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Abstract. AEZ is a parallelizable, AES-based authenticated encryption algorithm
that is well suited for software implementations on processors equipped with the
AES-NI instruction set. It aims at offering exceptionally strong security properties
such as nonce and decryption-misuse resistance and optimal security given the selected
ciphertext expansion. AEZ was submitted to the authenticated ciphers competition
CAESAR and was selected in 2015 for the second round of the competition.
In this paper, we analyse the resilience of the latest algorithm version, AEZ v4.1
(October 2015), against key-recovery attacks. While AEZ modifications introduced in
2015 were partly motivated by thwarting a key-recovery attack of birthday complexity
against AEZ v3 published at Asiacrypt 2015 by Fuhr, Leurent and Suder, we show
that AEZ v4.1 remains vulnerable to a key-recovery attack of similar complexity and
security impact. Our attack leverages the use, in AEZ, of an underlying tweakable
block cipher based on a 4-round version of AES.
Although the presented key-recovery attack does not violate the security claims
of AEZ since the designers made no claim for beyond-birthday security, it can be
interpreted as an indication that AEZ does not fully meet the objective of being an
extremely conservative and misuse-resilient algorithm.
Keywords: CAESAR competition, cryptanalysis, authenticated encryption, AEZ, key
recovery

1 Introduction
Authenticated Encryption (AE) algorithms aim at providing encryption and message
authentication in a combined way. The purpose of the ongoing international competition
CAESAR, that was launched in 2014, is to select a portfolio of AE algorithms that offer
better security guarantees and/or improved performances as compared with existing AE
standards such as AES-GCM [1].

AEZ [2, 3] is an AES-based AE scheme designed by Hoang, Krovetz, and Rogaway. It
is a high-profile CAESAR candidate and was selected in July 2015 for the second round
of the competition. The AEZ construction can be viewed as a mode of operation of an
underlying block cipher – more precisely of a mixture of AES versions with 4 and 10
rounds denoted AES4 and AES10. AEZ uses secret offsets and round keys derived from
the authenticated encryption key K. AEZ is parallelizable and particularly well suited
for software implementations on processors equiped with the AES-NI instruction set. On
such environments, its computational cost is lower than the one of AES-GCM and close to
the one of OCB [4]. AEZ aims at providing an unusually strong nonce and decryption
misuse resistance and more generally best achievable security given the selected amount
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of plaintext expansion. These security properties are captured by the notion of robust
authenticated encryption (RAE), a demanding security notion, not attainable by online
AE schemes, i.e. AE schemes allowing a single-pass blockwise plaintext encryption with
constant memory [5]. The RAE security notion and the security arguments underlying the
AEZ construction were detailed in the Eurocrypt 2015 paper [2].

In this paper, we analyze the resilience of the latest algorithm version, AEZ v4.1
(October 2015) [3], against key-recovery attacks. We show that the AEZ modifications
introduced in 2015, that were partly motivated by thwarting a key derivation attack with
birthday complexity against AEZ v3 published at Asiacrypt 2015 by Fuhr, Leurent and
Suder [6], do not prevent the existence of key derivation attacks of birthday complexity
against AEZ v4.1. In both cases, the attack rests on the fact that AEZ was designed as to
be potentially usable either without nonce1 or with a repeating nonce values without other
security impact than the detectability of repeated (associated data, message) pairs. Unlike
the attack of [6], our most efficient key derivation attack relies on the use of AES4 in AEZ.
It can therefore not be transposed to the more conservative but less efficient scaled up
version of AEZ where only AES10 is used instead of a mixture of AES10 and AES4.

Neither the AEZ v3 attack of [6] nor our attack on AEZ v4.1 violates the security claims
of AEZ since the designers made no claim for beyond-birthday security. It should also be
noted that if one takes into account the limitation of the amount of data processed under
the same key to 248 bytes required by the designers, their success probability becomes
relatively low.

We nevertheless believe that the vulnerability of AEZ4.1 to a key derivation attack of
birthday complexity2 represents an undesirable property, particularly for an algorithm that
otherwise aims at satisfying a very strong notions of security and at being exceptionally
resilient in various misuse situations. Indeed, even though the existence of distinguishers
of birthday complexity against modes of operation of block ciphers is not so unusual, the
existence of full key derivation attacks of birthday complexity is far less frequent and raises
in the case of AEZ v4.1 the following resilience questions (exactly the same as those raised
by the attack of [6] in the case of AEZ v3). First, our attack allows to recover the whole
key material with a much higher success probability than the one that would result from
generic attacks for typical key sizes, e.g. 128, 256, or 384 bits even if the below-birthday
data limitation of 248 bytes imposed by the designers is respected. Second, this probability
can become arbitrarily close to 1 in the algorithm misuse case where the data limitation of
248 bytes cannot be enforced and “birthday” amounts of data can be processed.

Our results are summarized in Table 1. Our most efficient attack essentially consists of
two phases. In a first phase, 128 bits of key material used for pre-whitening the inputs
to some AES4 and AES10 computations are derived, using a birthday attack. We show
that the universal hashing part of the AEZ computations, on which the attack of [6]
concentrated, can still be targeted by some birthday attacks. However the key material
information this provides is less suited for continuing the attack than a 128-bit sub-key
that can be derived by targeting instead the encipherment part of the AEZ computations.
This sub-key determines the pre-whitening of some AES4 computations also involved the
encipherment procedure. In a second phase of the attack, we encrypt particular plaintext
structures and detect plaintext pairs leading to a special differential behaviour in the last
three rounds of these AES4 computations. This allows to recover the remaining of the key

1This is allowed by the specification, with the warning that “a nonce must be used unless one has
certitude that, even in the presence of the adversary, all encrypted [(associated data, message)] pairs will
be distinct[...]” [3].

2and to a resulting below-birthday attack of abnormally high success probability, as discussed below
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material.

Table 1: AEZ attacks complexities.

AEZ version Data complexity (blocks)3 Success prob. Ref.
AEZ v4.1 266.5 0.5 This paper
AEZ v4.1 244 2−45.7 This paper
AEZ v3 266.6 1 [6]
AEZ v3 244 2−45.2 [6]

The paper is organized as follows. Section 2 outlines the parts of the AEZ v4.1
specifications that are useful for our attack and the main differences between AEZ v4.1
and AEZ v3. Section 3 first describes partial attacks of birthday complexity allowing to
recover a 128-bit piece of the key material (Section 3.1). The combination of these partial
attacks can be viewed as a suboptimal key derivation attack of birthday time and data
complexity. Then we detail our most efficient attack on AEZ v4.1 (Section 3.2), that
exploits the use of AES4 in AEZ. The attack of Section 3.2 has the property (not shared
by the combined attack of Section 3.1) that its success probability remains abnormally
high if the amount of data processed under the same key is limited to the below-birthday
threshold of 248 bytes.

2 Description of AEZ
The following input and output arguments are used in AEZ:

– a plaintext P of plen bits;

– a key K of arbitrary length klen bits. The default value of klen is 384 bits and klen
values of at least 128 bits are recommended;

– a nonce N of length nlen bits. The use of nonce values of length at most 128 bits is
recommended and nlen = 0 is allowed, as well as the use of several nonce lengths for
authenticated encryptions under the same key;

– a string-valued or more generally vector-valued associated data A = (A1, · · · , Am) of
m strings, of total length alen bits. A string-valued associated data can be viewed
as a vector with m = 1 components;

– a ciphertext C of clen bits.

Although their lengths are defined in bits, all these arguments are required to consist
of an integer number of bytes.

AEZ is also parametrized by the authenticator byte length Abytes of default value
16. The corresponding number of bits τ = 8× Abytes represents the plaintext expansion
clen− plen and also the number of zero bits that shall be appended to the plaintext P
before encipherment if P is not the empty string. The augmented plaintext (P || 0τ ) is
denoted by P in the sequel and the binary representation of τ as a 128-bit word is denoted
by [τ ]128.

3Chosen plaintexts
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The AEZ authenticated encryption process can be viewed as follows. First a vector-
valued tweak T = ([τ ]128, N,A1, · · · , Am), that encodes the triplet (τ,N,A) is derived.
Then, depending on the the plaintext length plen, different encipherment functions are
applied:

– AEZ-prf(K,T, τ) is returned if plen = 0,

– AEZ-tiny(K,T, P ) is returned if 0 < plen < 256− τ ,

– AEZ-core(K,T, P ) is returned if 256− τ ≤ plen.

The way the tweak argument T is processed in all these functions consists of deriving
an associated universal hash value ∆ = AEZ-hash(K,T ) of length 128 bits and then using
∆ as an offset in some parts of the encipherment computations.

Since we do not use AEZ-tiny in our attack, we only describe AEZ-prf and AEZ-core.

2.1 Tweaked Instances of AES4 and AES10 Used in AEZ
AEZ uses AES-based tweakable block ciphers [7] (TBC) using the XE and XEX construc-
tions. Three sub-keys I, J , and L, of length 128 bits each, are used in these TBC, which
are derived from the key K in a way that depends of the key length klen :

– if klen = 384, then I || J || L = K;

– if klen 6= 384, then I || J || L = BLAKE2b(K), using an instance of the cryptographic
hash function BLAKE2b [8] that produces 384-bit hash values.

Given two input tweaks i, j, the TBC Ei,jK is defined as follows:

i j Ei,jK k

−1 N Ei,jK = AES10k(X ⊕ jJ) (0, I, J, L, I, J, L, I, J, L, I)
0 N Ei,jK = AES4k(X ⊕ jI) (0, J, I, L, 0)
1 N Ei,jK = AES4k(X ⊕ δjI) (0, J, I, L, 0)
2 N Ei,jK = AES4k(X ⊕ δjI) (0, L, I, J, L)
≥ 3 0 Ei,jK = AES4k(X ⊕ δiL) ⊕ δiL (0, J, I, L, 0)
≥ 3 N∗ Ei,jK = AES4k(X ⊕ δiL⊕ δjJ) ⊕ δiL⊕ δjJ (0, J, I, L, 0)

where δi = 2i−3 and δj = 8b(j−1)/8c + (j − 1) mod 8. In the former table, AES4 (resp.
AES10) are AES variants that consist of 4 (resp. 10) full AES rounds parametrized by
5 (resp. 11) independent sub-keys. Thus, if we denote the composition of SubBytes,
ShiftRows, and MixColumns by aesr we get

AES4k(X) = aesr(aesr(aesr(aesr(X ⊕ k0) ⊕ k1) ⊕ k2) ⊕ k3) ⊕ k4),

with k = (k0, k1, k2, k3, k4), AES10 can be defined in the same way.
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2.2 AEZ-hash universal hashing
To describe AEZ-hash(K,T ), we assume that the tweak T = (τ,N,A1, . . . , Am), where
(A1, . . . , Am) is a m-component vector. This allows to cover both the cases of string- and
vector-valued associated data. Let us rewrite T as T = (T1, . . . , Tt), where t = m+ 2. For
each mi-block component Ti = Bi,1 . . . Bi,mi

of T , whose last block Bi,mi
can be complete

or incomplete, a partial hash value ∆i is computed as follows:

∆i =
{

Ei+2,1
K (Bi,1) ⊕ Ei+2,2

K (Bi,2) ⊕ · · ·⊕ Ei+2,mi−1
K (Bi,mi−1) ⊕ Ei+2,mi

K (Bi,mi) if |Bmi | = 128
Ei+2,1
K (Bi,1) ⊕ Ei+2,2

K (Bi,2) ⊕ · · ·⊕ Ei+2,mi−1
K (Bi,mi−1) ⊕ Ei+2,0

K (Bi,mi || 10∗) if |Bmi | < 128
.

Finally, AEZ-hash(K,T ) = ∆ def= ∆1 ⊕ · · ·⊕ ∆t.

2.3 PRF Function
AEZ-prf is designed with the purpose to provide a PRF of settable output length τ , that
can be viewed as an encipherment of the empty plaintext. The output of AEZ-prf is the
τ -bit string given by

AEZ-prf(K,T, τ) = (E−1,3
K (∆) || E−1,3

K (∆ ⊕ [1]128) || E−1,3
K (∆ ⊕ [2]128) || . . .)[1..τ ],

with ∆ = AEZ-hash(K,T ).

2.4 AEZ Core
AEZ-core is the encipherment function used to process augmented plaintexts of at least
256 bits. It takes as input the key K, the tweak vector T and the augmented plaintext P .
The vector T is first preprocessed by computing the universal hash value:

∆ = AEZ-hash(K,T ),

which will be used as an offset value at some subsequent steps of the encipherment
computation.

Then, the augmented plaintext is split as follows into (in)complete 128-bit blocks:

P = P1P
′
1 || P2P

′
2 || · · · || PmP ′m || PuPv || PxPy,

where |P∗| = |P ′∗| = 128 except for at least one of the values Pu and Pv, that satisfy
|Pu|+ |Pv| < 256. In detail, to split P one needs to

1. Take the 256 last bits of P to form PxPy. This is always possible since |P | ≥ 256;

2. For every remaining pair of entire blocks if any form PiP
′
i (starting from the beginning

of P );

3. Letting r = plen+ τ mod 256, if r 6= 0, the remaining bits form

– Pu if r < 128,
– PuPv with an empty block Pv if r = 128
– PuPv with |Pv| = r mod 128 if 128 < r < 256.
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The ciphertext blocks are then computed as shown on Figure 1, up to the fact that
in the first case (r < 128), the v-column is omitted and the paddings and compressions
represented by trapezoids on the v-column are moved to the u-column.

P1 P ′1 Pm P ′m Pu Pv Px Py

1, 1 1,m 0, 1

0, 0 0, 0 0, 4 0, 5 −1, 1

S S

2, 1 2,m −1, 4 −1, 5 S

0, 0 0, 0 −1, 2

1, 1 1,m 0, 4 0, 5 0, 2

C1 C ′1 Cm C ′m Cu Cv Cx Cy

X1

Y1

Xm

Ym

Xu

S

Yu

Xv

S

Yv

X

∆

∆

Y

Figure 1: AEZ-core scheme.

i, j = Ei,jK (X)
Xi = E0,0

K (Pi ⊕ E1,1
K (P ′i )) i ∈ [1..m]

Xu = E0,4
K (Pu)

Xv = E0,5
K (Pv10∗)

X = X1 ⊕ · · ·⊕Xm ⊕Xu ⊕Xv

S = ∆ ⊕X ⊕ E0,1
K (Py) ⊕ E−1,1

K (∆ ⊕X ⊕ E0,1
K (Py)) ⊕ Py

Yi = Pi ⊕ E1,1
K (P ′i ) ⊕ E2,1

K (S) i ∈ [1..m]

Yu = E0,4
K (Pu ⊕ E−1,4

K (S))

Yv = E0,5
K (Pv ⊕ E−1,5

K (S)[1..|Pv|] || 10∗)

Y = Y1 ⊕ · · ·⊕ Ym ⊕ Yu ⊕ Yv

For a more detailed description of AEZ-core and more generally on AEZ v4.1, we refer
to the AEZ v4.1 specification [3].

2.5 Tweaks from AEZ v3
In a nutshell, the main differences between AEZ v3 and AEZ v4.1 are the following:

– the procedure for deriving the subkeys I, J , and L from the key K was entirely
modified. The AEZ v3 derivation procedure, that did not involve the BLAKE2b
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hash function, had indeed the undesirable property that for key lengths such as
|K|=128 bits, the knowledge of one of the subkeys implied the knowledge of the key
K. Moreover, while a key length of at least 128 bits is recommended in both AEZ
v3 and AEZ v4.1, a default key length of 384 bits was introduced in AEZ v4.1;

– the tweakable block ciphers involved in the AEZ-hash universal hashing use the XEX
construction in AEZ v4.1, whereas they were using the XE construction in AEZ
v3. Moreover the offset values used in the definition of the various tweakable block
ciphers Ei,jK used in AEZ were modified.

One of the motivations for these changes was to thwart the birthday attack on AEZ v3
introduced by Fuhr, Leurent, and Suder in 2015 [6]. This attack indeed recovered one of the
subkeys (namely J) by leveraging its use in the pre-whitening keys of the XE construction
of the AEZ-hash computation underlying the AEZ-prf function. It then took advantage
from the undesirable property of the AEZ v3 subkey derivation procedure mentioned above
to recover the key K.

While the attack described by Fuhr et al. does not work anymore on AEZ v4.1, we
will see in Section 3.1 that the use of the XEX construction in AEZ-hash does not prevent
birthday attacks, and Section 3.2 will show that the knowledge of I can be leveraged for
recovering the other subkeys J and L.

3 Attacks on AEZ
In this section, we describe two key derivation attacks:

– First, a combination of three independent birthday attacks allowing to retrieve one
of the sub-keys I, J , and L each. One limitation of this combined attack comes
from the fact that the amount of data that can be processed under one single key is
limited to 248 bytes, below the 264 blocks birthday bound. Its success probability,
equal to the product of the success probabilities of the underlying birthday attacks,
becomes in the case of a 128-bit key lower than the one of a generic attack.

– Second, a more efficient attack that consists of two phases. In the first phase, of
birthday complexity, one of the three former partial attacks is applied to retrieve the
value of I. In the second phase, the knowledge of I is leveraged to mount a differential
attack against some of the AES4 instances of the encipherment computations. For
any reasonable key length, e.g. at least 128 bits, its success probability remains
abnormally high (i.e. higher than the one of a generic attack) if the amount of data
that can be processed under one single key is limited to 248 bytes.

3.1 Birthday Attacks

We describe in this subsection three partial attacks of birthday complexity each allowing
to recover one of the three sub-keys.

All these partial attacks are based on the following informal observation. Let F and G
denote two one-block to one-block functions parametrized by secret keys, δ1 and δ2 denote
two secret one-block offset values and n denote the block length. Let us assume that an
adversary is able to access H(x) = G(F (x⊕ δ1) ⊕ F (x⊕ δ2)) for sufficiently many chosen
block values x. Let us show that if a small multiple of 2 n

2 values of x are tried this allows
(under mild conditions on F and G that we will not detail here) to determine the secret



Colin Chaigneau and Henri Gilbert 121

offset difference δ1 ⊕ δ2 with an overwhelming probability. Indeed, with overwhelming
probability, there exists a pair (x, x′) such that x ⊕ x′ = δ1 ⊕ δ2. It is easy to see that
for such a pair, H(x) = H(x′) since the single difference between the computations of
H(x) and H(x′) is that the entries of the first and second invocations of F are swapped.
Conversely, if H(x) = H(x′), x⊕ x′ provides a candidate value for x⊕ x′ = δ1 ⊕ δ2 that
is easy to test using a few extra H computations.

Note that all attacks presented below can be conducted under the assumption of a
fixed nonce length, i.e. nlen = 128. We emphasize that the attacks can be transposed,
with slight adjustements, to a situation where the nonce is omitted (i.e. nlen = 0).4

3.1.1 Collisions in AEZ-hash

Detecting suitable collisions in the AEZ-hash function allows to recover the two sub-keys
J and L by birthday attacks. While AEZ-hash is an internal procedure whose ouput is
not directly available to the adversary, such collisions on AEZ-hash can nevertheless be
detected by collisions they induce in some AEZ-prf output blocks.5 Let ∆ be the output
of AEZ-hash under an unknown key and a chosen entry

∆ = AEZ-hash(K,T ) with T = (τ,N,A)

where we assume that |A| = 128. For simplicity, we also assume τ = 128 bits, but the
attack also applies to others value of τ .

Following the description of AEZ-hash, we get:

∆ = E3,1
K (τ) ⊕ E4,1

K (N) ⊕ E5,1
K (A).

By replacing Ei,jK (X) by its expression we obtain:

∆ = AES4K(τ ⊕ L⊕ 8J) ⊕ AES4K(N ⊕ 2L⊕ 8J) ⊕ AES4K(A⊕ 3L⊕ 8J) ⊕ 8J.

If we restrict ourselves to (A,N) pairs of blocks such that A = N , the former expression
becomes

∆ = AES4K(τ ⊕ L⊕ 8J) ⊕ AES4K(N ⊕ 2L⊕ 8J) ⊕ AES4K(N ⊕ 3L⊕ 8J) ⊕ 8J.

With this expression, we are able to create a collision on hash values ∆ associated to
(N,N) pairs and this can be used to retrieve the difference L between the first and second
offset values applied to N . Indeed, if N ′ = N ⊕L, let us denote by ∆′ the associated hash
value. We have:

AES4K(N ′ ⊕ 2L⊕ 8J) ⊕ AES4K(N ′ ⊕ 3L⊕ 8J)

= AES4K(N ⊕ L⊕ 2L⊕ 8J) ⊕ AES4K(N ⊕ L⊕ 3L⊕ 8J)

= AES4K(N ⊕ 2L⊕ 8J) ⊕ AES4K(N ⊕ 3L⊕ 8J).
4The assumption that nlen = 0 was used in the AEZ v3 attack of [6].
5Collisions on AEZ-hash could alternatively be detected by collisions they induce on some AEZ-core

output blocks. We will however not detail this slight variant here.



122 Is AEZ v4.1 Sufficiently Resilient Against Key-Recovery Attacks?

Hence, when N ′ = N ⊕ L, we have ∆ = ∆′. Note that this can be viewed as a direct
consequence from the former observation. Indeed, in the former expressions of ∆, N is
added with the offsets δ1 = 2L⊕ 8J and δ2 = 3L⊕ 8J , of difference L, before being input
to the function F = AES4K .

Recovering the Sub-key L

The former remark allows to build the following birthday attack:

1. Collect H(N) = AEZ-prf(K,T, τ) with T = (τ,N,N) for 264 values of N ,

2. If a collision occurs, this implies H(N ′) = H(N) since AEZ-prf is just an overen-
cryption of the AEZ-hash output and therefore L is likely to be equal to N ⊕N ′.

For this attack we need about 264.2 pairs (N,A = N) of input blocks to succeed with a
probability of about 0.5. If the amount of input data is restricted to the limit of 244 blocks
imposed by the designers, the success probability drops to 2−43.

Recovering the Sub-key J

The previous method can be used to retrieve J in a nonce-misuse scenario where a fixed
nonce value N is repeated (which should result in no security degradation if the other
AEZ input data are not repeated since an optimal nonce-misuse resistance is claimed).
Indeed one can remark that using the previous notation except letting

T = (τ,N,A,A),

where N is a fixed nonce value of length 128 bits, A is a variable one-block string, and the
default value of 128 bits is assumed for τ . Using the description of AEZ-hash one can write

∆ = AES4K(τ ⊕ L⊕ 8J) ⊕ AES4K(N ⊕ 2L⊕ 8J) ⊕ AES4K(A⊕ 3L⊕ 8J)
⊕ AES4K(A⊕ 3L⊕ 9J) ⊕ 3L⊕ J.

.
Hence if A′ = A⊕ J , one obtains

AES4K(A′ ⊕ 3L⊕ 8J) ⊕ AES4K(A′ ⊕ 3L⊕ 9J)

= AES4K(A⊕ J ⊕ 3L⊕ 8J) ⊕ AES4K(A⊕ J ⊕ 3L⊕ 9J)

= AES4K(A⊕ 2L⊕ 8J) ⊕ AES4K(A⊕ 3L⊕ 9J),

which implies ∆ = ∆′. One can then build the following attack to recover J .

1. Collect H(A) = AEZ-prf(K,T, τ) with T = (τ,N,A,A) for 264 values of A,

2. If a collision happens, this implies H(A′) = H(A) and therefore J is likely to be
equal to A⊕A′.

To reach 264.2 queries and a probability of success of about 0.5 we need to run the
algorithm with 265.8 blocks of data. If the amount of input data is restricted to 244 blocks,
the recovery of J succeeds with probability 2−44.2.
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3.1.2 Collision in AEZ-core

The last sub-key that remains unknown is I. We show how to recover it using a birthday
attack within the AEZ-core function.

Let us consider 6-block augmented plaintexts:

P =

P1,P
′
1︷ ︸︸ ︷

0128 || B ||

P2,P
′
2︷ ︸︸ ︷

0128 || B ||

Px,Py︷ ︸︸ ︷
0128 || 0τ ,

where B denotes a one-block string and τ = 128 bits. In this partial attack, we assume that
a fixed nonce value N and no associated data are used. Note that plaintext messages of
length only five blocks are being used since the last block 0τ corresponds to the ciphertext
expansion.

Next, we denote by X the intermediate value associated with the two first pairs of
blocks, that is used as an offset in the Px, Py part. We remind that X = X1 ⊕ · · ·⊕Xm

in general. In our case, we have X = X1 ⊕X2 which, once developed, becomes

X = E0,0
K (E1,1

K (B)) ⊕ E0,0
K (E1,2

K (B)) ⊕B ⊕B.

We can rewrite this expression as

X = AES4K(AES4K(B ⊕ 8I)) ⊕ AES4K(AES4K(B ⊕ 9I)),

and notice that if B′ = B ⊕ I then X = X ′. This leads to a similar attack to the one on
J and L. Indeed one can remark that collisions on the value of X induce collisions in the
value of Cy since the single difference affecting the (Px, Py) part of the computation is the
introduction of distinct values Y and Y ′, that only affect the value of Cx, not the value of
Cy.

In summary, we search for collisions on the value of Cy to detect collisions on X (as
shown in Figure 2).

The following steps describe the attack exploiting the preceding remark.

1. Collect Cy,B from the encipherments AEZ-core(K,T, P ) associated to 264 values of
B.

2. If a collision occurs, i.e. Cy,B = Cy,B′ , then I is likely to be equal to B ⊕ B′ and
this is easy to test using another value of B.

We need to encrypt 266.3 blocks of data to expect a collision with probability 0.5. If the
amount of input data is restricted to 244 blocks, the recovery of I succeeds with probability
2−45.6.

3.1.3 Summary of Birthday Attacks

We have presented three partial attacks, each allowing to recover one of the three sub-keys
I, J , and L. The following table summarizes the data complexity required by each attack
for a success probability of 0.5 and their success probabilities if the amount of input data is
limited to 244 blocks. The time complexity of these attacks is equal to the time complexity
for a single query multiplied by the query complexity.
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0128 B 0128 B 0128 0128

1, 1 1,m 0, 1

0, 0 0, 0 −1, 1

S S

2, 1 2,m S

0, 0 0, 0 −1, 2

1, 1 1,m 0, 2

C1 C ′1 C2 C ′2 Cx Cy

X1 X2

Y1 Ym

X

∆

∆

Y

Figure 2: Difference propagation in the birthday attack to retrieve I.

The former partial attacks can be combined to recover the three sub-keys. However,
when restricted to the encryption of 244 blocks, this combined attack succeeds, in the case
of a 128-bit key, with a lower probability than a classical brute-force attack.

Table 2: Birthday attacks complexities.

Retrieved key Data complexity (blocks)6 Queries Success probability

I 266.5 264.2 0.5
I 244 241.7 2−45.6

J 265.8 264.2 0.5
J 244 242.4 2−44.2

L 265.2 264.2 0.5
L 244 243 2−43

I, J, L7 268.1 265.8 0.5
I, J, L 244 242.5 2−142.4

6Chosen plaintexts
7In this row, the data and query complexities were derived as the sum of the data (resp. query)

complexities for recovering I, J , and L with a probability of 0.51/3 in three birthday attacks, as to ensure
that the success probability is 0.5 for the combined attack.
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3.2 AES4 Cryptanalysis
We previously described partial attacks allowing to recover one of the three sub-keys used
in AEZ and a resulting combined attack. We now describe an attack which, assuming
the sub-key I has been retrieved using the last partial attack presented before, allows to
efficiently recover the two others sub-keys J and L.

As in the partial attack allowing to recover I, we assume that τ = 128 and we use a
fixed nonce value N and no associated data in all considered encryptions.

3.2.1 Conducting Idea

Mounting a differential attack that targets the first AES4 encryption of the Pu part of the
AEZ-core function allows to leverage the knowledge of I to recover J and L. Since I is
known, this eventually boils down to attacking only three AES rounds instead of four.
Although the differential cryptanalysis of 3-round AES is simple and well studied, the
context of the attack for AEZ is more constrained and requires dedicated analysis. We
therefore describe in some detail how to take these constraints into account.

Let

P = Pu || 0128 || 0τ︸ ︷︷ ︸
Px,Py

,

where Pu denotes a 128-bit block. Since (plen+ τ) mod 256 = 128, an empty block Pv is
introduced in the computation of X, that we denote by R = E0,5

K (1 || 0127).The resulting
offset value X is:

X = E0,4
K (Pu) ⊕R

= AES4K(Pu ⊕ 4I) ⊕R.

The detailed computation of X is summarized in Figure 3.

Predictable

Pu

4I

SB SR MC

S0

J

SB SR MC

S1

I

SB SR MC

S2

L

SB SR MC X

R

Figure 3: AES4 scheme.

To obtain information on J and L, one can search pairs of Pu values whose differential
behaviour in the three last rounds of the AES4 computation follows a 4-1-4 differential
characteristic. In other words, at the input to the second, third, and fourth rounds, we
want the associated state values to only differ on 4 bytes, resp. 1 and 4 bytes, as shown in
Figure 4.8

8We would like to acknowledge the work of Jérémy Jean with his repository “TikZ for Cryptographers”
[9] for providing inspiration for the AES figures.
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aesr aesr

∆S0 ∆S1 ∆S2

Figure 4: Differential path.

We are using the numbering convention of Figure 5 for the AES state bytes.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Figure 5: Bytes numbering in AES state.

Let us denote by ∆(x1, . . . , xl) the vector space of difference values equal to zero
everywhere outside from the byte positions x1, . . . , xl. The expected differential behaviour
at rounds 2, 3, and 4 is the following.

AES round 2 : ∆(0, 5, 10, 15) SB SR−−−−−→ ∆(0, 1, 2, 3) MC−−→ ∆(0)

AES round 3 : ∆(0) SB SR MC−−−−−−−→ ∆(0, 1, 2, 3)

AES round 4 : ∆(0, 1, 2, 3) SB SR−−−−−→ ∆(0, 7, 10, 13) MC−−→

Output : MC(∆(0, 7, 10, 13)).

Let (S0, S
′
0) denote a pair of chosen second round input values before the addi-

tion of J , of difference S0 ⊕ S′0 ∈ ∆(0, 5, 10, 15)) and δx denote a difference value
from MC(∆(0, 7, 10, 13)). (S0, S

′
0) can be derived from the chosen pair of Pu values

(Pu = aesr−1(S0) ⊕ 4I, P ′u = aesr−1(S′0)) ⊕ 4I) and one can test whether the dif-
ferential behaviour of this pair is the desired one and the resulting AES4 output difference
is equal to δx.

Indeed, let (Px, P ′x) be a pair of Px blocks of difference Px ⊕ P ′x = δx and Py = 0, and
let

(Cv, Cx, Cy) = AEZ-core(K,T, (Pu, Px, Py))

(C ′v, C ′x, C ′y) = AEZ-core(K,T, (P ′u, P ′x, Py)).

Then we get Cy = C ′y since the differences on the X offset values and on the Px values
cancel out. In Figure 6, the difference propagation is represented by the red pattern. Note
that Cy = C ′y happens with a negligible probability of about 2−128 if the tested condition
is not met.
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Pu Px Py

0, 1

0, 4 −1, 1

−1, 4 S

−1, 2

0, 4 0, 2

Cu Cx Cy

δx

S

Y

δx

R

∆

∆

Y

Figure 6: Difference propagation within AEZ-core.

We now show that the use of appropriate structures of (Pu, Px) values – obtained as
the cartesian product of smaller structures of Pu and Px values – allows to efficiently get
Cy = C ′y collision.

3.2.2 Structure of Pu values

We want to test at least one pair (S0, S
′
0) of difference value S0 ⊕ S′0 ∈ ∆(0, 5, 10, 15)

that leads after the second round to a difference value that belongs to the set ∆(0). A
simple heuristic argument indicates that testing about 224 (S0, S

′
0) pairs should suffice

for this to happen. Since picking S0 and S′0 from a subset of S of ∆(0, 5, 10, 15) of size
2m, m ≤ 16, allows to cover approximately 22m−1 such pairs, selecting a structure S of
212.5 such values can be expected to suffice to obtain a good pair with a sufficient probability.

The resulting structure of Pu values that we use in the sequel is U = aesr−1(S) ⊕ 4I.
We expect at least one pair of U elements to have the expected differential behaviour.

3.2.3 Structures of Px and P ′
x values

At the output of the AES4 function we want the difference to belong to the image of
∆(0, 7, 10, 13) by MixColumns. Since MixColumns is a linear operation, such a difference,
denoted δx, can be expressed as follows,

δx = δx,(0,7) ⊕ δx,(10,13) with δx,(0,7) ∈ MC(∆(0, 7)) and δx,(10,13) ∈ MC(∆(10, 13)).

This decomposition, in combination with the previous structure, allows to reduce by a
squared factor the sets of tested Px and P ′x values. This is explained in the next section.
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3.2.4 How to Find a Good Pair

We can use cartesian products of the structures defined above to find a collision with
an improved data complexity.

We encrypt the plaintexts associated with the two following structures of (Pu, Px) pairs:

(Pu, Px) ∈ U × MC(∆(0, 7))

(P ′u, P ′x) ∈ U × MC(∆(10, 13)).

We call observation the block Cy,Pu,Px
resulting from the encryption of the plaintext

Pu || Px || 0128. With the previous notations, one can remark that if Cy,Pu,Px
= Cy,P ′

u,P
′
x

then with overwhelming probability:

E0,4
K (Pu) ⊕ Px = E0,4

K (P ′u) ⊕ P ′x

or equivalently

E0,4
K (Pu) ⊕ E0,4

K (P ′u) = P ′x ⊕ P ′x.

By construction, Pu and P ′u values are selected in such a way that the resulting round
2 input difference δin = aesr(Pu ⊕ 4I) ⊕ aesr(Pu ⊕ 4I) belongs to ∆(0, 5, 10, 15), and Px
and P ′x values were selected in such a way that their difference δout = Px ⊕ P ′x can take
any value from ∆(0, 7) ⊕ ∆(10, 13) = ∆(0, 7, 10, 13).

Therefore we can expect at least one equality Cy,Pu,Px
= Cy,P ′

u,P
′
x
to happen and with

overwhelming probability the underlying (Pu, P ′u) pair is a good pair of second round input
difference δin and fourth round output difference δout.

On can also note that this method can be extended to the following differential patterns.

aesr aesr

aesr aesr

aesr aesr

Figure 7: Other possible differential characteristics.

3.2.5 Sub-keys Recovery

Once a collision Cy,Pu,Px
= Cy,P ′

u,P
′
x
occurs, we obtain a good pair (Pu, P ′u) with a known

AES4 output difference δout = Px ⊕ P ′x. This can be used to retrieve information on the
sub-keys J and L.
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We know that the sub-key J has the property to allow a differential transition

∆(0, 5, 10, 15) SB SR MC−−−−−−−→ ∆(0)

in the second round. Let us denote by J a candidate value for J which leads to such a
differential transition.

To each of the possible differences in ∆(0) we can associate a difference in ∆(0, 5, 10, 15)
by MC−1 ◦ SR−1. We denote such a difference by δmid. There are 255 possible values δmid.

Let S0 = aesr(Pu ⊕ 4I), and S′0 = aesr(P ′u ⊕ 4I) = S0 ⊕ δin. For a given trial value
δmid we want to find J values that satisfy

SB(S0 ⊕ J ⊕ δin) = SB(S0 ⊕ J) ⊕ δmid.

With a variable substitution X = S0 ⊕ J this amounts to finding X such that

SB(X ⊕ δin) = SB(X) ⊕ δmid.

Let us denote by Bi the i-th byte of a block B and by sbox the AES S-box. The former
conditions amount to finding X0, X5, X10, X15 such that

sbox(Xi ⊕ δin,i) = sbox(Xi) ⊕ δmid,i, i = 0, 5, 10, 15.

We know that at least one J , the actual sub-key J , fulfils these conditions. But one
can expect a larger set of candidates to fulfil these conditions, 275 in average (as shown in
Appendix A) and another step is thus required to retrieve the right candidate. We expect
to test about 2754 = 232.4 values to find J .

Assuming that we have collected the candidates for the four 4-byte parts of J , namely
Ji, we can retrieve the right value of J by the following method (similar to the method
used in the birthday attacks)

1. Compute all the ∆i = AEZ-prf(K, (τ,N, Ji, Ji), τ) and the reference value ∆ =
AEZ-prf(K, (τ,N, 0128, 0128), τ).

2. Find the value ∆m such that ∆m = ∆. The right value for J is then J = Jm. This
is due to the former observation used for the birthday attacks.

Once J is recovered, one can apply a similar one-round differential technique to recover
L. Indeed, for good pairs, the input values to the fourth round S2 = aesr(aesr(aesr(Pu⊕
4I) ⊕ J) ⊕ I and S′2 = aesr(aesr(aesr(P ′u ⊕ 4I) ⊕ J) ⊕ I are known, their difference
δmid = S2 ⊕ S′2 ∈ ∆(0, 1, 2, 3) is known, and the AES4 output difference δout is known.
The latter difference induces a known difference value (SR−1 ◦ MC−1)(δout) after the fourth
round SubBytes. Since the differences before and after SubBytes are completely fixed,
only about 16 candidates values in average will satisfy

SB(X ⊕ δmid) = SB(X) ⊕ (SR−1 ◦ MC−1)(δout).

By using the other differential transitions the remaining 12 bytes of L can be completely
recovered and the sub-key L is found by testing about 216 candidates for L. A similar



130 Is AEZ v4.1 Sufficiently Resilient Against Key-Recovery Attacks?

method to the one used to find the right value of J , based on the former observation used
for the birthday attack, can be used in order to find the right value of L.

3.2.6 Algorithm and Complexity to Recover J and L

In summary, the following algorithm allows to find the values of J and L assuming
that I is known.

1. Compute the observations Cy,Pu,Px associated with all pairs (Pu, Px) ∈ U×MC(∆(0, 7)).

2. Compute the observations Cy,P ′
u,P

′
x
associated with all pairs (P ′u, P ′x) ∈ U×MC(∆(10, 13)).

3. Find (Pu, P ′u, Px, P ′x) such that Cy,Pu,Px
= Cy,P ′

u,P
′
x
and compute δin = aesr(Pu ⊕

4I) ⊕ aesr(Pu ⊕ 4I), δout = Px ⊕ P ′x.

4. Repeat Steps 1,2 and 3 for the three other differential transitions as to finally either
get (δ1

in, δ
1
out), (δ2

in, δ
2
out), (δ3

in, δ
3
out) or (δ4

in, δ
4
out) for each good pair.

5. For each good pair, compute the about 275 candidate quartets of J bytes that are
compatible with δiin.

6. Test with AEZ-prf all the candidate values to find J .

7. For each good pair, compute the candidate quartets of L bytes that are compatible
with the δiout.

8. Test with AEZ-prf all the candidate values to find L.

To compute the complexity of our attack, we need to compute the cost of each step

– Step 1 & 2 : We need to go through U × MC(∆(0, 7)) and U × MC(∆(10, 13)) to
compute all the observations. This costs 2×|U|×|MC(∆(0, 7))| = 2×212.5×216 = 229.5

queries of 2 blocks i.e. 231.5 blocks have to be encrypted.

– Step 3 : Finding a collision can be achieved with a time complexity of about 233.3.
This a computational cost, so the query complexity is not affected.

– Step 4 : 4× 231.5 = 233.5 blocks have to be encrypted.

– Step 5 : With pre-computation of all solutions for SB(X ⊕ δin) = SB(X) ⊕ δmid
with any δin, δmid the candidates are easily computed with a time complexity of 224.
As for Step 3 this phase does not require additional queries.

– Step 6 : We need to compute AEZ-prf(K, (τ,X,X), τ) for 2754 = 232.4 values of X
i.e. 2× 232.4 = 233.4 blocks have to be encrypted.

– Step 7 : No more cost since the pre-computation used in Step 5 can be reused here.

– Step 8 : We need to compute AEZ-prf(K, (τ,N,X,X), τ) for 216 values of X i.e.
3× 216 = 216.6 blocks have to be encrypted.
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The final cost to find J and L is given in Table 3 below.

Table 3: AES4 attack complexities.

Data complexity (bytes) Offline time complexity Queries complexity

234.6 233.3 232.1

This part of the attack was successfully validated on the public implementation of AEZ
v4.1. This allowed to confirm that J and L can be recovered once I has been recovered.

3.3 Results of Our Attack

As described our attack works in two phases : first, find the sub-keys I by a birthday
attack, and then, recover the two other sub-keys J and L by attacking AES4. Since the
number of queries needed in the attack is far greater than the offline time complexity, the
latter is insignificant in comparison of other costs and so, not included in the complexity
of our attack. The final cost of our attack, depending on whether the data limit of 248

bytes is respected or not, is given in the following Table 4

Table 4: Full attack complexities.

Data complexity (blocks)9 Queries complexity Success probability

244 241.7 2−45.6

266.5 264.2 0.5

4 Conclusion

One of the purposes of the modifications between AEZ v3 and AEZ v4.1 was to fix an
undesirable property allowing to recover the whole key from one of the sub-keys used
in AEZ. Our paper shows that this property remains despite the changes. We show a
key-recovery attack that allows to recover the three sub-keys from the knowledge of only
one.

These modifications were also partly motivated by thwarting an attack of birthday
complexity allowing to recover one of the subkeys. We described three birthday attacks on
AEZ v 4.1 allowing to retrieve one of the three sub-keys.

Even though no claim for beyond birthday security has been made and our attack
does not violate the security claims for AEZ, it raises some doubts regarding the resilience
of AEZ against key-recovery attacks when the amount of processed data approaches the
birthday bound.

9Chosen plaintexts
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A Computation of the Average Number of Candidates for
a Quartet of Bytes of Sub-key J

If we let a, b represent two non-zero random one-byte differences, then the equation
sbox(X ⊕ a) = sbox(X) ⊕ b may have 0, 2 or 4 solutions (sbox corresponds to the AES
S-box). These number of solutions stand with their respective probabilities which are:

#{X | sbox(X ⊕ a) = sbox(X) ⊕ b} =


0 with p0 = 128

255
2 with p2 = 126

255
4 with p4 = 1

255

.

http://web.cs.ucdavis.edu/~rogaway/aez/aez.pdf
http://www.iacr.org/authors/tikz/
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For a random pair δ = (δ1, δ2, δ3, δ4), δ′ = (δ′1, δ′2, δ′3, δ′4) of quartets of non-zero differ-
ence bytes, the average number of solutions of

sbox(X ⊕ δi) = sbox(X) ⊕ δ′i for i = 1, 2, 3, 4

is given by

(2p2 + 4p4)4 ' 1.015.

Hence, out of the 255 possible pairs (δin, δmid), we can expect 254 of them to bring
an average of 254× 1.015 = 257.8 candidates since they are not expected to exhibit the
right guess on J . For the last one we know it will bring the right guess of J , at least one
solution will be obtained. The previous expression for the average number of solutions has
to be slightly modified and becomes(

2× 126
127 + 4× 1

127

)4
' 16.5.

The former heuristic reasoning shows that we can expect to have to test an average of
about 275 candidates for each differential transition.


	Introduction
	Description of AEZ
	119-2.cpt
	119-3.cpt
	PRF Function
	AEZ Core
	Tweaks from AEZ v3

	Attacks on AEZ
	Birthday Attacks
	119-9.cpt
	Results of Our Attack

	Conclusion
	Computation of the Average Number of Candidates for a Quartet of Bytes of Sub-key J

