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Motivation (1/3) 

• Variable renewables need to participate to grid balancing 
o Balancing relies on ancillary services offered by power producers 

Limit: aggregation of variable renewable plants  
is  necessary to reduce uncertainty in production levels 
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Motivation (2/3) 

• A renewable Virtual Power Plant (VPP) offers reserve to the grid 
o Bidding in reserve markets is challenging for variable producers 

VPP 

Available production 

Downward reserve capacity -> Reserve Bid 

Curtailed production 

Upward reserve capacity -> Reserve Bid 

 

Curtailed production  &  downard reserve activated  

Active power  

[MW] 

time 0 

If service can not be fulfilled, 

TSO may charge high penalties 

Reserve 
bidding 



• Which offer strategy? 
o Decision theory: need to forecast production with uncertainty quantification 
o State of the art: day-ahead energy market. Prices are independent from production 

Motivation (3/3) 
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Challenge:  How can we adapt the optimal quantile strategy  
when bidding reserve and energy? 5 
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Methodology (1/5) 

• Workflow 
o Framework: day-ahead markets for energy and reserve, symmetrical reserve  
o Reserve clearing in the morning: forecast horizons 24h-48h 
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Methodology (2/5) 

• Probabilistic forecast of aggregated production 
o Direct forecast of aggregated production with Quantile Regression Forests (QRF) 
o Data augmentation: NWP with several lags and lead time at each horizon 
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Improvement on quantile score for QRF  
compared to lasso linear regression 

Number of features 



• Optimal quantile for reserve when bidding reserve and energy 
• Optimal quantile on price differences (“spread”) for bids and penalties *Soares 2016]: 

 

 

• Probability of reserve activation 𝑎 𝑅 matters: 

 

 

• Difference in penalties matters also: 

 

 

 

 

• Multiple price forecasts needed ! 
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Methodology (3/5) 
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Activation probability for aFRR in Germany (2016) 
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Methodology (4/5) 

• Probabilistic forecast of price spread between reserve and energy 

 

 

 

Deterministic reserve  
price forecasts (SVM) 

Reserve Activation  
probability forecast (SVM) 

Gradient Boosting Trees 
Cumulated reserve bids [MW] 
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price forecasts (ARIMAX, MRS) 
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• Optimal quantile with dependence between price and production 
o Minimize the expected net loss (bid sales – penalties) 

 
 
 

 
o Dependence model of spread price and VPP production by copula (KDE) 

 
 
o Energy bid = VPP mean forecast 

 

 
 
 

 

Methodology (5/5) 

 
 
 
 
 
 
 
 

Wind-dominated VPP 

 
 
 
 
 
 
 
 

PV-dominated VPP 



11 

Case Study 
• Model overview 

 

 
 
 
 
 
 
 
 

 

• Case study setup 
o Wind – PV VPP selling energy and aFRR (German data) 
o 42 MWp, 3 wind farms + 10 PV farms 
o All models are trained on 09/2015 - 12/2015, and tested on 01/2016 - 03/2016 
o 40 Bootstraps of VPP production per timestep  
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Results (1/3) 
• Production forecast 

o Adequate reliability 
o QRF deals efficiently with multiple energy sources (GBT benchmark less versatile) 
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Results (2/3) 

• Spread price forecast and optimal quantiles 

Quantile score -45% vs climatology Offer based on copula is more conservative 

than deterministic approaches  
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Results (3/3) 

Energy 
Energy +  

aFRR 

Average revenue increases of: +5 % to +10% 

0.1% 

1.3% 

Proposed methodology 

Benchmark reserve @ 1% quantile 

1.9% Benchmark persistent price forecast 

Frequency of reserve underfulfillments: 

Camal S, Michiorri A, Kariniotakis G. Optimal Offer of Automatic Frequency Restoration Reserve from a Combined PV/Wind Virtual Power Plant.  

IEEE Trans Power Syst 2018;99. doi:10.1109/TPWRS.2018.2847239. 
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Conclusion and perspectives 

• A bidding strategy based entirely of probabilistic forecast 
o Dependence between renewable production and prices hedges against underfulfilments 
o Increased revenue of 5% and risk of not providing reserve limited to 0.1% 

 

• A direct regression model for aggregated production forecast 
o QRF is adapted to forecast multi-source renewable production 

 

• Applicable to different balancing services 
 

 

• Connect with us 
o        :  @PERSEE_Mines 

 
o Publications:  
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