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to a model in Nuclear Magnetic Resonance

L. Amour, L. Jager, J. Nourrigat

Université de Reims, France

Abstract \

We are concerned in this paper with the connection between the dynamics of ‘a model related to Nuclear
Magnetic Resonance (NMR) in Quantum Field Theory (QFT) and its classigal comnterpart known as the
Maxwell-Bloch equations. The model in QFT is a model of Quantu amics (QED) considering
fixed spins interacting with the quantized electromagnetic field in an‘ext constant magnetic field. This
. Bloch, Physical Review,
xwell-Bloch equations but to
also establish a semiclassical asymptotic expansion of arbitrary high ordi with control of the error terms
of this standard nonlinear classical motion equations. ThiEMVi theréfore quantum corrections of any

order in powers of the semiclassical parameter of the Bloch equations. Besides, the asymptotic expansion
for the photon number is also analyzed and a law descgibin e photon number time evolution is written
down involving the radiation field polarization. Since thesguantguni photon state Hilbert space (radiation
le with the issue of semiclassical calculus in

field) is infinite dimensional we are thus concerned i this ar
an infinite dimensional setting. In this regard, are studying standard notions as Wick and anti-Wick
quantizations, heat operator, Beals characterization theor and compositions of symbols in the infinite

dimensional context which can have their own%
%

Keywords: Semiclassical analysis, infinite dim alanalysis, composition of operators, Wick quantization,
anti-Wick quantization, Wick symbol, HuSimi funegion, Wiener spaces, Heat operator, symbolic calculus, QED,

quantum electrodynamics, Maxwell-Bloch ions, Bloch equations, NMR, Nuclear Magnetic Resonance,
photon emission, photon number. \
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1 Statement o hﬂr; Its.

is_to cargy on the study of an infinite dimensional symbolic calculus begun in [4] and to

apply it to the semiglas§ical limit of the evolution for a quantum field model in Nuclear Magnetic Resonance

ilar to the more complicated Pauli Fierz Hamiltonian (see [23], [12]), where the terms concerning

in particles motion are deleted.

n also be modelled by earlier equations due to F.Bloch [15] (1946). We prove here that they are the

semiclassical limit of the QED model. In this early model, spins are viewed as vectors S>‘(t) eR} A=1,...,P.


http://dx.doi.org/10.1063/1.5094396

If the particle i R3_time-evol )
Math. Phys. Click

1r to sc tc ersin r .
AI ID iS*(t) = 2B (xy,t) x SH(t)
. . dt
Publlshmg ot

equations:

x,t) is a non quantized external magnetic field. One handicap of this model is the long time behavior
of the solutions. Indeed, the behavior of the solutions is not always physically consistent for large time ¢. To
overcome that difficulty, one usually inserts ad hoc additional terms in the Bloch equations [15], which are no
more useful in the QED model.

In the QED model, the spins are average values of evolving quantum observalgé. We aim at studying the
the QED model. Indeed
the Hamiltonian depends on the semiclassical parameter A > 0. In particulayf coneerningsthe spin observables,

(6°41)(6.12) and also (6.17)(6.18)).
at anfull asymptotic expansion

semiclassical asymptotic of the average at time ¢ > 0, of some observables relat

we prove that the Bloch model is a semiclassical limit of the QED model (s

This can therefore be viewed as the derivation of the Bloch equations. Not
with control of the error terms is in addition obtained. We point out jses a similar issue (see also

20, 52]).

In the same way, we study the average values at time ¢ > 0 and at each point of R? of the electric and magnetic
fields. This evolution is consistent with the Maxwell equatighs, provi ach particle with spin has a current
density explicitly expressed in terms of the averages ofgthespins (at the same ¢) and with the help of an
ultraviolet cutoff, as in formulas (1.22), (1.23). -

We finally give an asymptotic estimate of the average number of photons created in a time unit. Note that time
dynamic evolutions for some other models in in 'tfe-d-im{ls‘ion have been studied for example in [18, 22, 25,

44, 45).
\

The QED model. The Hilbert space desc Qi\ states of the whole system, consisting of the quantum field
stant

and of the P particles, in the presence of a ¢
The Hilbert space Hg, describing states of P fixed particles with spin-1, without interaction, at a given

29
time, is Hep = (C?%)®P . The fermionic property of the spin—% fixed particles is not taken into account here. In
the space Hgp,, we shall usg'the /ope tors related to the spins of the different particles. Let o; (1 < j < 3) be
the Pauli matrices: /
0 —i 1 0
01 ) s 09 — (Z 0 ) s 03 — (0 _1> . (1].)

For all A < P and IDS 3, we denote by (77[7){] the operator in #, defined by:

agnetic field 3, is the completed tensor product H,, ® Hsp
of two Hilbert spaces that we shall de

Y. oN=I® - IR0, QI®-- &1, (1.2)
where o,,\is locatg)d the A** position.

The fue photo nfiguration Hilbert space H is the set of mappings f € L?(R3,R?) satisfying k - f(k) = 0
almos every@qere in k € R? (see [46]) where |f|> = [gs |f(K)|?dk. The Hilbert space M,y of photon quantum

is

ymmetrized Fock space Fs(Hc) over the complexified space of H. We follow [49], see also [53],

-

for k spaces considerations and notations, in particular, for the usual operators in these spaces: the Segal
field Pg (V) associated with an element V in H?, the T'(T) and dT'(T') operators associated with some operators
T acting in H?. Note that, throughout this paper, the space H? is sometimes identified with the complexified

space Hc, but not when a confusion seems possible. We denote in the same way the analogous operators defined
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on H? or on He—With-theaim of underlining thereleo esemiclassical-parameter-h—>0—we-also set for all
] . This manuscript was accepted by J. Math. Phys. Click here to see the version of record.
I p:lm ging toH=
A Bsi(V) = h2@s(V). (1.3)

Publishing

Let M, be the operator with domain D(M,) C H such that M,q(k) = |k|q(k) almost everywhere in k € R3.
In the Fock space framework, the photon free energy Hamiltonian operator Hyy, is usually defined as hdI'(M,,).
The photon number operator denoted by N is N = dI'(I).

The three components of the magnetic field at each point 2 in R? are defined usi?he elements Bj, belonging

to H? and written as follows, when one identifies H? with the complexified spa

. 1
B, (k) = XU _enixes ) po o ) @
(2m)2 k|
where the function x (ultraviolet cutoff) belongs to S(R) and (eq, ez, %omcal basis of R?. Also set,
Brmg = JBmae, 1< m €3¢ - (1.5)
where J : H? — H? stands for the helicity operator defined by, 5
kx X(k
Ix (k) = Yo, (1.6)
L
for each X in H? or Hc. One then defines the elect 'CW tic fields components operators at each point
x of R? by: \
B (x) = ®sn(Bima) = hécﬁs(ww) = ®sp(Bma) = 2 ®5(Epa),
for m = 1,2, 3. S
~
The Hamiltonian of the QED model is a W extension of the following operator, initially defined in a
dense subspace of H,p, ® Hsp,

/

h)'= Hpp @ I + hHpt, (1.7)
where Hyj, = hdI'(M,,) is the 05)?‘36 energy operator, acting in a domain D(Hpp,) C H,y, and

P 3
/ A=1m=1

where 8 = (f1, P2, QsNternal constant magnetic field and the zy (1 < A < P) are the points of R3

where the fixed

icleg are located.

Let us recall that H(h) a selfadjoint extension with the same domain as the free operator Hy = Hpp, ® I.
zﬁ{es in the domain D(M;l/Q) then the Segal field ®5(U) is bounded from D(H,y) into

roposition 3.4 in [7] or see [19]. This is therefore the case for the operators B;(x) and

If an elem
Hpn, see point ii)4of
E;(z)aecords t5
thus from thSKato—Rellich Theorem.

the assumptions on the ultraviolet cutoff function y in (1.4). The statement above follows

t “A.be a selfadjoint operator in H,, ® Hsp, bounded or not. We are led to investigate the asymptotic

o
properties of
A(t, h) = e wH (M) gt H (R, (1.9)

If A is bounded, so is A(¢, h). If A is bounded from D(H (h)) in Hpn @ Hsp, so is A(t, k).
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AI Be the allowmg One proves that, under suitable hypotheses, the analogue of A(t, h) is also a pseudodifferential
PUb“SJ;]J;Ha& r, and gives an asymptotic expansion of its symbol. This is the classical finite dimensional Egorov
Theorem. We do not follow this way here but use the Wick symbol instead. The Wick calculus is another very

standard way to establish a link between the quantum dynamics and the corresponding classical dynamics.

For any bounded operator A, one may associate with A and also with A(¢,h) their Wick symbols. This is a
function defined on the phase space, with values in £(Hs,), which reflects the se iclassical properties of these
operators when h tends to 0. In our situation, the phase space is H? where H isfthe one photon configuration
Hilbert space defined above. The definition of the Wick symbol is recalled b \

Definition 1.1. Let H be any arbitrary infinite dimensional sepamble Hilbert ce The coherent states W x p,

are the elements of the Fock space Fs(Hg) defined, for any X = zn H" ry h > 0, by
, .
Uxp=e Y (atib)®:---© +Z & (1.10)

= (2h)"/ 'nl \

(with n tensor products in the above sum). When X =0, \IIO (denioges th (quantum) vacuum state.

If A denotes any bounded operator in Fs(Hg) or any n emtor (A, D(A)) with a domain D(A)
containing the coherent states, then the Wick symbol of A 1 flm.ctwn a““d“( ), defined on H? by

o,wzck el x 1, >, (111)

where, for all X = (a,b) in H* and every h > 0, 3 correspondzng coherent state recalled above. It is

also called Husimi function.

If A is a similar operator in Fy (Hc) ® ’Hsp is a finite dimensional Hilbert space, then the Wick

symbol of A is the mapping o**(A) 2 into L(Hsp) verifying

< a“’“’“(A)( b >=< A(Ux,®a),Ux,Qb>, (1.12)

for all a and b in H,p.

Coherent states are a neral ool in quantum mechanics (see for example [26], [16], [47]). For Wick

symbols, see e.g., and a (for finitely or infinitely many degrees of freedom), [3], [5], . ...
The problem is n t) of deducing the properties of the Wick symbol of A(t, h) from the Wick symbol of A.

To this aim, éue celild use a description of the operator e~ % (") similar to the one given in [7]. But in [7],
we supposéd-that the %ction X (the ultraviolet cutoff) appearing in (1.4) is equal to 0 in a neighbourhood of
the origin%, This a§sumption is, physically, not very realistic. It was necessary because we did not use, in [7],
the syfnbol clags S(H?2, Q) of Definition 1.2 below. Maybe it would be possible to rewrite the study of [7] using

this symbol dlasses and so to suppress the unnecessary hypothesis. A method using commutators (Heisenberg

e equagions) is more straightforward.

For ‘qur physical applications, we do not need general operators A. It suffices to be able to take, for A, a spin
observable (of the form I ® ol ]), a field observable (of the form ®gp(B,.) ® I or its analogue for the electric
field) or the number operator. For all these observables A, we give an asymptotic expansion of the Wick symbol

of A(t,h) in powers of h. Note that the computation of the successive terms of the expansion needs only the
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formal aspectsre s of Section

AllP

Pu b||§h44ng( Segal field, its Wick symbol is well defined since coherent states belong to the number operator domain,

wiiich 18 itself included in the domain of any Segal field (see Lemma 2.1 in [19]). This also holds true for the
operators dI'(T') where T' € L(H). The Wick symbols of these operators are considered in Theorem 2.3. One
denotes by X or (g, p) the variable of H? and by x, k variables of R®. The Wick symbol of an operator A will
be here often denoted by A(X,h) or A(g,p,h).

For our purpose, the initial observables A are assumed to have the particular foll{éing form:
A=Dg(Fa)@I+1®Sa 5 (1.13)

where S4 belongs to L(Hs,) and ®s(F4) is the Segal field associated with am,clement F4 in the domain
D(Mw_l/z) C H?. In this case, according to the above remarks, th
operator from D(H(h)) into Hpn ® Hsp. According to Proposition

ductof (1.9) is well defined as an
p;,}%has the form (1.13) then the
operator A(t,h) is the sum of a Segal field with a bounded operator«Sinceboth of them have a Wick symbol

then the Wick symbol A(t, X, h) taking values in L£(Hsp) is well

For observables being as in (1.13) type, we shall for the fungtion X, h), on the one hand study bounds on
the derivatives and on the other hand give an asymptoticsexpansionsas h goes to 0 with the aim of obtaining
quantum corrections for the Bloch model. In order té,obtain“bounds on the derivatives, we define a class of
functions F € C* on the phase space H? associate@ negative quadratic form @Q on H? (which can
be degenerate) in the following way. ~

Definition 1.2. For any real separable Hil ace and for each nonnegative quadratic form Q on H?,
let S(H?,Q) be the class of functions f €4C°(H2) stteh that there exists C(f) > 0 satisfying, for any integer

m >0, for all vectors Vi ... Vp, in H?: \

(@ 1) () Vo 5) | < CUHQVAY2 .. Q(Vin) V2. (1.14)

The smallest constant C(f) satibfi (1.14) s denoted by || fllo-

In what follows, the quadsatic f}rm will be

«/\ Q(X) = (AX) - X, (1.15)
with Ag € L(H?)4{gelfadjoint, nonnegative, trace class in H2. Note that the idea of defining a class of symbols

n purposes, thanks to a quadratic form on the phase space, goes back to [35] and [56].

this way for quantizati
oncerning these works, the constant C' denoted by C), involved there depends on
dent of m here. Also observe that a function in S(H?,Q) extends as a holomorphic
function on the Ccﬁlplexiﬁed (Hc)?, satisfying

o ImZ)'/? 2
3 |F(Z)| < |[Fllq 227", Z e (Hc).

F hh{j\me t, we shall show that the function X — A(t, X, h) belongs to the class of Definition 1.2 associated
with the time dependent quadratic form @, on H? that we now define.

One knows that,
e~ Ho = D(y,) (1.16)
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where 7 is the-sympleetic-map-defined;-settingw{f)=Hel by — -
T This manuscript was accepted by J. Math. Phys. Click here to see the version of record. |
AI I xt(q,p) = (at, pt), (1.17)

PUNISRINE] 1)  costtuo()ath) + sinw(®p(),  pulk) = — sin(tw(k))a(k) + cos(teo(k))p(h)

For each operator A, bounded from D(Hp, ® I) to Hpp @ Hsp, We set:
Afree(t’h) _ ei%(th@)I)Aefi%(th@I). (118)

In particular, we define in this way H;"¢“(t). The proof of Theorem 4.3 shows tha@{ symbol HI"¢(t, X)

of the operator HI"¢(t) is well defined and that: )
HITE(t, X) = Hine(x4(X)). \ (1.19)
For all t € R, one defines a quadratic form Q; on H? by: )
'\\

|dH (V. p))|2ds (1.20)

)

ne a quadratic form, one chooses on

Wa.p) = It / (AHITE (s, 0, p)|ds = [

where the norm in the integral is that of £(Hs,). For this efuality to
L(Hsp) the Hilbert-Schmidt norm. One denotes by dH; I T (¢, the 1fferentlal with respect to (g, p) of H; Jree

int nt

which is an affine function, that is to say the function obta bﬁn.neplacmg the constant field S by 0. Notice

that the operator A; satisfying Q:(X) = QQQ (as in (1.15)) is trace class.

Now we can state our main result.

Theorem 1.3. Let A be an observable of the with Fa in the domain D(M,, 1/2) Let A(t, h) be the
operator defined in (1.9) and A(t, X, h) zts* sy%bol Then,
i) The function X — A(t,X,h) is th s ear function of the variable X with a function belonging to

S(H?,4Q;) and taking values in L(H

More precisely, there exists a séquencesgf functions AUl(t, -), j > 0, taking values in L(Hp) and satisfying the
following properties:

£
ii) The function Al (f/ is sw?/of a linear function with a function lying in S(H?,4Q:) and taking values
b

in L(Hsp) with a nor ded wndependently of t when t remains in a compact subset of R.

iit) Forj > 1, th an AUl(t, -) belongs to S(H?, 16771 Q;) and takes values in L(Hs,) with a norm bounded

independently Of t }uhe remains in a compact subset of R.

w) The Wickssym )/—) A(t, X, h) satisfies for any integer M :

M
A(t, X, h) =Y WAVt X) + hMPIRIMI(t, X 1) (1.21)
=0

-, h) belongs to S(H?,16M+5Q;) with a norm bounded independently of t and h when t remains
n mpdct subset of R and h varies in (0,1].

The construction of the functions AVl(¢, -) for j > 0 and RIMI(¢, -, h) for any integer M and h > 0 is given in
Section 5.
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he Segal fields

d.

escoperators all

F '17 (bS h P O Op s
AI e the form (1.13). We then denote by BY) (x,t X) Ey[fl] (gc,t7X) and Si! (t, X) (1 < m < 3) the functions
PUb“S\lngll&& by Al (X,t) in Theorem 1.3. The detailed construction of these functions is given in Theorem 6.2. Let

us now give only the general idea.

The first terms B.Y (x,t,X) and BY (z,t, X) are functions of X € H? and also of (z,t). As functions of (z,t),
these functions satisfy the free Maxwell equations, the initial conditions being the ﬁelds corresponding to the
initial coherent state. Then, the first terms Sy[{}’ (t, X) satisfy the Bloch equatlo ] (1946) but where the

magnetic field is the sum of the constant external field with B9,
Next, the terms with 7 > 1 are determined by induction. Let us assume tha [th and E[J 1 (x,t, X)
together with Sy, b =1) (t, X) are already determined. Then, the functions B 4 ;%X ) and E[j ] (z,t, X) considered

ion together with a zero

as functions of (z,t) satisfy Maxwell equations with entirely vanishin, ;%51

charge density and a current density equal to

~
P -
I (¢, x) = S, X) x 'adp(:cs ) (1.22)
A=1 -~
with
p(x) = (27)3 Ix([FBI? co Dx)dk, (1.23)

R3
where y is the ultraviolet cutoff function appearing DSBQ)“ 1.4 of the magnetic field operators. This term
expresses the radiation, between times 0 and ¢, of ‘h&in the (j — 1)-th order of their movement. One
finally determines 5’7[3{ Al (t,X) solving the differentiakgystent«6.12). It depends on the one hand, on the mutual

interactions of the spins and on the other hand;“en quamfum corrections coming from QED. This constitutes
a quantum correction of the Bloch equations. p%of relies on some equations of Maxwell-Bloch type for
operator valued functions (see [55] and also orem 6.1).

We now turn to the time evolution of t\nufnber operator N. The number operator is not under the form

(1.13) and one cannot therefore ditectly apply* Theorem 1.3. Moreover, the operator
%t7h) . hH(h)(N®I) —i H(h)

£
is not precisely deﬁne%’e 11 1n}4€ead use its formal derivative:

3\N’(t, h) = (i/h)e' "M [H(R), (N @ I)]e 7M. (1.24)

akessénse. We shall see that [H(h), N®1I] is a bounded operator from D(H (h)) into Fs(Hc)®
J#the quantity < N'(t, X, h)a,a > amounts to the photon number average value emitted by

This definition

~at time tAvhen the initial state is taken as ¥x ;, ® a with a unit normalized element a in H,,.

Theorem™1.4. i)&'he operator N'(t, h) defined in (1.24) is well defined from D(H (h)) into Fs(Hc) @ Hsp. Its

Wic sg;‘nbol X, h) defined for X € D(M,,) C H? satisfies,

P 3

\ N'(t, X, h) =Y > Elreerol(my, X, 6) S0 (¢, X) + N (t, X, h), (1.25)
.~ A=1m=1

where X — Elreerol(xy X t) is a linear form on H? that is determined in Section 7 and X — N"**(t, X, h) is
a function in S(H?, KQ;), with K > 0 and its norm in this class is bounded independently of t belonging to a
compact set of R and of h lying in (0,1].
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1) There erists—a R 2 £y M

equence—offuretionsNonR H & —for-ary—integer 5
I P This manuscript was accepted by J. Math. Phys. Click Here to see the version of record.
l s M

L N (t, X, h) =Y B NUI(t, X)+ nMH RM(t, X 1), (1.26)
Publishing =1

For all j > 1, for every M > 1 and for any t € R, the function X — NUVI(t, X) belongs to S(H?, K;Q;) and

Rar(t, -, h) belongs to a class S(H?, LyQt) where K; and Ly are some constants and where the norms are

bounded independently of t belonging to any compact set of R and of h lying in (0, 1].

This theorem is proved in Section 7 where the functions NU! (t,X) are deter?/ ed. However, for a better
understanding at this stage of equality (1.25), let us introduce here the element E}c¢Po!(xy, X, t) involved
here. We define E/"¢P°l(x,, X,t) in a particular case, when the photon Qp) satisfies for almost all

k € R3,
(k x q(k), k x p(k)) = e|k|(—p(k), ké.é\
e 1

where € = 1. These two cases correspond to the circular right and 1 rization notions in physics. In both
cases we have, o

Blreerl(z,, X, 1) = B/ (2%, X) )

-

Thus, in other words, (1.25) says that, the mean number of{photons emitted by unit of time is related to the
scalar product of the spin and of the electric field, correc&%r& to the polarization, up to corrections in

N \
Note that we are not expecting to consider in these isSues limit as t goes to infinity in the semiclassical
Me){pamsions should be valid up to Ehrenfest time.

We also note that [16] gives first order quant rrecti

context recalling that even in finite dimension, se
ns for a related model, namely, the interaction of an
electric dipole moment with the quantized electrigfields Besides, it is observed in [50] that the polarization is

involved in the photon emission.

The relevance of the semiclassical limit ikﬁggested by the following complementary remark. We point out

that the semiclassical approximation of the model studied here not only concerns time evolutions of observables

e studied. Indeed, it is known, see for example [11][24][36] (note that very
del), that the Hamiltonian H(h) defined above has a ground state Uy,

satisfying: /
/ Lﬁh = EpUn, Ep=info(H(h), [Unll=1

and it is proved i Qr?&wle conditions that the observable average values By, (z) and E,,(x) related to
en the magnetic and electric fields at an arbitrary point x € R? satisfy

but other issues can naturall

often h = 1 in references fopthe th

the three comp

< é)Uy n >= hB&a (z) + O(h*/?), < Ep(x)Un, Uy, >= hE%(z) + O(h3/?)

ﬁ
where B'°5 (z) a§d class(z) are the magnetic and electric fields associated, according to elementary physics,
with the«P spins viewed as magnets all pointing in the direction of the non quantized constant external magnetic

field.\In partigular, E<%**(z) = 0. We also derive in [9] a connection between the model studied here (the third

odel) wigh the Ising model.

for the configuration space H or the phase space H?, when it is not identified with the complexified
space Hc. We denote by < a,b > the hermitian product on a complex space, which always will be antilinear

with respect to the second factor (such that < a,ib >= —i < a,b >). It is the case for Hcg, for the Fock space
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ph = Fs H07 A 24 v y ]:s(Hc) or

This, anuscnpl was zﬁ:ceptcd by
‘! I [ P B h/2

by 11
Publigtireg of the proof. One first writes the equations that should be satisfied by the functions All(¢, X)) in Theorem
1.3 i order to be, at least formally, a good approximation of the Wick symbol of the operator A(t,h). These

equations are explicitly written down in Sections 5.2 and 5.3, where we also prove existence and uniqueness
properties of the solutions. It is in addition derived that these solutions belong to some classes of Definition 1.2.
It remains to prove (1.21) and thus, to compare the true Wick symbol of A(t, h) with its supposed approximation.
Rather than comparing two functions, it seems easier to compare two operators Therefore, with each function
F belonging to a class S(H?, Q) of Definition 1.2, one associates an operator den by Op“”dc ) whose Wick
symbol is F'. \

This Wick quantization of a given function F' is not always possible. It is4ossi 1f Fis polynomlal function.

The corresponding operator is then defined using Wick (normal) order' . It is also defined

for some quadratic forms (see [42]).

We show in Section 2 that Wick quantization is also possible for function; in a class S(H?, Q) of Definition

~ funsion F. The fact that this is possible
should probably be related to properties of the functions in S| H‘E, @), which are stronger than analyticity. Next,
im iormee [14] and [43]) which is however only an
k quantization has its own interest (see [3]

for constructing semiclassical measures). This will e ble WickJquantization of the coefficients X — AVl(t, X)

and also of the error terms appearing in comput'tli)ghus estimate (1.21) brings us back to a comparison
us a

1.2. To this end, we first begin by giving a heat operator inverse to

we use the anti-Wick quantization commonly used in finit

intermediate step in our case. Also in infinite dimensio thls

between two operators which is easier to consider \BUmentlon that another technique of [40] concerning

Wick quantization could be applied to our cla ?’s~>
~

2 Quantization \\

The purpose of this section is to@ive amanswer to the following issue when H is any arbitrary infinite dimensional
cessarily the photon Hilbert space. For a given function F' on H?, can we
(Hc), bounded or unbounded, with a Wick symbol equal to F' ? If so,
we can say that A is thé Wic uap(ization of F. Before, we had to define an anti-Wick quantization which is

here only a first step ‘kxhave is own interest. Analogous techniques may be found in [1, 2, 51].

X

antization.

separable Hilbert space andsot

find an operator A in the Eock space

ﬁ
We recall fthat in

nite dimension n, the anti-Wick operator associated with a bounded measurable function F
on R™.is defined, for all f and g in L?(R"), for any h > 0, by
ﬁ

S <R g =)t [ F(X) < fWxp > < Uxg > dX, (2.1)
R27

where the l x , are the standard coherent states on R™ indexed by X € R?" (see [21]). One of the advantages
of thig quantization used for example in [43] is the possibility to consider less regular functions F.

With the aim of defining corresponding operators in the Fock space H,, one could imagine to consider integrals

on H?2. Naturally, the Lebesgue measure is not existing anymore and it can be replaced by a Gaussian measure.
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For this purp
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AI Qﬂm Space. If H is an infinite dimensional separable Hilbert space, and ¢ > 0, there is no probability
Pub”S]haizng” > v on on the Borel o—algebra of H such that, for each a € H:

/ et dy(x) = e zlal”,
B

However, there exists one if H is finite dimensional. In this case, the measure satisfying the above equality
will be denoted by pp+ and called a Gaussian measure. In the infinite dimensional case, we may use a greater

Banach space B, containing H, and a suitable probability measure on B.

For these points, see [31], [41] and also Theorem 2.1. The exact conditions to be hﬂle\dby B together with

the properties involved in this paper are recalled in [4].

Theorem 2.1. (/30]-[33],[41]). Let H be a real separable Hilbert space.
Banach space B containing H, such that B C H' = H C B, each spa

here exists a (non unique)

se in the subsequent, and for

ng
Oﬁﬂat‘\iSfying,

all t > 0, there exists a probability measure (g on the Borel o-algeb

t),12 .
/ za(w)d’uBt( ) _ e—§|a| Nae B’
B

Here, |a| denotes the norm in H and the notation a(x) stcf\;for ality between B’ and B. Moreover,
for each finite dimensional space E C H, and p > 1, ere is an injection jp of LP(E, ugy) in
LP(B,up,) such that, if E C F C H, we have jr = jgoip ry whe‘zg.for eachw € LP(E, pgy), ipr(u) =u®l,

where 1 is the constant function equal to 1 in the or hw pace of E in F.
One says that (H, B) is a Wiener space. One alsg\ is a Wiener extension of H.

Gaussian variables.  We recall ([41]) that, .4&111 B’ C H, the mapping B 3 = — a(z) belongs to
L*(B,up ), with a norm equal to h |a Q‘\u;{:che mapping associating, with every a € B’, the function

(2.2)

above considered as an element of L2(B, 11 e extended by density to a mapping a — £, from H into
L?*(B, up ). The functions £, are gaus J\amqbles in the sense of [38].

Stochastic extensions. If f is afbounded continuous function on an infinite dimensional Hilbert space H, we

would like to define its inte a Gaussian measure, for instance in order to define an operator. It does not

nctions f, we may associate a function f on a Wiener extension B of H,

make sense in general but,

rith  gome
and we shall use the in gra %tead The function f will be called a stochastic extension of f, according

to the terminology of SS introduced the notion. This notion is recalled in Definition 2.2 of [8].

Definition 2.2. et% be a Hilbert space and B a Wiener extension of H. Let f be a bounded continuous
function on H £ We sty _that f has a stochastic extension in LP(B, up.) if, for each increasing sequence (E,)
of finite dime
the sequenfce g a limit in LP(B, ppt). This limit, which is independent of the sequence (E,), will be
denoted binf and &Llled a stochastic extension of f.

_—

onfll s?s aces in H, whose union is dense in H, denoting by f, the restriction of f to E,,
ndmn

One may findyin [8] and in [4] examples of functions admitting such extensions. For a given function f, having
ot a astic extension does not depend on the chosen Wiener extension B. For p > 1, the integral of f
v‘}t“d@pend either on the choice of B.

Segal-Bargmann transform. For each function f in Hyyp, for every X in H 2 and for each h > 0, we set:

(Thf)(X) =

< f,Uxp> 1x|2
D TR T < f Uy > 2.3
Do Uxn> [¥xn (2.3)

10
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where WV x j, dgretestheeoheres : - HH-—Fhisfranetion is-Céateamscanti-helomerphic on H?2

[ 9] one iden'
AI L2(12, ug 1), its norm being bounded 1ndependent1y of E. According to Theorem 8.8 in [4], its stochastic
PUb“%ﬂﬂ&& m Thf exists in L?(B?, pp2 ) and Ty is a partial isometry from Fy(Hc) in L?(B?, g2 ;) whose range

is the closure of anti-holomorphic functions. The mapping Tp, is called the Segal Bargmann transform.

Anti-Wick Operator. For every function F on H? (called the symbol) admitting a stochastic extension F
measurable and bounded on B2, one denotes by Op;i"W (F) the operator defined by,

<Op ()1 >= [ FOOTFCOTao ()i (F, (24)

for all f and g in Hpp,. Since T, is a partial isometry from Fy(Hc) into L?(B# jup> Xopera‘cor is bounded
on Fy(Hc) and its norm is smaller than the sup norm of F.

Unlike in the finite dimensional case, we cannot define an anti-Wic ato or any bounded measurable

function F in H? since this function needs a stochastic extension. Still, ca’n-aabomate an anti-Wick operator

adratic 0 on H? written under the form

with every function F' in S(H?, Q) where @) is a nonnegative q
(1.15) with Ag selfadjoint and trace class. Indeed, according to [3, Probosition 3.10, such a function admits
a stochastic extension F' measurable and bounded on B2. Iﬁl‘i‘s’ casc, we have || F||p~ < |F'|lo and therefore,

-

since T}, is a partial isometry from F,(Hc) into L2(B2,

2,h

10p7™ (FH< |

(2.5)

Again, we shall use anti-Wick quantization as angintermediate step towards the Wick quantization studied in
the following subsection. The anti-Wick quantizati ‘Trmlﬁmte dimension has its own interest: it is used in [3]
for the construction of semiclassical measures: S

.

/

2.2 Wick quantization. \

Any bounded operator T has a Wick symbolbut it is not always possible for a function F' on H? to find an
operator whose Wick symbol i§ . Theytheorem below shows that it is true in some cases. We recall here that
the coherent states belong td D(

for/any integer m > 1. Polynomial functions are finite linear combinations

of multlphcatlons of eJ q 6]4) 3571 s of (¢, p), where (e;) is an orthonormal basis of H. For any multi-index
a we set (¢ £1ip)® . ief - p)* and we use similar notations for products of creation or annihilation
operators.

Theorem 2.3. 4) ny function F belonging to S(H?,Q) where Q is a nonnegative quadratic form on H?
written undergthe f?rm 5), where Ag is selfadjoint and trace class, and for each h > 0, there exists a unique

bounded op 72{0 1 infs (Hg) such that 0"k (By,) = F. We then set By, = OpV**(F). One has the following

estimate:
|Opy**(F)|| < M2 T 42| P g, (2.6)

wher the noFﬁz in the left hand side is the L(Fs(Hg)) norm and Ag is the operator verifying Q(X) = (AgX)-X

07 all

r any polynomial function F on H? of degree m and for all h > 0 there exists an unbounded operator By,
. with initial domain D(N™), satisfying o**(By,) = F. We thus set B, = Op**(F). In particular,
the Wick symbol of a Segal field ®g(A) associated with A € H? is the function H> 3 X — h~'/2A . X, where
A - X is the real scalar product on H?.

closab

11
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w5 selfadjoint,

!! IITLG,"O’I every

Pu b“s‘pe n\gz need to involve the heat operator in order to first prove point i) of the theorem above. The heat operator
is defined for each measurable bounded function F in H?2 admitting a stochastic extension Fin L! (B27 MB,h)
and for each h > 0 by:

(HF)X) = [ FOXC+Y)dugna(Y), (2.7)
B
for X € H? (see Definition 5.1 and formula (28) of [37]). We also have: /
2 ~

EF)X) = [ F) e O \ (2.8)

B2 ‘)
Theorem 2.4. Let F be in S(H%,Q). Then the function h — H,F is C’ 0,80 with values in the Banach
space S(H?,Q). Moreover, for all h > 0, the operator Hj, is an iso Zsm om S(H?,Q) onto itself. As
operators in S(H?,Q), the norm of Hy, and the norm of its inverse de &h satisfy the following bounds:
<1 ) < e (2.9)

A

where Ag is the operator satisfying Q(X) = (AgX) -

Proof. These results are taken from [37]. The first cl\ rem 5 17. Tt is proved in Proposition 5.12 that
t

the Laplace operator A is well defined on S(H?, Q) it 4s bounded on S(H?,Q) into itself, with norm
smaller or equal than TrAg. On the other han Hh e(h/2)A (Proposition 5.13 or Theorem 5.17).
Therefore, the inverse of the bounded operator Hj, 1 eﬁne by:
m hm m
(ﬁ) S AF. (2.10)

Its norm satisfies (2.9), which proves t

Proof of point i) of Theorem 2. nows that, for all X and Y in H?:

\If s \IIYh >= ﬁ(|X Y[?)+ 350 (X,Y) (211)
/ ~
where o is the symplec?(form (:c,{), (¢,p)) = q-¢ —p-x. Hence, for each U = (a, b) in H?, setting U = (—b,a):

5 ThUyn(X) = et (UF+arty o () (2.12)

Then, for eac 2 Q) and h > 0, one has, according to (2.4):

< OphW Yup, Uyp >=e 201 / F(q,p)er G @@y pa , (q,p) = HLF(U).

steequalit éllows from (2.8). Therefore:

5 oV (Op™ (F)) = HpF. (2.13)
To)re‘point i) of Theorem 2.3, it is then sufficient to set

OpY (F) = Opi™ (H_,, ). (2.14)

The norm estimate (2.6) is then a consequence of the above definition, with (2.9) and (2.5).

12
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an—pgain define

!! I p T c—legree. One
roves n (Proposition 3.17) that each polynomial function G of degree m has a stochastic extension G.

Publlsmﬂ&,
[(GTwf)(g,p)| < CUTWf) (g —ip)| Y (g —ip)®],
where the sum above is finite. A Hilbert basis (e;) of H is fixed. Note that (¢ — ip)*(Tf)(g — ip) is, up to

a multiplicative factor, the Segal Bargmann transform of (a*(e))®f, which is well defined as an element of
Fs(Hg) if f belongs to the domain of N™. Thus, the function éfhf belongs to L?(B?, g2 ). Consequently,
the integral (2.4) makes sense. It indeed defines an unbounded operator OpitW (H _,F) with (initial) domain
D(N™) where m is the degree of F. We recall that the coherent states are in the ohs’xof]D(N ™). Therefore,
the Wick symbol of OptW (H_j,F) is well defined. Reasoning as in the ab, e@n‘c i) shows that this Wick
symbol is equal to F.

Let us now see the usual relation between the Wick quantization é-yolyn ial function with the Wick
'ﬁ.“

(normal) ordering.

-

Degree one polynomial function. First, we prove the last claim o

oint 5) In order to derive it, we remark,
from the Definition (1.10) of coherent states, that, for each X € H?:

Uxn=ce (2.15)
where Uy is the vacuum (independent of h) and X =
eit®s(A) g
We know that, for all U and V in H?:
i®s @\ i (UV) i®s(U+V) (2.16)

%N)\ik — a - p. Therefore:

; (tA- (1/f)x)\1, — o ame(Ax) Uy i

According to (2.11),
< et (A)\I/ 7 S0 (A,X) _f|z\2 €ﬁ1m<x+t\/ﬁ2,x>_

Differentiating with res ect tou, a / 0, and using o (A, X )= —A-X where A- X is the real scalar product
on H?, we indeed obt

<Og(A)Uxp, Uxp, >=h"2A. X

If F'is a degreefone p nomlal function on H? and if (e;) is a Hilbert basis of H, we can write:

Zaj q+iej-p)+bj(e;-q—iej-p).
ﬁ

Here the stms are nlte From the above computations:

b Opick(F) = \/ﬁz aja(e;) + bja*(e;). (2.17)

ormal ordering. Degree m polynomial functions. As we have stated at the beginning of Section 2.2, any

;n
polyn iial function F' of degree m can be written as:

Flg.p)= Y aaplg+ip)*(q—ip)”’
lal+181<m

13
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with (g & ip) et ehedath |

|_ lI‘l-hs Enaﬁuscﬁﬁt was accepted by J. Math“Phys Click here to see the version of record.
AI P Opy'™(F) = 20)™? Y~ aapa*(e)’ale)” (2.18)
Publishing el +{8<m

where we set:
=T atey)™
J

This is proved by iteration on m. For m = 1, it is (2.17). Assume that the equality is proved for all polynomial

function of degree < m — 1. Each degree m polynomial function can be expressed S:

F(q,p) = (ej.q +ie;p)Alq,p) + (ex.q — iexp) B ))\

where A and B are of degree < m — 1. Then, the operator

Ty = \/ﬁ(a (ex)Opie™(B) + Opyic*

has F' as Wick symbol. This follows from (2.17) and from an an#leg.of Thcorem 4.1 valid for finite sums for
the Wick symbol of the composition of two operators. Using the ductlos hypothesis for A and B, we indeed
deduce that (2.18) holds true for all m. -

Proof of point iii) of Theorem 2.3. By Definition (1.11) of 1 sy bol and according to Definition (1.10) of

the coherent states together with the usual definition 1t ollows that the Wick symbol of an operator
dI'(A) where A € £(H) and is selfadjoint is given b

) a+( p] (2.19)

lq1* + |pI*). (2.20)

The Wick symbol of H,;, = hdL is defined only for X = (¢,p) in D(M,,), by:

i, P) Myq) - q+(wa)-p]- (2.21)

3 Beals char }G.Qza ion.

Wick quantizafion implements a one to one correspondance between the space S(H?,Q) in Definition 1.2 and
TS acylg in Fs(Hc) that we now specify.

ultiplication operators by a coordinate function and the partial differentiation operators play an essential
n the infinite dimensional case, this role is played by Segal fields. The usual Beals hypothesis is here

der to avoid domain definition issues.

\ ~
Definition 3.1. (/8]). For each V = (a,b) in H?, let V = (=b,a). Set h > 0. Let Q be a quadratic form on
2 of the form (1.15) with Ag € L(H?) selfadjoint, nonnegative and trace class in H*. We denote by L(Q)
the space of all bounded operators A in Fs(Hg) satisfying:

14
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i) For tach in
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¢ s I P R™ > t—)Ah(t) _ eﬁ‘?s(tlﬁl-‘rm-‘rtm‘zn) A e—ﬁ‘?s(tlﬁﬁ-m-‘rtm‘zn) (3.1)

Pubhgbl

Ug 58 C™ from R™ into L(Fs(Hg)), that is to say, t =< Ap(t)f,g > is C™ for any f and g.

ii) There exists a positive real number C(A, Q) satisfying, for each integer m and for all Vi, ...,V in H?, for
any h in (0,1]):

10y, ....0:, An(0) fﬁ N2 he(0,1]. (3.2)

The norm in the above right hand side is the L(Fs(Hc)) norm. The smallest cow, Q) such that (3.2)
is valid is denoted by ||Allz(q)- 3

lad®s (V1) h e (0,1]
If A and B are in £((Q)) then the composition Ao B belongsco £(4,Qj and
|40 Bllcaay <dAl a ém) (33)
Theorem 3.2. Let QQ be the quadratic form wrztten ) with Ag € L(H?), selfadjoint, nonnegative,

trace class in H%. Then:

i) For each operator A in L(Q) and for each w e Wick symbol o2* (A) belongs to S(H?,Q) and we

also have:
o < [lAllz)-
i1) For each function F being in S(H 07" every h > 0, the operator Op** (F) belongs to L(Q) and
the following estimates holds tr
‘bWLU F)llz) < [|Fllge®? ™ 4e), (3.4)
Theorem 3.2 is an 1n d1 nal type of Beals characterization Theorem (see [13], and also [6, 8]).

Proof of Theorem 2}

i) By (2.15) 2 , have, for all X in H? and for each finite system (V3,...V,,,) in H?:

B

o F(An()(X) = o™ F (A)(X +t- V).

Theréfore:

(@ (A (X) (Vi o Vin) = 03 (D80, A 0) ) ().
then follows since |o1**(B)(X)| < ||B|| for any bounded operator B and for all X € H?.
S
be in S(H?,Q), h > 0 and A = Op¥**(F). The computations above show that A,(t) = Opi*(F(- +
t-V)) for any finite sequence (Vi, ..., Vy,) in H2. The function R™ > ¢ — F(- +t - V) belongs to the class C™
from R™ into S(H?, Q). The mapping Op’““* is a continuous linear map from S(H?, Q) into £L(Fs(Hc)) with a

15
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norm bound gj b - i bt
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!! € mave:

E By, F(X +t-V = (d"F)(X)(V1,..Vm).
Publishing 1O, F( ) (d"F)(X)(Vy )

Point ii) then follows.

t=0

4 Compositions, commutators and covariance.

4.1 Mizrahi series. /\

The operator composition will be used in two cases. In Section 5, the cominut ?of two operators is studied,
one being a Segal field and the other one being a bounded operator wit M ol belonging to the class
S(H?,Q). In Section 6, the composition of two bounded operators ig considered,svhen the Wick symbols are

in a class S(H?, Q). <

ven by a nonnegative and trace class

Theorem 4.1. Let G be a function in S(H?, Q) with a quadratic
operator Ag as in (1.15). Let V be an element of H. Then (:fhave:

q@ (V- 0q +1iV - 0,)G(a,p)- (4.1)

[a(V), 0py " (G)] = V/h/2 OpyicH(K) K
One has:
o1k (@54(V) 0 Opi*H(@)) >§>sc<x> + hC i oy, G)(X)

i) o %ets 0y, = €j - 04 and for all differentiable functions

3
o
—t

where oy (X) =V - X. Fizing a Hilbert basis
F and G,

Clwick r(iK oy — 10p,)F (9g, +10,,)G.
The above sum is independent of the Ws We also have:

O';Lﬂick (Op}ul)lck(ﬁg’h( ) (X) = pv (X)G(X) + hCl,wick (G, QOV)(X)

See [3]. Fix a Hilbert basi <€j)/%'\ e define, for all multi-index o = (;) (which means a; = 0 except for
a finite number of Vah?’ i, two

3\ (0 £ i0p)* =] (e) - g i€ - )™ .

Theorem 4.2/ Let a quadratic form on H? as in (1.15), with Ag nonnegative and trace class. Then, for
each F' and G4 S(HQﬁ , we can write:
ﬁ

i
o) }dﬁerential operators on H?, denoting by (g, p) the variable of H?:

5 Op}** (F) 0 Opj*™*(G) = Opyy** (C}*** (F. @) (4.2)
5 ‘ hlel e e
CHMF,G) =) (W) (8, — i0,)*F (9, +1i0,)°G. (4.3)
erie ve is absolutely converging. For all integers m, we have:
-
wick h|0“ . a . @
CrE(F,G)(X) — Y (m) (9 — 10" F(X) (9 +i0,)"G(X)| < (4.4)

lo|<m

IFllq Gl ™ [TrAg]™* e e,

16
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AI .R . For all multi-indices o, we define an element u, of Fs(Hg) by:

Publishing ,
o = ()72 [H (a*(ej)) ] Yo (4.5)

J

where Uy is the vacuum state. Thus, (u,) is a Hilbert basis of Fs(Hg). We see that:

- plal \ /2
e L

2lalq)

(9 + iap)aa(o/ (4.6)

Applying several times (4.1) with X = e;, we indeed obtain (4.6).

(8, = i0,)* F(0)| | (0, +18,)°G(0)| < |IFllq Gl

Indeed, . )
< OpYik (G W, ug >= ()12 < H (ad a(ej)) Jopwz‘ck 0, Up > .
J
F e\;;r)}\/ﬂ, we have:
R
(620077 + Q(0,¢5)1/%).
<2|Fliq 1Glq H(Q(e(o) +

As a consequence, \\L-
o .
) (%) 0, —i0,)°F )| |0, +M@im; Clle 2 [Z Q(e;,0) +Q(o,ej>]

m

|a]=m
hm
F||?ﬁ5‘m[m@1m.
Therefore, the series (4.3) converges solut\ each X. According to these points,
Criek(F,.G)(0) = OpLik (G o, g > < Uq, OpPi (F)Wq >

1, F)p;’:ic’m 0 0Py ™™ (G) Wy, Wy >= o} (O (F) 0 Op™**(G) ) (0).
y,

Recall that Op}fic’“(lif t adjoi}t of Op¥ick(F). Consequently, equalities (4.2) and (4.3) are proved for
X = 0. For any arbitrér ne notes that, according to (2.15) and (2.16),

3’%
an‘ck F)o op;gick(c)) (X) = glrick (Opz””’“(Fx) o Op%’“’“@x)) (0)
_|_
M:

where Fy (U)%& F (& Equalities (4.2) and (4.3) then follow for any X. The last inequality in the theorem
comes frond the faet t
) n

—< Op}™**(G)Wo, Op}y™**

> F[TrAQ]k < AWM TrAg)m et T4,
— m+1

)
<
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Covari
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AI I heorcm 4.3. Let U be a symplectic unitary linear map in H*. Then:
Publishing

1) For each bounded operator A in Fs(Hc), we have:
o F(D(U)* AT (U))(X) = o} " (A)(UX).

i) Let @(X) = Q(UX). Then, for each F € S(H?, Q), the function F oU belongs to S(H?, é), with the same

norm.

iii) For each bounded operator A in £(Q), the operator D(U)* AT(U) is in L(Q aﬁ%&same norm.

Let us recall that, if a symplectic map U in H? is not unitary, but verifyin is trace class, then there
is still a covariance for the Bogoliubov transformation associated with U, but only for the Weyl calculus, not

for the Wick quantization. See [8]. —
-

Proof. If U is both symplectic and unitary then it is also a C—lingar map when H? is identified with Hc. In
other words, U commutes with the map X — X, where X Gb a)s = (a,b). Then, the coherent states
Uy, (with X € H?) defined in (1.10) satisfy:

Point i) follows easily. Point ii) follows from the hal\nN ccording to the above point i) with point 11) of

Theorem 2.3 together with the facts that U is a u \Tperator commuting with the mapping X — X we

have
I, U)@hr?w* = d5(UV)
N

As a consequence:

[@s(V), (U)] = T(U)*[@5(TV), AL(U).

Tterating that process we obtai iii).

5 Proofof T ém 1.3.

5.1 Proof of Gijk

In the previo Sec};&ons 3 and 4, the space H is an arbitrary infinite dimensional separable Hilbert space. We
now turn bagk to
a quadratic form @n H?. The space S(H?, Q) of Definition 1.2 now refers to a space of functions taking values
in L(Hasp) a th&'xorm in the left hand side of (1.14) is the £(Hs,) norm. With a function F in S(H?, Q), we

defing an opesator Opie*(F) being bounded in H,, ® Hsp where Hyy, = Fs(Hc).

e p}{oton Hilbert space of Section 1. We also consider the space Hs), of Section 1. Let @ be

mﬁm I"is then adapted. Fixing a Hilbert basis (e;) of H, we set using the notations in Section 4, for all

di tiable functions F and G, with values in L(H,,p),

. 1
CLwZCk(Fv G) = 5 Z(aqg' - Z.apj)F © (&Jj + iapj)G’

J
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; e 2 1 - - e sn(V)® S

: . . herg t f ’

!! I eV € H" Hsp)- — O 30 ,c ® YRR ord of A is the
flinction H? 3 X — ¢y (X) = (V - X)S. The following equality comes from Theorem 4.1:

Publishing

i M ([A, B)(X) = [pv(X), G(X)] + hCH " (o, G) (X) — hCHH (G, v ) (X) (5-1)

where the bracket in the first term denotes the commutator of two operators in £(Hsp).

We denote by £(Q) the space of bounded operators in H,, ® H, as in Definition 3.1 with e Tr®s Vit ttmVm)

replaced by evn®s sVttt Vi) ® 1.

For each t € R, we shall use the quadratic form Q; defined in (1.20) and also e the adratic form:

Qula.p) = Qu(x-1(a.)) = It / aHL \ (5.2

The following theorem is proved in [8].

Theorem 5.1. For any t € R, the family U;4(t) for any h € ( eﬁn

Ured(t) = e~ in (Honglhigii H (5.3)

(5.4)
This function satisfies:
% (5.5)
The point i) of Theorem 1.3 will be a con: nce'of the following proposition.
Proposition 5.2. Let A be a selfadjo tor bounded or unbounded in Hp, @ Hep. We suppose that A is

written under the form (1.13) where F4 is element of H? and with Sa lying in L(Hsp). Then:

i) One has: ‘\
(t,h) =Ds(x_t(Fa)) @I +1®S4.

i) If A(t,h) is deﬁn . en the operator A(t,h) — AIm¢(t,h) is bounded in L(4Q;) where Q; is the

quadratic form de

Proof. Point i) is agconsequence of Theorem 4.3. Let A be an operator as in (1.13). Set A(t, h) the operator

defined in (1. 9 mgﬁle operator Urd(t), h € (0,1], defined in (5.3), one has:
U

Sincd [;ed (t)ss unitary:

A(t, h) _ eiE(th(X)I)U}rLed( )AUred( )* —zh(thcg)I)

t

A(t,h) = et (Hpn®1T) (A + [U}ced(t)’ A]Uged(t)*>e—i%(th®I).

From heorem 4.1 and the expression (1.13) for A, the commutator [U}¢(t), A] belongs to L£(Q;). Consequently,
by (3.3), the composition [Ured(t), AU (t)* lies in L£(4Q;). According to Theorem 4.3:

el Hon @D [gred 1), AlUped(t) e~ n (Hon®D) € £(4Q, 0 x4).
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This operator satisfies:

d A[Ted](t h) = Z[Hfree( t),A[red] (t, h)], Alred] (0,h) = A. (5.6)

int
According to (5.1):
o F(HTE (=), At W)(X) = [H] (— t,th)vA(t,th)]+hCi"“k(anTt€ef[’vh),A(tmh»(X) (5.7)
—hCY R (A(t, -, h) . HITE (=t h)(X) ‘)\
Consequently:
int

d A[Tedl (t, X, h) = i[HI"(—t, X h), Alredl g }a)\ (5.8)

+¢c;”ck(Hf”e( 2 A 1)) (X) — i (Al M sl (<) (X).

int

5.2 Zeroth order term. b

The operator Al"ed (t, h) satisfying (5.6) is now approxima by L_um written under the following form:

S[M,red] (t, h) j Aldired) (t)

red](t) will be determi \ ir Wick symbols denoted AV-"¢ (¢, X). Since the Wick
symbol Ald(t, X, h) has to satlsfy (5.8) then 1hymakes,sense to have in the case j = 0:

where the operators AU

A[o red] if&ﬁ@(_t’ X), Aloredl (g X)) (5.9)
and Al®7ed (0, X) = A(X), where A(X 1Ck symbol of the observable A. For j > 1, we must have:
< A (t"hj LT (—, X), ABred (¢, X)) + 96 1red (1, X) (5.10)

where

(I>[j lred](t X) — ’LC/(
and A[J’red] 0,X) O-)\

In order to solye tlry equation (5.9), we use the following proposition, which is close to Propositions 6.1 and 6.2
in [7]. /

Proposition 5. 35 There exists a unique function G on R? x H? taking values in L(Hsp) satisfying, for all X
in HE ™

c ‘/,) , A[jfl,'r‘ed](t’ .’ h))(X) _ iCiwick (A[jfl,red] (t . h) HlJ:Z“tee( t, )) (X)
(5.11)

5 d —G(t, s, X) =iG(t,s, X)H/"(t, X)),  HI™(t, X) = Hine(xe(X)), (5.12)

dt wnt wnt
G(s,s8,X)=1.

-
Moreguver, G(t, s,q,p) is unitary. If 0 < s <t then the function X — G(t,s, X) belongs to S(H?, Q) where Q;
is defined in (1.20) with a norm equal to 1. This function also satisfies, for each s and t in R, for each X in
H?:
G(s,0,X)*G(t,0,X) = G(t — 5,0, xs(X)). (5.13)
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Publishing EdG(t,s,X)(V) iG(t, s, X)dHIT (4, V) + idG(t, s, X)(V)HIT (8, X).

int

From Duhamel’s principle and since dG(s, s, X)(V) = 0 we then deduce:

t
dG(t, s, X)(V) =i / G(o,s, X)dHI™ (0, V)G(t, 0, X)do.

int
Iterating, for all sequences (Vi, ..., V,,) in H?: /
de(t7 S, ')(Vh , Z / Ulv ) )defnTtee( w@%h )
PESm (t,s)

o dHITE (02, Vip() ) dHLTE (0, Vi () ) Gt 0iine) A0 P

where S,, is the permutation group of m elements and: —

A (t,s) ={(o1,...0m), .. < 075< }.

Since G(t, s, q,p) is unitary, one obtains:

A" G(t,5,) (Vi ., Vin)| < Z/

©ESm

HIree (Oms Vp(my) oy ...dop,.

int

Consequently:
dHI" (0, V})|do

int

(0, V)ldo < Qu(v)2.

The first point then follows. C '“%quahty (5.13), we remark that, as functions of the variable ¢, the two
tial

hand sides satisfy the same diffe uation:
[ FX) =ik CX)VHIT (8 X).
For the right hand & of , we see that according to (1.19), H/"¢“(t — s, xs(X)) = H/"¢“(t, X). Besides,

the two hand si ( 13) are equal for t = s. Therefore, they are equal everywhere.

If G is the fun
,ﬁ

oposition 5.3 and if A is written as in (1.13) then the function Al%7¢4 defined by:
5 Aloredl(p Xy = Fu(X) @ I + G(—t,0, X)*S4G(—t,0, X) (5.14)

satisfies (5 9) first term, as a function of X, is a continuous linear function on H? and by Proposition 5.3,
the setend terin belongs to S(H?2,4Q,). The function defined by:

\ < AP, X) = Fa(x(X)) @ I+ G(t,0, X)SaG(t, 0, X)* (5.15)

satisfies A07edl(t, X) = Al0l(¢,x_;(X)) and this function belongs to S(H?,4Q;).
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/ \I le > 1. Being given a function AU=1redl(¢ X) in S(H2,16/Q;) we want to find a function Alred (¢, X)
PUbIISL]tIi&gl 1g (5.10) with ®U—1redl defined in (5.11). If G is the function of Proposition 5.3 then the function
defined, for each X in H? by:

t
A[j”"ed](t,X):/ G(—t,0, X)*G(—s,0, X )0V ~tredl (5 X)G(—s,0, X)*G(—t,0, X)ds (5.16)

0
satisfies (5.10) and AUred(0, X) = 0. By (5.13), we also have: /

Nds.

According to the induction hypothesis, if 0 < s < t then the function ®U -) belongs to S(H?, 16565)
also contained in S(H2,167Q;). The function X — G(t — 5,0, x_q( 's InN§(H?Q,). By the result (3.3)
about composition, the function AlUedl (¢, .) belongs to S(H?,167+1Q Qiu\c on AUl(t, X) defined by:

Al X) = /thsoxqﬂﬂ“edl K

®U(t, ) = iC1 " (Hin (), AV i" AVTI(8,), Hin (1)) (5.18)
. L.
satisfies AUred(t, X) = AUl(t, x_(X)). This functlon({% 167+1Q,).

5.4 End of the proof of Theorem 1.

t
A[jyred](taX) = / G(t - 5707X—t(X))q)[jiLTEd](&X)G(t -
0

Y

.0, X)*ds (5.17)

where

~

The function A°/(¢,-) of Theorem 1.3 is ew(g‘ﬁ and the functions AUl(¢,-) (j > 1) are constructed
by iteration and given in (5.17) and (5. 18) that Al)(¢,-) is the sum of a linear function on H? and of
a function in S(H?,4Q;). For j > 1, wl gs to S(H?,16°71Q,;). Therefore, the claims ii) and iii) of

Theorem 1.3 are already proved for these functions.

In order to prove (1.21), we fir

%&milar result for the functions A7 (¢, .) defined in (5.14) for j = 0,
and in (5.16) and (5.11) fordy > 1

ch integer M, let us set:

M
/SMT“” t,X,h) =Y H Al X).

=0

By (5.14), (5.16),a Qll), this function satisfies:

y. (ZS[M redl(y X, ) = i[HIT (<t X), SMredl (1, X b))+
m /
O Q(HEE (=) s SNty ) )OX) — O (SNt ) IS (1)) ()

_pM+1 (I)[M,red] (t, X)

e sa hatSA[OV”ed] (t,-) is the sum of a linear function on H? with a function in S(H?2,4Q,). For j > 1,
t\-Z belongs to S(H?, 16j+1@t). By theorem 2.3, there is an operator SIM7¢dl (¢, h) whose Wick symbol
redl(t, X, h). By Theorem 3.2, this operator is the sum of a Segal field with an operator in £(16M+1@t).
Consequently, according to (5.1):

d ,re ree re wic re
Sl ) = [ (1), ST 1, )] - R Opiek (@Mred ) ).

4

wnt
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Publishing

d
% (A[red} (t, h) _ S[M,red] (t, h)) _ i[HiJ::tee(*t), A[red] (t, h) _ S[M,red] (t, h)]+

+hM+lOp1}1L;ick ((I)[M,red] (t, )) )
We also have Alr¢d(0,h) — SMredl(0, h) = 0 and therefore, by Duhamel principle:
A[red] (t, h) _ S[M,red] (t, h) — hM—HR[M,red] (t, h)

where

R[M red] t h / Ured Ured ) O wick (@[M,red](&_))UT d‘%U}: *ds7

t > 0, then the operators Uyd(t), Ur¢d(s) (0 < s < t) and their adjeiugs a Q.). We have seen that
the function ®Mredl(s ) belongs to S(H2,16M+1Q,). As a conse e;tb,%z (<I>[M”“ed](s,~)) belongs to
L(16M+1Q,), thus in £(16M+1Q,) if 0 < s < t. According to thé prope
of operators in these classes, one observes that the operator R! red @ is in £(16M +3Qt) According the

covariance property, one therefore obtains that, 5 -
h) = R[M1 t,h)

and U]:ed(t) — e~ it Hpnpif H(h) By Theorem 5.1 and since the quadratic %\js an increasing function of
in

(3.3) concerning the composition

At h) = s™M,

where RIMI(t,h) is in £(16M+3Q,;). Turning back \chk ymbols, point (1.21) of Theorem 1.3 is then

proved.

6 Relation with physics <1h)ns (Maxwell and Bloch).

© NEVHHW, i, t,h) = ¢ HIO (B (@) @ NemHAM), (6.1)
i, h) = e FHO (I @ glN)em iR H M), (6.2)
JI Ej(z)® I and I ® o; N are all under the form (1.13) then we can apply

Theorem 1.3. The e Symbols have an asymptotic expansion in powers of h with coefficients defined

We set, according to (1.9):

B, t,h) = €10

Since the initial obser es Bj

by iteration in . e aim of this section is to write this iteration under a form closer to the usual physics
equations whe the o} vables under consideration are the above observables. This is the content of Theorem
6.2 below.

To this end, we sh 11 show that these operator valued functions satisfy the following equations which are similar
to thesesin e use vectorial notations B(x,t,h) = (Bi(x,t,h), Ba(x,t,h), Bs(z,t,h)) and similarly for
E( x, SP‘] t,h). Given two operators triplets A = (A4, A2, A3) and B = (B1, By, B3) we denote by

x Y™ B operators triplets defined by:
1
A X B = AsB3 — A3B>, (A x Sy B)l = 5(14233 + B3Ay — A3By — .BQAg)7

and the other components being similarly defined by circular permutations. Thus, one has A x%¥™ B =
(1/2)(AxB—-B x A).
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Publishing

divB(z,t, h) = divE(x,t,h) =0

%B(w, t,h) = —curlE(x, t, h)
P P
—E(z,t,h) = curlB(z,t,h) + h Z S (¢, h) x gradp(z — x)
ot =

where p is defined in (1.23). One also has:

%SW (t,h) = 2(8 + B(xy, 1, h)) x*™ Sz, ‘)\

(6.6)

Proof. Denoting, for instance, Bj(z,q,p) as the Wick symbol of the o N v we see that, for all (¢,p)
in H2, }3
R

One then deduces (6.3), first for ¢ = 0 and then for arbitrary’t."We a

3 3
dB; < 0E;
Z 61‘]‘ (va) B Z (91‘j (iL’
Jj=1 J

)

{Hpn(-),E}(z, X) = curl B(zx, X), h(~),é)l,X) = —curl E(z, X)

Consequently, from Theorem 2.4: \
[Hypn, E(2)] = (/i)curl B@%Q,B(x)] — —(h/i)eur] E(x).

Using Definitions (1.4), (1.5) and (1.23), we se %, he Poisson brackets:
:I:’

with p defined in (1.23) and wh

7Bn(y7 )} =0

N

e n\Ys )} = gradp(x - y) . (em X en)

e (¢
linear forms on H? is indepgn %p) € H?. It is here a function depending only on
deduce, concerning the o ratoys:

/ \ é), Bu(y)] = (h/i)gradp(z —y) - (em X €n).
Let us prove, for i t;r} (6.5)."One has
d

—

)

<

E(z,t,h) = (i/h)e!/MEMH (D), E(z) @ e ¢/MH M)

4

dt

3 = (i/h)eit/WH () ([th, E(z)] ® I)e—“t/h)H(’l) ¥

P 3
YD MHB (B (2,), B(w)] @ ol ) e 4/MH D)

pn=1m=1
= ¢ W/WHM) cyp] B(z)e {W/MWHEMR)
P
.—h Z !t/ H(R) (I ® grad p(z —x,) x 0[“])e*i(t/h)H(h).

p=1

24
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Publishing .
=i Z Z WMHW (4 B (2,)® [O_L{LLLUJ[.}\]}efi(t/h)H(h)'
One notices that [o Lﬁ]a g/\}] 0 if 4 # X. We then deduce that, for instance

%ng\] (t,h) = 9pi(t/h)H (h) ((52 + By(z))) ® o'g\] — (B3 + Bs(xx)) ®%)6_i(t/h)H(h)

= 2( (B2 + Balwa t, ) S5t h) — (B3 + Ba(aa,t. 1)
According to (6.1), (6.2), the operators Bj(x,t, h) and S,[C)‘] (t,h) are comuﬂin&Q
Given two functions F and G, C* on H? and taking values in (L(H. ))‘} set

o (EG) = 3 (ﬁ) — o) Fo ( S

lee|=4

O

where o denotes the composition of two operators in £ Hsp)‘ Bein ven two triplets F and G of functions on
H? taking values in (£(Hsp)), we denote by CFwick:x( the unct n taking values in (£(Hs,))? defined by:

<Cj,wick,>< (F, G)) ) = (OJwe 2’ G3)— CJ wzck Fg, GZ)

the other component being similarly defined by rmutatlons and set:

Cj,wick,><,sym(F7 G) W (F,G) — O wick,x (G, F)) .

We denote by, for instance, By, (z,t, Xsh) t ick 'symbol of the operator By, (z,t,h) defined in (6.1). Then,
By[%] (z,t,X) stands for the coefficient 0 im the asymptotic expansion of this symbol, given by Theorem 1.3

(the operators considered here are all underghe form (1.13)).

Theorem 6.2. With the abov otatw s, one has, for all j > 0:

B[Jl (z,t, X) = divEV (z,£, X) = 0 (6.7)
BVl(z,t, X) = —curlEV) (2, ¢, X). (6.8)
One has, for j =
gtE[ N, t, X) = curlBO (2, ¢, X)) (6.9)
) > 1
and for j l‘ / .
5 8_E[j] (2,1, X) = curlBU (¢, X) + Z SMI=1(t, X)) x gradp(z — ). (6.10)
— ¢ A=1
One ‘has for 5: 0
d
%SW’] (t, X) = 2(8 + B (xy,t, X)) x SM (¢, X) (6.11)
anhh 1:
%SM (t,X) =28 +B%(zy, ¢, X)) x SMI(t, X) + ... (6.12)

.+ Z Cp’wiChX’wm (B[k] (xz\v 2 ) ) S[Avn] (t’ )> (X)

ptk+n=j,n<j
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ﬁ
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=

Publishing:; —o, ;> 1.

Proof of equalities (6.7)-(6.10). Let us prove, for example, equality (6.10). Equality (6.5) implies

P
%E(x, t,X,h) = curlB(z,t, X, h) + h Y SP(t, X, h) x grad?eé —zy). (6.13)

A=1
Let us show that the terms EUl(xz, ¢, X) are differentiable with respect to t And %ave in the sense of

Theorem 1.3:
E(z,t, X, h) Zhﬂ—E[ﬂ( . (6.14)
>0

To do this, we apply Theorem 1.3 with, for instance, the observa 1e and also with the observable

= (i/h)[H(h), A]. The observable A is under the form (1.13). B is also under this form since:

;
= (i/h)[Hpn, Er(x ®I+zZ

_ (333( z)  0Bs(a

- (1]
s D, ® I—- h radp x,) - (e1 X en)) (I @ ahl).

According to Theorem 1.3, the Wick symbol of M e MHEM [ (B), By (z)]e”*®/MH () has an
asymptotic expansion described in this theor The ceefficient of h7 in this development is the derivative of
E:Ej](a:, t,q,p) and we indeed have (6.14). yprove that, in the sense of Theorem 1.3:

~ Y BVl (¢, X).
i>0

<.

Consequently the two hand sides in(6.13) ha
of h7 in the two hand sides, wi then uce (6.10).

asymptotic expansions in powers of h. Identifying the coefficients

Proof of equalities (6. 11) d (912 quality (6.6) implies:

& =i (B4 Blan,t, X, 1)) x SV (L, X, 1)) +

wzck S (L, h) x (5+B(m,t,h))>(X)-

1.37we e, for all mtegers M:

M

q .
5 o (B(aa, 1)(X) = Y "B (2,1, ¢,p) + WM Ray (¢, q,p, h)
k=0
. M
5 o';fidc(sm(t h _ Zhns[)\,n](x/\’t X)+hM+1SM(t X, h)

n=0
w S—Zm(t, ,h) and Sy (t,-, h) belong to S(H?,16M*2Q;), with a norm bounded uniformly in ¢ and h when

t beloggs to a compact set of R and when h belongs to (0,1]. In view of Theorem 4.2, we then deduce:

o (8 + Blax,t, ) x SV (£, 1)) = th B+ B (5,1, ) x SM(t,) + .. (6.15)
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lJTrv-r
AI Ifhere h) belongs to some space S(H?, KQ;) with some K > 0 and with a norm bounded uniformly in
PUb“thlfﬂJg% When t belongs to a compact set of R and when h is in (0,1]. As above, we show that SPl(¢, X) is

differentiable with respect to ¢ and that we have, in the sense of Theorem 1.3,

d d iy
Zglr x ~ J 2 gl
SNt X n) Zh S, X). (6.16)
Jj=20
When identifying the coefficients of k7 in (6.15) and in (6.16), one then obtains (?11) and (6.12). O

For example, the first term satisfies the Bloch equations: 5\

d
dts[A O(t, X) = 2(8 + B (zy, t, X)) x sSMOlz, (6.17)
The second term satisfies, from (6.12) and Theorem 4.2: ‘)
d N
dts[A A(t, X) =28 + B2y, 1, X)) XS (%) + - - (6.18)

4 2Bl (2, ¢, X) x SMOI( 1(),)(

with, for instance:

Kg)"l](t,') - ng)](IA, t,)- dsp‘x 5 (Tx ) dSD\ 0]( ) (6.19)
We have denoted by (dF)(q,p) - (dG)(q,p) the s \Qu the differentials of two functions on H2. The

second term in the right hand side of (6.18) only re fluence, according to the classical Bloch equations,
of the radiated field, according to Maxwell e&\

K{A,ﬂ (t,-) is genuinely a quantum correctj \

7 Photon emission sem\acal study.

all the spins between times 0 and ¢. Only the term

This section is concerned with the proof of Theorem 1.4. To this end, the operators Ef Ol(x) involved in this

result are now precisely defined

We need to introduce,{ ch point z in R3, six operators Bj-ml(x) and Efoz(x) (1 < j < 3) having no counterpart
in classical physics. hﬁ) = (—p, q). We denote by E the subspace of all X € H? satisfying JX = FX,
where J is defined 146), and by E_ the subspace of all X € H? verifying JX = —FX. These two subspaces
correspond togthe ¢ /'rcu right and left polarization notions in physics. Then, II; : H? — E. stands for the

corresponding o ogogﬁﬂ projections. One has,

L

and thus, H+§ II_ = —JF. Set,

,X = 5(X—JJEX), mX— %<X+J}'X>7

»D BY(,q,p) = =B;(x, JF(q,p)), EY"(x,9,p) = —E;(z, JF(q,p)). (7.1)

We denote by Bp"l () and EJPOZ(m) the operators whose Wick symbols are Bf"l(x, q,p) and Efoz(ac, q,p). We

B (@, t,h) = M (B () @ e 0™ BE (gt h) = A (EP (2) @ T)e TR, (7.2)
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Lemma 7.1. The-operator N’ft,w) defire

! I P This manuscript was a

PUblIShlng A=1m=1
This operator is bounded from D(H(h)) to Fs(Hc) @ Hpn. We have also:

é;
&SL

P 3
>N BN (as,t.h) o SPI(t. h). (74)

A=1m=1

Proof. We begin with (1.24). Clearly, one has [H,, ® I, N ® I] = 0 since Hpp, = /(IYM)&N = dI'(I) and since

M,, commutes with I. Therefore:

P
[HzntvN & I = Z [r>1\
A=1 =1
By [19] (Lemma 2.5 iii), third identity), we have: g\

i[By,(z), N] = —EP°!

for all z € R3. This point comes from standard comm tat ortles (see e.g., Lemma 2.5 (ii) in [19]).
atiofgs We saw that the Segal fields EP%(z)) are
bounded from D(H,y,) to Fs(Hg), because the correspouding elements of H? are in D(M,, 12 ). Moreover the
domain of H(h) is D(Hpp) @ Hsp. The equality (7.4& formulation of (7.3). O

Therefore, (7.3) follows from (1.24) and these previous com

s BY”(w) and EpOl( ) defined in (7.1) are under the form (1.13).

Theorem 1.3 shows that each operator Bf 'z, WK 2ol (11, h) defined in (7.2) is the sum of a Segal field

with an operator belonging to £(4Q), e senge of Section 5. Theorem 1.3 shows that the symbols have
asymptotic expansions that can be wri ten er‘to simplify notations, as:
o.wzck Epol Epol t X h Zh]EPOlJ ’ )

3>0
Then Theorem 1.4 follows frém Mm Theorems 4.1 and 4.2, and from the above asymptotic expansions.

We also have:
jﬁ t, ) Z Ck,wick: (E(Z;Ol’m (xA’ t, ) , S(E)\,n] (t, q’p)> )
A=1g=1 k+m+n=j

V.
4/
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