, wemodel the CPD problem using
different combinatorial optimization formalisms. We compare the performance of
the 0/1 linear programming solver cplex, and the CFN solver toulbar2, against
that of a well-established CPD approach implementing DEE/A∗, on various realistic
protein design problems. We observe drastic differences in the difficulty that these
instances represent for different solvers, despite often closely related models and
solving techniques.

2 The Computational Protein Design approach

A protein is a sequence of organic compounds called amino acids. Each of the
20 amino acids consists of a common peptidic core and a side chain with varying
chemical properties (see Figure 1). In a protein, amino acid cores are linked together
in sequence to form the backbone of the protein. Inwater,most proteins of interest fold
into a 3D shape that is determined by the sequence of amino acids. Depending upon
the amino acid considered, the side chain of each individual amino acid can be rotated
along up to 4 dihedral angles relative to the backbone. Anfinsen’s postulated [4] that
the 3D structure of a protein is entirely defined by its sequence. This structure, defined
by the backbone’s structure and all side-chain rotations, is called the conformation
of the protein and determines its chemical reactivity and biological function.

Fig. 1 A representation of how amino acids, carrying specific side chains R and R′, can link
together through their core to form a chain (modified from wikipedia). One molecule of water is
generated in the process.
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Computational Protein Design is faced with several challenges. The first lies in
the exponential size of the conformational and protein sequence space that has to be
explored, which rapidly grows out of reach of computational approaches. Another
obstacle to overcome is the accurate structure prediction for a given sequence [40,
31]. Therefore, the design problem is usually approached as an inverse folding
problem [59], in order to reduce the problem to the identification of an amino acid
sequence that can fold into a target 3D-scaffold that matches the design objective [6].
In structural biology, the stability of a conformation can be directly evaluated through
the energy of the conformation, a stable fold being of minimum energy [4].

In CPD, two approximations are common. First, it is assumed that the resulting
designed protein retains the overall fold of the chosen scaffold: the protein backbone
is considered fixed. At specific positions chosen automatically or by the molecular
modeler, the amino acid used can be modified, thus changing the side chain as
shown in Fig. 2. Second, the domain of conformations available to each amino acid
side chain is continuous. This continuous domain is approximated using a set of
discrete conformations defined by the value of their inner dihedral angles. These
conformations, or rotamers [37], are derived from the most frequent conformations
in the experimental repository of known protein structures, the PDB (Protein Data
Bank, www.pdb.org). Different discretizations have been used in constraint-based
approaches to protein structure prediction [7]. More recently, continuous optimiza-
tion of dihedrals has been addressed in some limited settings [33, 24].

The CPD is then formulated as the problem of identifying a conformation of
minimum energy via the mutation of a specific subset of amino acid residues, i.e. by
affecting their identity and their 3D orientations (rotamers). The conformation that
minimizes the energy is called theGMEC (Global Minimum Energy Conformation).

In order to solve this problem, we need a computationally tractable energetic
model to evaluate the energy of any combination of rotamers. We also require
computational optimization techniques that can efficiently explore the sequence-
conformation space to find the sequence-conformation model of global minimum
energy.

Energy functions

Various energy functions have been defined to make the energy computation man-
ageable [5]. These energy functions include non-bonded terms such as van derWaals
and electrostatics terms, often in conjunction with empirical contributions describ-
ing hydrogen bonds. The surrounding solvent effect is generally treated implicitly
as a continuum. Statistical terms may be added in order to approximate the effect
of mutations on the unfolded state or the contribution of conformational entropy.
Finally, collisions between atoms (steric clashes) are also taken into account. We
have used two state-of-the-art energy functions, AMBER9 [9] and Talaris2014 [57],
respectively implemented in the CPD dedicated tools osprey 2.0 [26] and Rosetta
Molecular Modeling suite 3 [47].

These energy functions are formulated in such a way that the terms are locally
decomposable. Then, the energy of a given protein conformation, defined by a
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Fig. 2 A local view of the combinatorial sequence exploration considering a common backbone.
Changes can be caused by amino acid identity substitutions (for example D/L or R/Q) or by amino
acid side-chain reorientations (rotamers) for a given amino acid. A sparse rotamer library for one
amino acid is shown on the right (ARG=Arginine).

choice of one specific amino acid with an associated conformation (rotamer) for
each residue, can be written as:

E = E� +
∑
i

E(ir ) +
∑
i

∑
j>i

E(ir, js) (1)

where E is the potential energy of the protein, E� is a constant energy contribution
capturing interactions between fixed parts of the model, E(ir ) is the energy contribu-
tion of rotamer r at position i capturing internal interactions (and a reference energy
for the associated amino acid) or interactions with fixed regions, and E(ir, js) is the
pairwise interaction energy between rotamer r at position i and rotamer s at position
j [19]. This decomposition brings two properties:

• Each term in the energy can be computed for each amino acid/rotamer (or pair
for E(ir, js)) independently.

• These energy terms, in kcal/mol, can be precomputed and cached, allowing
to quickly compute the energy of a design once a specific rotamer (an amino
acid-conformation pairing) has been chosen at each non-rigid position.

The rigid backbone discrete rotamer CPD problem is therefore defined by a fixed
backbone with a corresponding set of positions (residues), a rotamer library and a
set of energy functions. Each position i of the backbone is associated with a subset
Di of all (amino-acid,rotamer) pairs in the library. The problem is to identify at each
position i a pair from Di such that the overall energy E is minimized. In practice,
based on expert knowledge or on specific design protocols, each position can be fixed
(Di is a singleton), flexible (all pairs in Di have the same amino-acid) or mutable
(the general situation).
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2.1 Exact CPD methods

The protein design problem as defined above, with a rigid backbone, a discrete set of
rotamers, and pairwise energy functions has been proven to be NP-hard [62]. Hence,
a variety of meta-heuristics have been applied to it, includingMonte Carlo simulated
annealing [42], genetic algorithms [64, 12], variable neighborhood search [11], and
other algorithms [20]. The main weakness of these approaches is that they may
remain stuck in local minima and miss the GMEC without notice.

However, there are several important motivations for solving the CPD problem
exactly. First, because they know when an optimum is reached, exact methods may
stop before meta-heuristics. Voigt et al. [71] reported that the accuracy of meta-
heuristics also degrades as problem size increases. More importantly, the use of
exact search algorithms is important in the usual experimental design cycle, that
goes through modeling, solving, protein synthesis, and experimental evaluation:
when unexpected experimental results are obtained, the only possible culprit lies in
the CPD model and not in the algorithm.

Usual exact methods for CPD mainly rely on the dead-end elimination (DEE)
theorem [19, 18] and the A∗ algorithm [46, 28]. DEE is used as a pre-processing
technique and removes rotamers that are locally dominated by other rotamers, until
a fixpoint is reached. The rotamer r at position i (denoted by ir ) is removed if there
exists another rotamer u at the same position such that [19]:

E(ir ) +
∑
j,i

min
s

E(ir, js) ≥ E(iu) +
∑
j,i

max
s

E(iu, js) (2)

This condition guarantees that for any conformation with this r , we get a con-
formation with lower energy if we substitute u for r . Then, r can be removed from
the list of possible rotamers at position i. This local dominance criterion was later
improved by Goldstein [30] by directly comparing energies of each rotamer in the
same conformation:

E(ir ) − E(iu) +
∑
j,i

min
s
[E(ir, js) − E(iu, js)] ≥ 0 (3)

where the best and worst-cases are replaced by the worst difference in energy. It is
easy to see that this condition is always weaker than the previous one, and therefore
applicable to more cases. These two properties define polynomial time algorithms
that prune dominated values.

Since its introduction in 1992 by Desmet, DEE has become the fundamental tool
of exact CPD, and various extensions have been proposed [61, 50, 27]. All these
DEE criteria preserve the optimum but may remove suboptimal solutions. However
CPD is NP-hard, and DEE cannot solve all CPD instances. Therefore, DEE pre-
processing is usually followed by an A∗ search. After DEE pruning, the A∗ algorithm
allows to expand a sequence-conformation tree, so that sequence-conformations are
extracted and sorted on the basis of their energy values. The admissible heuristic
(lower bound) used by A∗ is described in [28].
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When the DEE algorithm does not significantly reduce the search space, the A∗

search tree can be too slow or memory demanding and the problem cannot be solved.
Therefore, to circumvent these limitations and increase the ability of CPD to tackle
problems with larger sequence-conformation spaces, novel alternative methods are
needed. We now describe alternative state-of-the-art methods for solving the GMEC
problem that offer attractive alternatives to DEE/A∗.

3 From CPD to CFN

CPD instances can be directly represented as Cost Function Networks.

Definition 1 ([13]) A Cost Function Network (CFN) is a pair (X,W) where X =
{1, . . . , n} is a set of n variables and W is a set of cost functions. Each variable i ∈ X
has a finite domain Di of values that can be assigned to it. A value r ∈ Di is denoted
ir . For a set of variables S ⊆ X , DS denotes the Cartesian product of the domains
of the variables in S. For a given tuple of values t, t[S] denotes the projection of t
over S. A cost function wS ∈ W , with scope S ⊆ X , is a function wS : DS 7→ [0, k]
where k is a maximum integer cost used for forbidden assignments.

We assume, without loss of generality, that every CFN includes at least one unary
cost function wi per variable i ∈ X and a nullary cost function w�. All costs being
non-negative, the value of this constant function, w�, provides a lower bound on the
cost of any assignment.

The Weighted Constraint Satisfaction Problem (WCSP) is to find a complete
assignment t minimizing the combined cost function

⊕
wS ∈W

wS(t[S]), where a ⊕
b = min(k, a + b) is the k-bounded addition. This optimization problem has an
associated NP-complete decision problem. Notice that if k = 1, then the WCSP is
nothing but the famous Constraint Satisfaction Problem or CSP (not the Max-CSP).

Modeling the CPD problem as a CFN is straightforward. The set of variables X
has one variable i per residue i. The domain of each variable is the set of (amino
acid,conformation) pairs in the rotamer library used. The global energy function
can be represented by 0-ary, unary and binary cost functions, capturing the constant
energy term w� = E�, the unary energy terms wi(r) = E(ir ), and the binary energy
terms wi j(r, s) = E(ir, js), respectively. In the rest of the paper, for simplicity and
consistency, we use notations E�, E(·) and E(·, ·) to denote cost functions and restrict
ourselves to binary CFN (extensions to higher orders are well-known).

Notice that there is one discrepancy between the original formulation and the
CFN model: energies are represented as arbitrary floating point numbers while CFN
uses positive costs. This can simply be fixed by first subtracting the minimum energy
from all energy factors. These positive costs can then be multiplied by a large integer
constant M and rounded to the nearest integer if integer costs are required.
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3.1 Local consistency in CFN

The usual exact approach to solve a CFN is to use a depth-first branch-and-bound
algorithm (DFBB). A family of efficient and incrementally computed lower bounds
is defined by local consistency properties.

Node consistency [43] (NC) requires that the domain of every variable i contains
a value r that has a zero unary cost (E(ir ) = 0). This value is called the unary support
for i. Furthermore, in the scope of the variable i, all values should have a cost below
k (∀r ∈ Di, E� + E(ir ) < k).

Soft arc consistency (AC∗) [65, 43] requires NC and also that every value r of
every variable i has a support on every cost function E(ir, js) involving i. A support
of ir is a value js ∈ Dj such that E(ir, js) = 0.

Stronger local consistencies such as Existential Directional Arc Consistency
(EDAC) [44] and Virtual Arc Consistency (VAC) [15] have also been introduced.
See [13] for a review of existing local consistencies.

Table 1 Time and space complexities of enforcing local consistency properties on a binary CFN
(X,W ), with n = |X | variables, maximum domain size d = maxi∈X |Di |, e = |W | cost functions
with maximum forbidden cost k, and minimum non-zero rational cost ε ∈]0, 1]. Also, we report
polynomial classes which are solved by these local consistencies.

Local consistency Time complexity Space complexity Polynomial classes

NC O(nd) O(nd) -
AC∗ O(n2d2 + ed3) O(ed) -
EDAC O(ed2 max(nd, k)) O(ed) Tree-structures
VACε O(ed2k/ε ) O(ed) Tree-struct., submodular func.

As in classical CSP, enforcing a local consistency property on a problem P
involves transforming P = (X,W) into a problem P′ = (X,W ′) that is equivalent to
P (all complete assignments keep the same cost) and that satisfies the considered
local consistency property. Enforcing a local consistency may increase � and thus
improve the lower bound on the optimal cost. This bound is used to prune the search
tree during DFBB.

Local consistency is enforced using Equivalence Preserving Transformations
(EPTs) that move costs between different cost functions [65, 43, 45, 17, 44, 14, 16,
15, 13]. For example, a variable i violating the NC property because all its values
ir have a non-zero E(ir ) cost, can be made NC by subtracting the minimum cost
from all E(ir ) and adding this cost to E�. The resulting network is equivalent to
the original network, but it has an increased lower bound E�. Far more complex
sequences or sets of EPTs can be required to enforce other local consistencies [13].

Local consistency can be enforced in polynomial time and space as summarized
in Table 1. During search, incrementality is preserved along any branch of the search
tree, avoiding to repeatedly apply the same EPTs at every search node.
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Unfortunately, finding the optimal sequence of EPTs with integer costs which
maximizes E� is NP-hard [17]. It is polynomial for a set of EPTs with rational
costs [16] and corresponds to optimization over the local polytope of probabilistic
graphical models [13]. In practice, during search, applying suboptimal sequences
of EPTs by enforcing EDAC or VAC is the most efficient approach for solving
CFNs [36].

3.2 Maintaining dead-end elimination

Dead-end elimination is the key algorithmic tool of exact CPD solvers. From an AI
perspective, in the context of CSP (if k = 1), the DEE Equation 3 is equivalent to
neighborhood substitutability [23]. In the context of CFN, the authors of [48] intro-
duced partial soft neighborhood substitutability with a definition that is equivalent
to Equation 3 for pairwise decomposed energies.

DEE can be enforced in time O(n2d3) and it is orthogonal to local consisten-
cies, except for VAC where value removals done by DEE cannot break the VAC
property [48]. In practice, DEE and AC∗ (or EDAC) will be enforced until both
properties are verified, with time complexity in O(n3d4). In order to reduce this time
complexity, during search, we do not test every pair of values in every domain Di ,
but only one pair (ir, iu) such that E(iu) is minimum and E(ir ) is maximum. Thus,
enforcing this restricted DEE1 can be done in O(n2d) and it iterates at most n × d
times with AC∗ [29].

3.3 Exploiting tree decomposition in a hybrid best-first
branch-and-bound method

Hybrid Best-First Search (HBFS) [2] explores the search tree in a best-first manner as
in A*. However, each selected open search node is expanded by a depth-first search
with a limited number of backtracks. When the limit is reached, all the remaining
unexplored search nodes are inserted in the open node list. The limit is dynamically
tuned in order to reduce the overhead of reconstructing the CFN corresponding to
the selected open node.

The HBFS method was further extended in [2] to exploit a tree decomposition,
resulting in the BTD-HBFS method.

Definition 2 A tree decomposition of a connected CFN (X,W) is a pair (CT ,T)
where T = (I, A) is a tree with nodes set I and edges set A and CT = {Ci | i ∈ I} is
a family of subsets of X , called clusters, such that: (i) ∪i∈I Ci = X , (ii) ∀wS ∈ W ,
∃ Ci ∈ CT s.t. S ⊆ Ci , (iii) ∀ i, j, k ∈ I, if j is on the path from i to k in T , then
Ci ∩ Ck ⊆ Cj .
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Definition 3 A graph of clusters for a tree decomposition (CT ,T) is an undirected
graph G = (CT , E) that has a vertex for each cluster Ci ∈ CT , and there is an edge
(Ci,Cj) ∈ E when Ci ∩ Cj , ∅.

The width of a tree decomposition corresponds to the size of the largest cluster
minus one. As finding an optimal tree decomposition with minimum width, called
treewidth, is NP–hard, we use fast approximate algorithms like the min-fill heuristic.

BTD-HBFS (Backtracking with Tree Decomposition, or BTD for short) uses a
restricted variable ordering heuristic, which selects variables from a root (largest)
cluster first and then continues by assigning variables in the child clusters in a
depth-first manner. Each child cluster has one open node list with associated lower
and upper bounds per visited assignment of its variables intersecting with its parent
cluster. By doing so, it exploits the lower bounds reported by HBFS in individual
clusters to improve the anytime behavior and global pruning of BTD. Given a CFN
(X,W) with treewidth t, BTD computes the optimum in time O(kndt+1) and space
O(knd2t ) [2].

3.4 A parallel variable neighborhood search method guided by tree
decomposition

UDGVNS (for Unified Decomposition Guided Variable Neighborhood Search) [58]
is a CFN solving method unifying two complete and incomplete search methods:
iterative Limited Discrepancy Search (LDS) and Variable Neighborhood Search
(VNS) methods. LDS [34] is a heuristic method that explores the depth-first search
tree in a non-systematic way bymaking a limited number ofwrong decisions w.r.t. its
value ordering heuristic. We assume a binary search tree where at each search node
either the selected variable is assigned to its chosen preferred value (left branch) or
the value is removed from the domain (right branch). Each value removal corresponds
to a wrong decision made by the search, it is called a discrepancy. The number of
discrepancies is limited by a parameter. Iterative LDS increases this parameter (by a
multiplication factor of 2) at each iteration until a complete search is done.

VNS/LDS [54, 51] is a metaheuristic that uses a finite set of pre-selected neigh-
borhood structures Ns, s = 4, 5, ..., n to escape from local minima by systematically
changing the neighborhood structure if the current one does not improve the cur-
rent incumbent solution. The initial solution is found by depth-first search on the
whole problem. Then, s variables are randomly chosen and the current solution is
partially destroyed by un-assigning the selected variables and an exploration of its
(large) neighborhood is performed by LDS with a fixed discrepancy. As soon as a
better solution is found, then s is reset to its minimal value (4 in our experiments).
DGVNS [22] uses another neighborhood structure Ns,c , where s is the neighborhood
size and Cc is the cluster where the variables will be selected from. If (s > |Cc |), we
complete the set of candidate variables to be unassigned by adding clusters adjacent
to Cc in the graph of clusters provided by a tree decomposition. The neighborhood
change in DGVNS is performed in the same way as in VNS/LDS. However, DGVNS
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considers successively all the clusters. This ensures a better diversification by cov-
ering a large number of different regions. UDGVNS [58] iterates DGVNS with an
increasing discrepancy (when s = n and no better solution was found) as in itera-
tive LDS, until a complete search is done, therefore tuning its compromise between
optimality proof and anytime behavior.

The parallel version of UDGVNS relies on a master/worker model. The master
process controls the communication over the entire processes and holds the cen-
tralized information, while the asynchronous worker processes explore the parts of
the search space assigned by the master. The cooperation in parallel UDGVNS is
achieved by sharing a single global best solution among the worker processes.

4 Integer linear programming for the CPD

The rigid backbone CPD problem has a simple formulation and can be easily written
in a variety of combinatorial optimization frameworks. In our previous work [1], we
compared the CFN approach to solvers coming from different fields, including prob-
abilistic graphical model, 0/1 linear programming, 0/1 quadratic programming, and
0/1 quadratic optimization. Here, we present only the 01LPmodel. Other approaches
were shown to be far less efficient than CFN or 01LP [1].

A 0/1 linear programming (01LP) problem is defined by a linear criterion to
optimize over a set of Boolean variables under a conjunction of linear inequalities
and equalities.

For every assignment ir of every variable i, there is a Boolean variable dir that is
equal to 1 iff i = r . Additional constraints enforce that exactly one value is selected
for each variable. For every pair of values of different variables (ir, js) involved in
a binary energy term, there is a Boolean variable pir js that is equal to 1 iff the pair
(ir, js) is used. Constraints enforce that a pair is used iff the corresponding values
are used. Then, finding a GMEC reduces to the following 01LP:

min
∑
i,r

E (ir ),k

E(ir ).dir +
∑
i,r, j,s

j>i,E (ir , js ),k

E(ir, js).pir js

s.t.
∑
r

dir = 1 (∀i) (4)∑
s

pir js = dir (∀i, r, j) (5)

dir = 0 (∀i, r)E(ir ) = k (6)
pir js = 0 (∀i, r, j, s)E(ir, js) = k (7)

dir ∈ {0, 1} (∀i, r) (8)
pir js ∈ {0, 1} (∀i, r, j, s) (9)
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It is known that the continuous LP relaxation of this model is the dual of the
LP problem defined by Optimal Soft Arc Consistency (OSAC) [16, 13] when the
upper bound k used in CFN is infinite. OSAC is known to be stronger than any other
soft arc consistency level, including EDAC and VAC. However, as soon as the upper
bound k used for pruning in CFN decreases to a finite value, soft local consistencies
may prune values and EDAC becomes incomparable with the dual of these relaxed
LPs.

Thismodel is also the 01LPmodel IP1 proposed in [41] for side-chain positioning.
It has a quadratic number of Boolean variables. Constraints (6) and (7) explicitly
forbid values and pairs with cost k (sterical clashes).

This model can be simplified by relaxing the integrality constraint on the pir js:
indeed, if all dir are set to 0 or 1, the constraints (4) and (5) enforce that the pir js are
set to 0 or 1. In the rest of the paper, we relax constraint (9).

5 Computational Protein Design instances

In our initial experiments with CPD in [3], we built 12 designs using the CPD dedi-
cated tool osprey 1.0. A new version of osprey being available since, we used this
new 2.0 version [26] for all computations. Among different changes, this new version
uses a modified energy field that includes a new definition of the “reference energy”
and a different rotamer library. We therefore rebuilt the 12 instances from [3] and
additionally created 35 extra instances from existing published designs, as described
in [68]. We must insist on the fact that the 12 rebuilt instances do not define the
same energy landscape or search space as the initial [3]’s instances (due to changes
in rotamers set).

These designs include protein structures derived from the PDB that were chosen
for the high resolution of their 3D-structures, their use in the literature, and their dis-
tribution of sizes and types. Diverse sizes of sequence-conformation combinatorial
spaces are represented, varying by the number of mutable residues, the number of
alternative amino acid types at each position and the number of conformations for
each amino acid. The Penultimate rotamer library was used [52].

Preparation of CPD instances

Missing heavy atoms in crystal structures and hydrogen atoms were added with the
tleap module of the AMBER9 software package [9]. Each molecular system was
then minimized in implicit solvent (Generalized Born model [35]) using the Sander
program and the all-atom ff99 force field of AMBER9. All E�, E(ir ), and E(ir, js)
energies of rotamers (see Equation 1) were pre-computed using osprey 2.0. The
energy function consisted of the Amber electrostatic, van der Waals and the solvent
terms. Rotamers and rotamer pairs leading to sterical clashes between molecules
are associated with huge energies (1038) representing forbidden combinations. For
n residues to optimize with d possible (amino acid,conformation) pairs, there are n
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unary and up to n.(n−1)
2 binary cost functions that can be computed independently.

The resulting instances have between n = 11 and n = 120 residues, and between
d = 48 and d = 198 rotamers (see Table 2).

Translation to WCSP and 01LP formats

The native CPD problems were translated to the WCSP format before any pre-
processing. To convert the floating point energies of a given instance to non-negative
integer costs, we subtracted the minimum energy to all energies and then multiplied
energies by an integer constant M and rounded to the nearest integer. The initial
upper bound k is set to the sum, over all cost functions, of the maximum ener-
gies (excluding forbidden sterical clashes). High energies corresponding to sterical
clashes are represented as costs equal to the upper bound k (the forbidden cost). The
resulting model was used as the basis for all other solvers (except osprey). To keep a
cost magnitude compatible with all the compared solvers, we used M = 102. Exper-
iments with a finer discretization (M = 108) was used in previous experiments [68]
with no significant difference in computing efforts.

Note that the approximate treewidth produced by min-fill heuristic of WCSP
instances is between 4 and 113, with a mean value of 26.68 (after preprocessing by
toulbar2).

All the Python and C translating scripts used, including translating fromWCSP to
01LP format, are available together with the 47 CPD instances in native and WCSP
formats at http://genotoul.toulouse.inra.fr/~tschiex/CPD-AIJ.

6 Experimental results

For computing the GMEC, all computations were performed on an Intel Xeon E5-
2680 at 2.50GHz, 256 GB of RAM (except osprey on an AMD Operon 6176
at 2.3 GHz, 128 GB of RAM), and a 9,000-second time-out. We compared three
solvers: DEE/A* osprey version 2.0 (cs.duke.edu/donaldlab/osprey.php),
01LP solvercplex version 12.8.0 (with parameters EPAGAP,EPGAP, andEPINT set
to zero to avoid premature stop), and CFN solver toulbar2 version 1.0.1 (github.
com/toulbar2/toulbar2).

The procedure of osprey starts by extensive DEE pre-processing (algOption =
3, includes simple Goldstein, Magic bullet pairs, 1 and 2-split positions, Bounds and
pairs pruning) followed by A∗ search. Only the GMEC conformation is generated by
A∗ (initEw=0).

We ran toulbar2 using VAC in preprocessing and HBFS with EDAC, DEE1,
and binary branching during search (options -d: -A). The additional exploitation
of a min-fill tree decomposition inside branch-and-bound is denoted as toulbar2
BTD (extra options -O=-3 -B=1). The variable neighborhood search guided by tree
decomposition is denoted toulbar2 UDGVNS (extra options -O=-3 -vns).
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Fig. 3 (Left) A figure showing the number of problems that can be solved by each approach (X-
axis) as a function of time allowed for solving each problem (Y-axis). (Right) A figure showing
normalized upper bounds (Y-axis) on 47 instances as time passes (X-axis).

Table 2 and Figure 3.left report the number of problems solved within a given time
limit. osprey solved 25 instances, cplex solved 30 (resp. 33 with using 10 cores),
toulbar2 solved 40 (resp. 39 with UDGVNS). 7 instances remain unsolved by any
approaches in less than 9, 000 seconds. Within the three CFN approaches, toulbar2
BTD is the fastest in terms of optimality proofs. Using 10 cores improves cplex
results by solving 3 more instances and a mean speed-up factor of 2.2 on the same 30
solved instances. A different behavior was found for toulbar2 UDGVNS where the
mean speed-up factor was only 1.15 in favor of the parallel version. This is because
the parallelization of toulbar2 UDGVNS is to partially explore the neighborhood
in parallel until a single process explores the whole problem sequentially using
complete depth-first branch-and-bound and ends the search.

Figure 3.right compares the evolution of upper bounds as time passes for the
different methods (except for osprey which returns one optimal solution at the end
of its A* exploration). Specifically, for each instance, we normalize all energies
as follows: the best, potentially suboptimal solution found by any algorithm is 1,
the worst solution is 2. This normalization is invariant to translation and scaling.
Again, there is a clear separation between CFN and 01LP methods, in favor of
CFN approaches. Among the sequential methods, toulbar2 UDGVNS has the best
anytime profile. Its parallel version toulbar2 UDGVNS using 10 cores found the
best upper bound for all the 47 instances (see Table 2).

7 Conclusions

The simplest formal optimization problem underlying CPD looks for a Global Min-
imum Energy Conformation (GMEC) over a rigid backbone and altered side-chains
(identity and conformation). In computational biology, exact methods for solving the
CPD problem combine dominance analysis (DEE) and an A∗ search.

The CPD problem can also be directly formulated as a Cost Function Network,
with a very dense graph and relatively large domains. We have shown how DEE
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can be integrated with local consistency with a reasonable time complexity. An
alternative 01LP formulation leads to a much larger number of variables.

On a variety of real instances, we have shown that state-of-the-art optimization
algorithms on integer programming or cost function network give important speedups
compared to usual CPDalgorithms combining dead-end eliminationwith A∗. Among
all the tested solvers, toulbar2 was the most efficient solver and its efficiency was
further improved by exploiting a tree decomposition either for optimality proofs or for
finding good anytime solutions on very large instances. In practice, the performance
of toulbar2 relies mostly on its fast lower bounds, while addingDEE has amarginal
effect [1]. toulbar2 has now been integrated inside the osprey CPD software and
is being integrated inside Rosetta Molecular Modeling suite [47]. Indeed,
another comparison has shown the Rosetta CPD-dedicated Simulated Annealing
implementation was outperformed by the exact CFN toulbar2 BTD approach [66]
in terms of GMEC solution quality within a 100-hour time limit. Exact optimization
may also be useful in practice as we recently shown using toulbar2 for the design
a real self-assembling protein [56].

We also showed that these CPD problems define challenging benchmarks for
AI and OR researchers. Among 47 instances, 7 remains open under 9,000 seconds,
having from 28 to 120mutable residues and atmost 198 rotamers per position. Larger
problems may exist as most of the known proteins in the PDB database include more
than 200 residues1.

In practice, it must be stressed that just finding the GMEC is not a final answer to
real CPD problems. CPD energies functions represent an approximation of the real
physics of proteins and optimizing a target score based on them (such as stability,
affinity,. . . ) is not a guarantee of finding a successful design. Indeed, some designs
may be so stable that they are unable to accomplish the intended biological function.
The usual approach is therefore to design a large library of proteins whose sequences
are extracted from all solutions within a small threshold of energy of the GMEC.
This problem is also efficiently solved by toulbar2 [68, 66].

Acknowledgements This work has been partly funded by the “Agence nationale de la Recherche”
(ANR-10-BLA-0214, ANR-12-MONU-0015-03, and ANR-16-C40-0028).

References

1. Allouche, D., André, I., Barbe, S., Davies, J., de Givry, S., Katsirelos, G., O’Sullivan, B.,
Prestwich, S., Schiex, T., Traoré, S.: Computational protein design as an optimization problem.
Artificial Intelligence 212, 59–79 (2014)

2. Allouche, D., de Givry, S., Katsirelos, G., Schiex, T., Zytnicki, M.: Anytime Hybrid Best-First
Search with Tree Decomposition for Weighted CSP. In: Proc. of CP-15, pp. 12–28. Cork,
Ireland (2015)

1 www.rcsb.org/stats/distribution_residue-count



16 Authors Suppressed Due to Excessive Length

Table 2 For each instance: protein (PDB id.), number of mutable residues, maximum domain size
(maximumnumber of rotamers), and CPU-time for solving (with best solution found in parentheses)
using cplex, cplex (10 cores), toulbar2, toulbar2 BTD, toulbar2 UDGVNS, toulbar2
UDGVNS (10 cores). A ‘-’ indicates that the corresponding solver did not prove optimality within
the 9,000-second time-out. A ’!’ indicates the solver stops with a SEGV signal.

PDB id. n d cplex cplex-10 toulbar2 BTD UDGVNS UDGVNS-10

2TRX 11 48 1.7 (178440) 2.1 (178440) 0.1 (178440) 0.1 (178440) 0.1 (178440) 0.1 (178440)
1PGB 11 49 2.0 (125306) 3.8 (125306) 0.1 (125306) 0.1 (125306) 0.1 (125306) 0.1 (125306)
1PGB 11 198 - (286299) 2781 (286135) 2.5 (286135) 2.5 (286135) 4.1 (286135) 4.0 (286135)
1HZ5 12 49 5.1 (150714) 4.5 (150714) 0.1 (150714) 0.1 (150714) 0.1 (150714) 0.1 (150714)
1HZ5 12 198 635.1 (342476) 264.0 (342476) 1.4 (342476) 2.1 (342476) 2.1 (342476) 1.5 (342476)
1UBI 13 49 77.7 (159522) 34.3 (159522) 0.3 (159522) 0.3 (159522) 0.3 (159522) 0.3 (159522)
1UBI 13 198 - (383687) - (382996) 1023 (380554) 663.2 (380554) - (380554) - (380554)
2DHC 14 198 - (1410934) - (1411556) 8.2 (1410850) 6.1 (1410850) 20.4 (1410850) 17.2 (1410850)
1CM1 17 198 138.4 (743645) 116.6 (743645) 1.8 (743645) 1.7 (743645) 3.2 (743645) 1.7 (743645)
2PCY 18 48 12.8 (307667) 14.5 (307667) 0.2 (307667) 0.3 (307667) 0.2 (307667) 0.3 (307667)
1PIN 28 198 - (1999094) - (1999094) - (1994157) - (1994179) - (1994135) - (1994069)
1C9O 55 198 - (8024505) ! (8024505) - (8014215) - (8014405) - (8013870) - (8013542)
1FYN 23 186 1235 (1183427) 902.3 (1183427) 1.7 (1183427) 2.6 (1183427) 2.3 (1183427) 1.6 (1183427)
1BK2 24 182 67.2 (1133737) 56.3 (1133737) 0.3 (1133737) 0.6 (1133737) 0.6 (1133737) 0.4 (1133737)
1MJC 28 182 1.8 (1514364) 2.4 (1514364) 0.0 (1514364) 0.1 (1514364) 0.1 (1514364) 0.1 (1514364)
1SHG 28 182 16.3 (1513151) 18.9 (1513151) 0.1 (1513151) 0.3 (1513151) 0.3 (1513151) 0.2 (1513151)
1PIN 28 194 7077 (1570593) 881.1 (1570593) 2.0 (1570593) 1.3 (1570593) 3.1 (1570593) 2.8 (1570593)
1CSK 30 49 8.1 (1125798) 9.0 (1125798) 0.1 (1125798) 0.2 (1125798) 0.1 (1125798) 0.1 (1125798)
1SHF 30 56 5.7 (1101033) 7.8 (1101033) 0.1 (1101033) 0.2 (1101033) 0.2 (1101033) 0.1 (1101033)
1CSP 30 182 964.2 (2520706) 120.4 (2520706) 0.4 (2520706) 0.4 (2520706) 0.7 (2520706) 0.7 (2520706)
1PGB 31 182 - (2442440) - (2439846) - (2433714) - (2433843) - (2433714) - (2433714)
1NXB 34 56 10.9 (2971624) 11.6 (2971624) 0.1 (2971624) 0.2 (2971624) 0.3 (2971624) 0.2 (2971624)
1ENH 36 182 - (2637033) - (2571387) - (2571065) - (2570942) - (2570849) - (2570849)
2DRI 37 186 - (2905652) - (2905276) 135.5 (2905276) 19.2 (2905276) 762.0 (2905276) 1005 (2905276)
1FNA 38 48 63.5 (3750256) 85.5 (3750256) 0.4 (3750256) 0.5 (3750256) 0.5 (3750256) 0.4 (3750256)
1CTF 39 56 160.2 (1881332) 158.0 (1881332) 0.7 (1881332) 0.7 (1881332) 1.1 (1881332) 1.1 (1881332)
1TEN 39 66 19.1 (1959862) 17.6 (1959862) 0.1 (1959862) 0.3 (1959862) 0.2 (1959862) 0.2 (1959862)
1UBI 40 182 518.1 (3068938) 341.5 (3068938) 1.6 (3068938) 1.3 (3068938) 2.2 (3068938) 2.7 (3068938)
1CDL 40 186 - (N/A) - (3594204) 392.6 (3590514) 233.3 (3590514) 1559 (3590514) 1366 (3590514)
1CM1 42 186 - (3973849) 6177 (3895415) 6.6 (3895415) 6.4 (3895415) 7.7 (3895415) 7.0 (3895415)
1C9O 43 182 885.9 (4959931) 387.4 (4959931) 1.1 (4959931) 1.5 (4959931) 1.4 (4959931) 1.2 (4959931)
1BRS 44 194 - (N/A) - (4008249) 555.3 (4007610) 198.6 (4007610) 1371 (4007610) 1327 (4007610)
2PCY 46 56 33.4 (2935820) 32.7 (2935820) 0.2 (2935820) 0.5 (2935820) 0.5 (2935820) 0.3 (2935820)
1POH 46 182 17.6 (4033880) 25.9 (4033880) 0.2 (4033880) 0.2 (4033880) 0.3 (4033880) 0.3 (4033880)
1DKT 46 190 1634 (4192582) 1068 (4192582) 1.7 (4192582) 1.5 (4192582) 2.2 (4192582) 1.8 (4192582)
2CI2 51 183 - (N/A) - (6391285) - (6299287) - (6299277) - (6299194) - (6299194)
1GVP 52 182 - (N/A) - (5197032) 596.1 (5196719) 217.6 (5196719) 2469 (5196719) 1772 (5196719)
1RIS 56 182 - (6222964) - (6171247) 129.7 (6171191) 21.6 (6171191) 77.0 (6171191) 84.2 (6171191)
1LZ1 59 57 581.6 (7022658) 292.7 (7022658) 1.5 (7022658) 1.5 (7022658) 1.8 (7022658) 2.3 (7022658)
2TRX 61 186 443.2 (7016169) 374.2 (7016169) 0.8 (7016169) 1.0 (7016169) 1.1 (7016169) 1.1 (7016169)
2RN2 69 66 210.2 (8909892) 257.4 (8909892) 1.1 (8909892) 1.6 (8909892) 1.4 (8909892) 2.0 (8909892)
3CHY 74 66 - (10461250) 5259 (10461151) 88.7 (10461151) 36.9 (10461151) 76.0 (10461151) 88.9 (10461151)
1L63 83 182 1602 (12891031) 1056 (12891031) 1.7 (12891031) 2.6 (12891031) 2.5 (12891031) 2.3 (12891031)
1HNG 85 182 1760 (13532638) 1672 (13532638) 2.0 (13532638) 2.6 (13532638) 3.2 (13532638) 3.6 (13532638)
1CSE 97 183 130.3 (18602292) 86.0 (18602292) 0.4 (18602292) 0.8 (18602292) 0.8 (18602292) 0.7 (18602292)
3HHR 115 186 - (N/A) ! (N/A) - (89193514) - (89191561) - (89188633) - (89188543)
1STN 120 190 - (37111502) ! (37111502) - (37068565) - (37070863) - (37055381) - (37054896)

30 (30) 33 (34) 40 (41) 40 (40) 39 (43) 39 (47)

3. Allouche, D., Traoré, S., André, I., de Givry, S., Katsirelos, G., Barbe, S., Schiex, T.: Com-
putational protein design as a cost function network optimization problem. In: Principles and
Practice of Constraint Programming, pp. 840–849. Springer (2012)

4. Anfinsen, C.: Principles that govern the folding of protein chains. Science 181(4096), 223–253
(1973)

5. Boas, F.E., Harbury, P.B.: Potential energy functions for protein design. Current opinion in
structural biology 17(2), 199–204 (2007)

6. Bowie, J.U., Luthy, R., Eisenberg, D.: A method to identify protein sequences that fold into a
known three-dimensional structure. Science 253(5016), 164–170 (1991)

7. Campeotto, F., Dal PalÃź, A., Dovier, A., Fioretto, F., Pontelli, E.: A constraint solver for
flexible protein models. J. Artif. Int. Res. (JAIR) 48(1), 953–1000 (2013)

8. Carothers, J.M., Goler, J.A., Keasling, J.D.: Chemical synthesis using synthetic biology. Cur-
rent opinion in biotechnology 20(4), 498–503 (2009)

9. Case, D., Darden, T., Cheatham III, T., Simmerling, C., Wang, J., Duke, R., Luo, R., Merz, K.,
Pearlman, D., Crowley, M., Walker, R., Zhang, W., Wang, B., Hayik, S., Roitberg, A., Seabra,



Computational Protein Design with CFNs 17

G., Wong, K., Paesani, F., Wu, X., Brozell, S., Tsui, V., Gohlke, H., Yang, L., Tan, C., Mongan,
J., Hornak, V., Cui, G., Beroza, P., Mathews, D., Schafmeister, C., Ross, W., Kollman, P.:
Amber 9. Tech. rep., University of California, San Francisco (2006)

10. Champion, E., André, I., Moulis, C., Boutet, J., Descroix, K., Morel, S., Monsan, P., Mulard,
L.A., Remaud-Siméon, M.: Design of α-transglucosidases of controlled specificity for pro-
grammed chemoenzymatic synthesis of antigenic oligosaccharides. Journal of the American
Chemical Society 131(21), 7379–7389 (2009)

11. Charpentier, A., Mignon, D., Barbe, S., Cortes, J., Schiex, T., Simonson, T., Allouche, D.:
Variable neighborhood search with cost function networks to solve large computational protein
design problems. Journal of Chemical Information and Modeling 59(1), 127–136 (2019)

12. Chowdry, A.B., Reynolds, K.A., Hanes, M.S., Voorhies, M., Pokala, N., Handel, T.M.: An
object-oriented library for computational protein design. J. Comput. Chem. 28(14), 2378–
2388 (2007)

13. Cooper,M., deGivry, S., Sanchez,M., Schiex, T., Zytnicki,M.,Werner, T.: Soft arc consistency
revisited. Artificial Intelligence 174, 449–478 (2010)

14. Cooper, M.C.: High-order consistency in Valued Constraint Satisfaction. Constraints 10,
283–305 (2005)

15. Cooper, M.C., de Givry, S., Sánchez, M., Schiex, T., Zytnicki, M.: Virtual arc consistency for
weighted CSP. In: Proc. of AAAI’08, vol. 8, pp. 253–258 (2008)

16. Cooper, M.C., de Givry, S., Schiex, T.: Optimal soft arc consistency. In: Proc. of IJCAI’2007,
pp. 68–73. Hyderabad, India (2007)

17. Cooper, M.C., Schiex, T.: Arc consistency for soft constraints. Artificial Intelligence 154(1-2),
199–227 (2004)

18. Dahiyat, B.I., Mayo, S.L.: Protein design automation. Protein science 5(5), 895–903 (1996)
19. Desmet, J., De Maeyer, M., Hazes, B., Lasters, I.: The dead-end elimination theorem and its

use in protein side-chain positioning. Nature 356(6369), 539–42 (1992)
20. Desmet, J., Spriet, J., Lasters, I.: Fast and accurate side-chain topology and energy refinement

(FASTER) as a new method for protein structure optimization. Proteins 48(1), 31–43 (2002)
21. Fersht, A.: Structure andmechanism in protein science: a guide to enzyme catalysis and protein

folding. WH. Freemean and Co., New York (1999)
22. Fontaine, M., Loudni, S., Boizumault, P.: Exploiting tree decomposition for guiding neighbor-

hoods exploration for VNS. RAIRO OR 47(2), 91–123 (2013)
23. Freuder, E.C.: Eliminating interchangeable values in constraint satisfaction problems. In: Proc.

of AAAI’91, pp. 227–233. Anaheim, CA (1991)
24. Friesen, A.L., Domingos, P.: Recursive decomposition for nonconvex optimization. In: Pro-

ceedings of the 24th International Conference on Artificial Intelligence (IJCAI’15), pp. 253–
259 (2015)

25. Fritz, B.R., Timmerman, L.E., Daringer, N.M., Leonard, J.N., Jewett, M.C.: Biology by design:
from top to bottom and back. BioMed Research International 2010 (2010)

26. Gainza, P., Roberts, K.E., Georgiev, I., Lilien, R.H., Keedy, D.A., Chen, C.Y., Reza, F., Ander-
son, A.C., Richardson, D.C., Richardson, J.S., et al.: Osprey: Protein design with ensembles,
flexibility, and provable algorithms. Methods Enzymol (2012)

27. Georgiev, I., Lilien, R.H.,Donald, B.R.: ImprovedPruning algorithms andDivide-and-Conquer
strategies for Dead-End Elimination, with application to protein design. Bioinformatics 22(14),
e174–83 (2006)

28. Georgiev, I., Lilien, R.H., Donald, B.R.: The minimized dead-end elimination criterion and
its application to protein redesign in a hybrid scoring and search algorithm for computing
partition functions over molecular ensembles. Journal of computational chemistry 29(10),
1527–42 (2008)

29. de Givry, S., Prestwich, S., O’Sullivan, B.: Dead-End Elimination for Weighted CSP. In: Proc.
of CP-13, pp. 263–272. Uppsala, Sweden (2013)

30. Goldstein, R.F.: Efficient rotamer elimination applied to protein side-chains and related spin
glasses. Biophysical journal 66(5), 1335–40 (1994)

31. Gront, D., Kulp, D.W., Vernon, R.M., Strauss, C.E., Baker, D.: Generalized fragment picking
in rosetta: design, protocols and applications. PloS one 6(8), e23294 (2011)



18 Authors Suppressed Due to Excessive Length

32. Grunwald, I., Rischka, K., Kast, S.M., Scheibel, T., Bargel, H.: Mimicking biopolymers on a
molecular scale: nano(bio)technology based on engineered proteins. Philosophical transac-
tions. Series A, Mathematical, physical, and engineering sciences 367(1894), 1727–47 (2009)

33. Hallen,M.A., Keedy, D.A., Donald, B.R.: Dead-end eliminationwith perturbations (deeper): A
provable protein design algorithmwith continuous sidechain and backbone flexibility. Proteins:
Structure, Function, and Bioinformatics 81(1), 18–39 (2013)

34. Harvey, W.D., Ginsberg, M.L.: Limited discrepancy search. In: Proc. of the 14th IJCAI.
Montréal, Canada (1995)

35. Hawkins, G., Cramer, C., Truhlar, D.: Parametrized models of aqueous free energies of solva-
tion based on pairwise descreening of solute atomic charges from a dielectric medium. The
Journal of Physical Chemistry 100(51), 19824–19839 (1996)

36. Hurley, B., O’Sullivan, B., Allouche, D., Katsirelos, G., Schiex, T., Zytnicki, M., de Givry,
S.: Multi-Language Evaluation of Exact Solvers in Graphical Model Discrete Optimization.
Constraints 21(3), 413–434 (2016)

37. Janin, J., Wodak, S., Levitt, M., Maigret, B.: Conformation of amino acid side-chains in
proteins. Journal of molecular biology 125(3), 357–386 (1978)

38. Khalil, A.S., Collins, J.J.: Synthetic biology: applications come of age. Nature Reviews
Genetics 11(5), 367–379 (2010)

39. Khare, S.D., Kipnis, Y., Greisen, P., Takeuchi, R., Ashani, Y., Goldsmith, M., Song, Y.,
Gallaher, J.L., Silman, I., Leader, H., Sussman, J.L., Stoddard, B.L., Tawfik, D.S., Baker, D.:
Computational redesign of amononuclear zincmetalloenzyme for organophosphate hydrolysis.
Nature chemical biology 8(3), 294–300 (2012)

40. Khoury, G.A., Smadbeck, J., Kieslich, C.A., Floudas, C.A.: Protein folding and de novo protein
design for biotechnological applications. Trends in biotechnology 32(2), 99–109 (2014)

41. Kingsford, C.L., Chazelle, B., Singh, M.: Solving and analyzing side-chain positioning prob-
lems using linear and integer programming. Bioinformatics 21(7), 1028–36 (2005)

42. Kuhlman, B., Baker, D.: Native protein sequences are close to optimal for their structures.
Proceedings of the National Academy of Sciences of the United States of America 97(19),
10383–8 (2000)

43. Larrosa, J.: On arc and node consistency in weighted CSP. In: Proc. AAAI’02, pp. 48–53.
Edmondton, (CA) (2002)

44. Larrosa, J., de Givry, S., Heras, F., Zytnicki, M.: Existential arc consistency: getting closer to
full arc consistency in weighted CSPs. In: Proc. of the 19th IJCAI, pp. 84–89. Edinburgh,
Scotland (2005)

45. Larrosa, J., Schiex, T.: Solving weighted CSP by maintaining arc consistency. Artif. Intell.
159(1-2), 1–26 (2004)

46. Leach, A.R., Lemon, A.P.: Exploring the conformational space of protein side chains using
dead-end elimination and the A* algorithm. Proteins 33(2), 227–39 (1998)

47. Leaver-Fay, A., Tyka, M., Lewis, S.M., Lange, O.F., Thompson, J., Jacak, R., Kaufman, K.,
Renfrew, P.D., Smith, C.A., Sheffler, W., Davis, I.W., Cooper, S., Treuille, A., Mandell, D.J.,
Richter, F., Ban, Y.E.A., Fleishman, S.J., Corn, J.E., Kim, D.E., Lyskov, S., Berrondo, M.,
Mentzer, S., Popović, Z., Havranek, J.J., Karanicolas, J., Das, R., Meiler, J., Kortemme, T.,
Gray, J.J., Kuhlman, B., Baker, D., Bradley, P.: Rosetta3: an object-oriented software suite for
the simulation and design of macromolecules. Methods Enzymol. 487, 545–574 (2011)

48. Lecoutre, C., Roussel, O., Dehani, D.: WCSP integration of soft neighborhood substitutability.
In: Principles and Practice of Constraint Programming, pp. 406–421. Springer (2012)

49. Lewis, J.C., Bastian, S., Bennett, C.S., Fu, Y., Mitsuda, Y., Chen, M.M., Greenberg, W.A.,
Wong, C.H., Arnold, F.H.: Chemoenzymatic elaboration of monosaccharides using engi-
neered cytochrome p450bm3 demethylases. Proceedings of the National Academy of Sciences
106(39), 16550–16555 (2009)

50. Looger, L.L., Hellinga, H.W.: Generalized dead-end elimination algorithms make large-scale
protein side-chain structure prediction tractable: implications for protein design and structural
genomics. Journal of molecular biology 307(1), 429–45 (2001)

51. Loudni, S., Boizumault, P.: Solving constraint optimization problems in anytime contexts. In:
Proc. of IJCAI, pp. 251–256. Acapulco, Mexico (2003)



Computational Protein Design with CFNs 19

52. Lovell, S.C., Word, J.M., Richardson, J.S., Richardson, D.C.: The penultimate rotamer library.
Proteins 40(3), 389–408 (2000)

53. Martin, V.J., Pitera, D.J., Withers, S.T., Newman, J.D., Keasling, J.D.: Engineering a meval-
onate pathway in escherichia coli for production of terpenoids. Nature biotechnology 21(7),
796–802 (2003)

54. Mladenović, N., Hansen, P.: Variable Neighborhood Search. Comput. Oper. Res. 24(11),
1097–1100 (1997)

55. Nestl, B.M., Nebel, B.A., Hauer, B.: Recent progress in industrial biocatalysis. Current Opinion
in Chemical Biology 15(2), 187–193 (2011)

56. Noguchi, H., Addy, C., Simoncini, D., Wouters, S., Mylemans, B., Van Meervelt, L., Schiex,
T., Zhang, K.Y., Tame, J.R., Voet, A.R.: Computational design of symmetrical eight-bladed
β-propeller proteins. IUCrJ 6(1) (2019)

57. O’Meara, M.J., Leaver-Fay, A., Tyka, M., Stein, A., Houlihan, K., DiMaio, F., Bradley, P.,
Kortemme, T., Baker, D., Snoeyink, J., Kuhlman, B.: A combined covalent-electrostatic model
of hydrogen bonding improves structure prediction with rosetta. J. Chem. Theory Comput.
11(2), 609–622 (2015)

58. Ouali, A., Allouche, D., de Givry, S., Loudni, S., Lebbah, Y., Eckhardt, F., Loukil, L.: It-
erative Decomposition Guided Variable Neighborhood Search for Graphical Model Energy
Minimization. In: Proc. of UAI-17, pp. 550–559. Sydney, Australia (2017)

59. Pabo, C.: Molecular technology. Designing proteins and peptides. Nature 301(5897), 200
(1983)

60. Peisajovich, S.G., Tawfik, D.S.: Protein engineers turned evolutionists. Nature methods 4(12),
991–4 (2007)

61. Pierce, N., Spriet, J., Desmet, J., Mayo, S.: Conformational splitting: Amore powerful criterion
for dead-end elimination. Journal of computational chemistry 21(11), 999–1009 (2000)

62. Pierce, N.A., Winfree, E.: Protein design is NP-hard. Protein engineering 15(10), 779–82
(2002)

63. Pleiss, J.: Protein design in metabolic engineering and synthetic biology. Current opinion in
biotechnology 22(5), 611–7 (2011)

64. Raha, K., Wollacott, A.M., Italia, M.J., Desjarlais, J.R.: Prediction of amino acid sequence
from structure. Protein science 9(6), 1106–19 (2000)

65. Schiex, T.: Arc consistency for soft constraints. In: Principles and Practice of Constraint
Programming - CP 2000, LNCS, vol. 1894, pp. 411–424. Singapore (2000)

66. Simoncini, D., Allouche, D., de Givry, S., Delmas, C., Barbe, S., Schiex, T.: Guaranteed
discrete energy optimization on large protein design problems. Journal of Chemical Theory
and Computation 11(12), 5980–5989 (2015)

67. Swain, M., Kemp, G.: A CLP approach to the protein side-chain placement problem. In:
Principles and Practice of Constraint Programming–CP 2001, pp. 479–493. Springer (2001)

68. Traoré, S., Allouche, D., André, I., de Givry, S., Katsirelos, G., Schiex, T., Barbe, S.: A
new framework for computational protein design through cost function network optimization.
Bioinformatics 29(17), 2129–2136 (2013)

69. Traoré, S., Roberts, K.E., Allouche, D., Donald, B.R., André, I., Schiex, T., Barbe, S.: Fast
search algorithms for computational protein design. Journal of computational chemistry 37(12),
1048–1058 (2016)

70. Verges, A., Cambon, E., Barbe, S., Salamone, S., Le Guen, Y., Moulis, C., Mulard, L.A.,
Remaud-Siméon, M., André, I.: Computer-aided engineering of a transglycosylase for the
glucosylation of an unnatural disaccharide of relevance for bacterial antigen synthesis. ACS
Catalysis 5(2), 1186–1198 (2015)

71. Voigt, C.A., Gordon, D.B., Mayo, S.L.: Trading accuracy for speed: A quantitative comparison
of search algorithms in protein sequence design. Journal of molecular biology 299(3), 789–803
(2000)


