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Abstract

Tunnel maintenance requires a complicated and constrain-
ing visual inspection. In order to automate this task, we
propose to evaluate and compare three statistical learning
algorithms, a random forest and two convolutional net-
works, dedicated to the detection of defects (e.g. cracks)
on tunnel linings. Each model is trained on datasets of our
own, consisting of images of concrete walls and masonry
walls. We show that these learning-based approaches are
competitive with the state of the art on this application
domain.

1 Introduction

Maintaining tunnels (road, rail or navigable) in service is
essential to ensure the safety of goods and users. This re-
quires a periodic inspection of the tunnel to locate surface
defects (e.g. cracks) that can lead to more serious dete-
rioration (e.g. concrete splitting exposing reinforcement)
or even endangering the structure. The deterioration phe-
nomena that can be observed on tunnel linings are diverse,
but often due to the undesirable presence of water, which
is therefore also important to identify. Figures 1 and 3
show some examples of defects (cracks, water ingress, lin-
ing spalling) on concrete and masonry tunnel linings.
Tunnel inspections are currently carried out by specialized
operators directly on-site, which is constraining. This is
time consuming, both for on-site intervention and for sub-
sequent data analysis. In this context, Cerema seeks to
ease the visual inspection of tunnels through the devel-
opment of high-performance image acquisition systems,
supplemented by image processing algorithms. From an
operational point of view, this aims to reduce the down-
time of infrastructures as well as inspection time by the
operators.
Automatically detecting defects using images of tunnel lin-
ings is a particularly complex task, due to the variability

Figure 1: Examples of images of the sidewall of a masonry
tunnel (left) and the vault of a concrete tunnel (right)

of the textures, shapes, colours and objects of interest to
be detected. Statistical learning methods are good can-
didates for solving this type of problem. In this paper,
we propose to evaluate the performance of three learning-
based methods for detecting defects on images of concrete
or masonry linings (see figure 1). We assess two convolu-
tional networks and one random forest algorithm [1] that
are trained and tested on our annotated databases. Some
preliminary results using random forests have been pub-
lished in [2] (in French).
The paper is organized as follows: after an overview of the
di�erent pattern recognition algorithms tested for tunnel
inspection purposes (section 2), we present the experimen-
tal data and algorithms that have been implemented (sec-
tion 3). The results of our experiments are detailed and
discussed in section 4. Finally, we conclude and give some
perspectives in the last section (section 5).

2 Related work

2.1 Traditional algorithms

Most traditional methods for tunnel inspection (i.e. with-
out learning) are dedicated to crack detection, see for ex-
ample [3]. They use relatively basic approaches (grey level
filtering and thresholding, combinations of morphological
operators, techniques by successive subdivisions and mid-
point adjustment). More advanced methods are based on
deformable models and the propagation of minimal paths
(for a state-of-the-art of these techniques, see [4]), or on
the so-called Percolation [5] method which consists of ex-
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amining the geometry of the level set propagated from
a seed. These methods are restrictive in the sense that
they are only designed to detect cracks on concrete lin-
ings. Adapting them to detect more varied defects (or to
generalize to more diverse linings) would require a signif-
icant e�ort.

2.2 Machine Learning algorithms

Several machine learning algorithms have been experi-
mented in recent years. Most of them focuses on crack de-
tection. Each algorithm presented below has been trained
on di�erent databases, which makes it di�cult to compare
methods.
The authors of [6] suggest the use of a convolutional ar-
chitecture in which the images are previously enriched
with additional, non-convolutional descriptors. From a
grayscale image w ◊ h ◊ 1, they build an image w ◊ h ◊ 6
by adding features such as HOG [7], contour maps, or lo-
cal entropy. The method reached an accuracy of 88.6%
on a test basis of 10,000 images (90,000 images being used
for learning and validation).
In [8], several types of defects (cracks, water leakage, de-
posit) are detected. The authors use a variant of the
ResNet [9] architecture on patches extracted from the
images and detect the defects using a sliding-window
paradigm. The method reaches an accuracy of 87.5% on a
basis of 603 images, of which 20% are dedicated to testing.
For sewer pipes inspection, a Faster R-CNN architecture
[10] has also been tested in [11] to detect anomalies using
a fully convolutional way. 12000 images (training: 7500,
validation: 2500, test: 2000) have been annotated in dif-
ferent categories (e.g. cracks and roots) and an accuracy
of 86.2% is obtained.
These articles show that learning algorithms (and, more
specifically, convolutional networks algorithms) perform
well for detecting anomalies in engineering structures. We
also notice a huge variability of the data in the learning
datasets from one model to another, which further sup-
ports the thesis that learning methods are adapted to our
problem.

3 Methodology

3.1 Data

To create datasets, Cerema has made its own acquisitions
on-site. Tunnel images were recorded using a system com-
posed of 6 cameras mounted on a vehicle (see figure 2).
Each image is in 1080p (i.e. 1920◊1080 pixels) and covers
about 5m2 of lining (vault and sidewalls). Two successive
images have an overlap of about 95% in canal tunnels and
80% in road tunnels.
Two datasets, from a concrete road tunnel and a nav-
igable masonry tunnel, were used in our experiments.
Given the di�erences in the nature of the defects sought,
they were processed separately. More precisely, we are

Figure 2: Imaging system mounted on a car (left) or a
boat (right) for image acquisition in road or canal tunnels

Learning Test Total

Concrete
Healthy 594 77 671
Defect 600 201 801
Total 1194 278 1472

Masonry
Healthy 508 302 810
Defect 508 268 776
Total 1016 570 1586

Table 1: Composition (number of examples) of the two
datasets

interested here in four types of defects for concrete lin-
ings (cracks, water ingresses, exposed irons, pebble nests)
while for masonry linings, we only consider water ingresses
(see figure 3). In order to address the problem of rare
anomalies, these defects are classified in a binary form
(healthy/defects).

3.2 Preprocessing

In order to precisely locate the defects, we extract sub-
images from the original images. The images are divided
into patches of size 101 ◊ 101 pixels for concrete surfaces
and 251 ◊ 251 for masonry ones. We use a larger format
in masonry tunnels to cover several rubble stones in the
same sample. Table 1 shows some details about the two
datasets.
Labeling is carried out by annotating each sample manu-
ally as shown on figure 3. Note that a sample is labelled
as “defect” even if a small part of a defect is located in the
sample. We observe a variability on the aspect on both
categories (intra- and inter-classes interlacing). Moreover,
it may be noticed that the labeling operation is not an
easy task, even for a human operator. Indeed, it may be
quite di�cult to determine the label of an area without
any information of its surroundings.

3.3 Classification

3.3.1 Random Forest

The random forest algorithm [1] is a meta-classifier, con-
sisting of a set of decision trees. In this ensemble learning
approach, each tree classifies a sample, represented by its
feature vector, into a category. The final classification of
the sample by the forest is obtained from the majority
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Concrete Masonry

Healthy

Defect

Figure 3: Samples from healthy and defect classes (con-
crete and masonry linings), illustrating the intra-class
variability

vote of all trees. To ensure that the votes of each tree are
independent, a di�erent set of data and features is pre-
sented to each tree. These subsets of data and features
are drawn randomly with replacement, from the learning
samples and from the set of features, respectively. In our
application, the number of trees in the forest has been em-
pirically set at 200 and the minimum number of elements
in each leaf of the tree is set at 1. The selected features
should best represent the characteristics observed on the
samples of each class. In the case of tunnel images, three
types of features were used. The Haralick texture features
[12], calculated in 4 orientations of the co-occurrence ma-
trix, provide texture information. Haralick features were
adapted to account for colour information. Histograms of
Oriented Gradients (HOG) [7] highlight the distribution
of contour orientations in the gray level image. Finally,
the binary relationships between a pixel and its 8 neigh-
bors are extracted using the Census [13] transform. The
statistical distribution of Census values is then calculated
to form the mCentrist descriptor [14], in which color infor-
mation is taken into account. In the end, all features are
gathered into a single vector of dimension 3161 (95 values
for Haralick features, 18 components for HOG, and 3048
values in the mCentrist descriptor).

3.3.2 Convolutional Networks

Two families of architectures were used. The first one,
composed of rather shallow architectures, is based on the
LeNet model [15] which was chosen for its simplicity and
its speed of learning. The second one is an adaption of
the deeper network VGG19 [16], which represents a good
compromise between the expressiveness of the model and
the computing power needed for training. In both cases,

the number of neurons in the multilayer perceptron was
adjusted according to the size of the images and the num-
ber of classes, in order to maintain the same level of ex-
pressiveness. In addition, the LeNet-based network for
masonry has been enriched with several convolution lay-
ers to better reflect the complexity of this type of lining,
compared to concrete whose surface is generally smoother.
These architectures are detailed in figure 4. Note that they
were not pretrained, but learned end-to-end, from scratch.

Input: (101, 101, 3)
conv5-6

avgpool-2
conv5-16
avgpool-2
conv1-120

fc-84
dropout (0.5)

fc-2
Softmax

(a) LeNet-based Network

(concrete)

Input: (251, 251, 3)
conv5-8

avgpool-2
conv5-16
avgpool-2
conv5-32
avgpool-2
conv5-64
avgpool-2

fc-512
dropout (0.5)

fc-512
dropout (0.5)

fc-2
Softmax

(b) LeNet-based Network

(masonry)

Input: (101, 101, 3) or (251, 251, 3)
Conv. layers identical to VGG19 [16]

fc-32
fc-32
fc-2

Softmax
(c) VGG-based Networks (Concrete and masonry)

convk-m convolutional layer with m filters
and a k ◊ k kernel

avgpool-k average pooling with a k ◊ k kernel
fc-n fully-connected layer with n neurons
dropout (p) dropout with a probability of p

Figure 4: Convolutional architectures used for the detec-
tion of defects (the convention used for the notations is
taken from [16])

Prior to the learning phase, the image samples are normal-
ized by mapping each pixel linearly into the cube [≠1; 1]3.
To this end, the function x ‘æ 2

255
x ≠ 1 is applied to each

component.
Stochastic gradient descent is used for training. The learn-
ing step li at time i œ Nú is set to:

li = l0
1 + d ◊ i

where the parameters l0 and d were empirically set to 0.01
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Model LeNet-based
Network

VGG-based
Network

Concrete 181 250
Masonry 250 912

Table 2: Number of epochs

and 0.3 for concrete and to 0.01 and 1 for masonry.
The number of epochs in the learning algorithm is fixed ac-
cording to the di�erent architecture (see table 2). Initially
set at 250, this number was manually adjusted upwards or
downwards depending on the learning state. For example,
the LeNet-based network for concrete tunnels converged
after 181 epochs whereas the VGG-based network for ma-
sonry linings did not finish converging at epoch 912, when
we stopped it.

3.4 Detection algorithm

The classifiers were trained and tested on the collected
datasets (table 1). In the detection step, the classifica-
tion algorithms are assessed on the original full-frame im-
ages (these test images are not present in the training
databases). A sliding window algorithm (at the size of
the learned sub-image samples) is applied, starting from
the top left corner of the full-frame image. Some pixels
at the bottom and at the right side on the image are not
processed, since there is no overlapping between windows.
The result is a block-wise binary segmentation of the full-
frame images, that highlights the defects.

4 Results

4.1 Classification

The performances of the di�erent classification algorithms
are measured using accuracy and precision/recall metrics
on the test sets. Accuracy refers to the true classification
rate. Formally, if M is the confusion matrix associated
with the model on the test set, we have the following re-
lationship:

accuracy = Tr(M)
ÎMÎ

1

where Tr(M) denotes the trace of the matrix M and
ÎMÎ

1
=

q
i,j |Mi,j |.

For our application domain, we seek to maximize accu-
racy by focusing on recall over precision. Thus, we prefer
having some false alarms than to omit anomalies.
The results are presented in figure 5. It can be seen that,
on concrete linings, convolutional networks have higher
accuracy than random forests in detecting anomalies, re-
gardless of the depth of the architecture. We also ob-
serve that precision/recall values are significantly higher
for neural networks than random forest algorithm. In ad-
dition to that, these values are better balanced for both
neural models.

On masonry surfaces, LeNet-based network and Random
Forest alogrithm provide quite similar accuracies (with
a slight advantage to the first model). The VGG-based
network has more di�culties to learn the discriminating
features. Its accuracy is noticeably lower compared to
the other two models. As mentioned in section 3.3.2, the
training of this model has been stopped before conver-
gence. As for the precision and recall, it can be noted
that LeNet-based network is barely better than the ran-
dom forest algorithm. The same statement does not hold
for the VGG-based model, for which results are signif-
icantly worse for these two parameters. This is clearly
shown through the confusion matrix (cf. figure 5f) where
71 samples were wrongly classified as healthy samples.

3 H (d.) D (d.)

H (g.t.) 71 6
D (g.t.) 17 184

4

(a) Random Forest

(concrete)

3 H D

H 284 18
D 23 245

4

(b) Random Forest

(masonry)

3 H D

H 73 4
D 5 196

4

(c) LeNet-based Network

(concrete)

3 H D

H 278 24
D 12 256

4

(d) LeNet-based Network

(masonry)

3 H D

H 73 4
D 5 196

4

(e) VGG-based Network

(concrete)

3 H D

H 294 8
D 71 197

4

(f) VGG-based Network

(masonry)

Confusion matrices of the models (H: healthy, D: defect, Rows:

ground truths. Columns: detected categories)

Model Random
forest

LeNet-based
Network

VGG-based
Network

Concrete 91.73% 96.76% 96.76%
Masonry 92.81% 93.68% 86.14%

Accuracy reached by the di�erent models

Model Random
Forest

LeNet-based
Network

VGG-based
Network

Concrete (88.76, 91.88) (95.79, 96.16) (95.79, 96.16)
Masonry (92.83, 92.73) (93.64, 93.79) (88.32, 85.43)

(Precision,Recall) couples obtained by the di�erent models (ex-

pressed in %)

Figure 5: Results of the experimentation

In figure 6, we illustrate some examples of samples mis-
classified by both neural networks. The samples 6b and
6d have been classified as healthy (ground truth: defect).
In these examples, the defect are located at the edge of
the sample and hard to identify. The examples 6a and 6c
are considered as defects by the algorithms. For the first
one, the presence of a gra�ti may explain the error. For
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the second one, the variability in the rubble stones may
have fooled the networks.

(a) Healthy (b) Defect

Concrete

(c) Healthy (d) Defect

Masonry

Figure 6: Examples of samples simultaneously misclassi-
fied by both neural networks. The examples in the first
column have been wrongly classified as defects and vice
versa for the second column. The caption corresponds to
the corresponding ground truth.

4.2 Detection

For the moment, we do not have ground truths for our
full-frame image sequences, so an evaluation of the detec-
tion algorithm can only be qualitative. In figure 7, we
present a representative result of the detection algorithm
on a concrete lining. It can be seen that all three models
provide correct results for exposed irons defects whereas
the water ingress is poorly detected by the random forest.
Neural networks perform well on that type of defect, at
the expense of a higher number of false alarms. The high
rate of false alarms may be explained by the small size of
the learning dataset. Indeed, neural networks are known
to need large datasets to be learned e�ciently. We can
also notice that the two neural networks, which have the
same accuracy, yield close results.

5 Conclusion

The proposed learning methods have allowed us, within a
limited setup (size of the learning and test database, two-
class classification) to obtain competitive results in com-
parison with the state of the art. However, to conclude
further on this point, it will be necessary to compare with
models of the literature on common datasets and bench-
marks.
The introduction of more complex models, combined with
significantly expanded learning datasets, could address

Exposed iron Water ingress

(a) Test image with manually labeled anomalies

(b) Random

Forest

(c) LeNet-based

Network

(d) VGG-based

Network

Figure 7: Detection of anomalies on an example of con-
crete linings (anomalies are highlighted in blue)

several limitations of our current implementation.
The first point is the limited representativeness of the data
collected on a small number of tunnels, with a number of
examples limited to one thousand for each type of lining.
The data currently available are therefore only partially
representative of the linings that can be observed in other
tunnels or on structures involving other materials. With
such a limited learning dataset, we can expect a quite poor
capacity of generalization of our models.
A second limitation is the fact that we put all the defects
in the same class for the classification process (i.e. binary
classification). It would be desirable to obtain a more
detailed characterization of the di�erent types of defects
or the severity level of the detected anomaly.
A third point of improvement is to move towards a more
precise location of anomalies, avoiding the use of compu-
tationally expensive sliding window methods, leading to a
direct detection or segmentation of defects. Recent neural
architectures, such as [10], [17] or [18] could be employed
for that purpose.
To address these di�erent points, a priority will be to in-
crease the size of the learning datasets, diversifying acqui-
sitions in other tunnels, exploiting temporal redundancies
in acquired sequences (a defect being seen from several
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points of view) and using data augmentation methods.
New acquisition campaigns are already planned. It will
also be necessary to work on the deep models to increase
their capacity of representation, while avoiding overfitting.
Finally, we will develop di�erent strategies to carry out
learning transfers from pretrained models, adapted to the
nature and volume of our new collected data [19].
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