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Abstract. The advent of the multicore era led to the duplication of
functional units through an increasing number of cores. To exploit those
processors, a shared-memory parallel programming model is one pos-
sible direction. Thus, OpenMP is a good candidate to enable different
paradigms: data parallelism (including loop-based directives) and con-
trol parallelism, through the notion of tasks with dependencies. But this
is the programmer responsibility to ensure that data dependencies are
complete such as no data races may happen. It might be complex to
guarantee that no issue will occur and that all dependencies have been
correctly expressed in the context of nested tasks. This paper proposes
an algorithm to detect the data dependencies that might be missing on
the OpenMP task clauses between tasks that have been generated by
different parents. This approach is implemented inside a tool relying on
the OMPT interface.

Keywords: OpenMP task, Nested task, OMPT, Data dependency, Data-
race

1 Introduction

The advent of multi-core processors occurred more than a decade ago, bringing
processors scaling from a few cores to several hundreds. To exploit those func-
tional units, the OpenMP programming model [1] became the defacto standard
leveraging the programmability and the performance of such systems. Based on
compiler directives and the fork-join model, it spawns threads and implies a
synchronization rendez-vous at the end of parallel regions. Mainly oriented to
structured and regular parallelism first, it has been extended with a task pro-
gramming model to enable efficient use of irregular and nested parallelism. Even
if this tasking model has proven to provide good performance, global synchro-
nizations are expensive and may prevent scheduling of upcoming tasks. There-
fore, the notion of data dependency has been introduced, to provide a lighter
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local synchronization between successive dependent tasks. These dependencies
can be expressed only between sibling tasks (i.e., created by the same parent
task). The execution order of these tasks is given by the creation sequence (task
directives order in the code) and the depend clauses. We call the sets of tasks
spawned from the same parent a dependency domain.

Combining nested tasks with data dependencies may lead to some issues be-
cause of the parallel execution of tasks between dependency domains. Indeed,
dependencies only apply between sibling tasks. However, these dependencies are
not passed on the next generation of tasks. Hence, two dependency domains
issued from sibling tasks with dependencies will not inherit their parent order.
In this case, race conditions may occur even if the programmer thinks the de-
pendencies are correctly expressed in the depend clauses. Correctly specifying
a large number of dependencies across multiple dependency domains implies a
non negligible burden to the developer and remains error prone.

In this paper, we aim at detecting such dependency declaration errors. The
contribution of this paper is threefold: 1) we develop an algorithm to detect
possible data races based on declared task dependencies, 2) we propose new
extensions to the OMPT interface for keeping track of the memory scope of
dependency variables and, 3) we implement the OMPT extensions in an OpenMP
implementation and the algorithm in a tool to effectively detect data races.

The remaining of the paper is organized as follows: Section 2 presents some
motivating examples. Related work regarding nested tasks with data dependen-
cies and their correctness is presented in Section 3. Then, Section 4 explains the
main contribution through the dynamic detection of race conditions among data
dependencies in non-sibling tasks. Section 5 describes the implementation of our
approach while Section 6 illustrates our tool output and its overhead on some
applications, before concluding in Section 7.

2 Motivating Examples

When considering nested tasks, each task in a dependency domain generates
its own children tasks, hence its own dependency domain. By representing each
task with a vertex, and linking each task to its children with an edge, it results
a tree structure. We call such tree a spawn-tree. Since dependencies can only
induce scheduling constraints inside a dependency domain (i.e., between sibling
tasks), there is no ordering between tasks from different domains. Thus, these
tasks can run concurrently in any order, even if they are at different levels in the
spawn-tree. Indeed, specifying a dependency clause at a given level in the task
nest does not propagate it to deeper levels (i.e., to children tasks). This might
become tricky as, from the user point of view, dataflow information has been
expressed. However, the resulting behavior and scheduling may not be the one
expected. We present very simple test cases to illustrate such possible data races
with misleading depend clauses.

Wrongly expressed dependencies. Listing 1.1 presents a test case based
on nested tasks with data dependencies. The first task (single directive - task
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1 main (void )
2 va r i ab l e a , b ;
3 #pragma omp p a r a l l e l {
4 #pragma omp s i n g l e {
5 #pragma omp task depend ( in : a ) {
6 #pragma omp task depend ( inout : a ) {}
7 #pragma omp task depend ( inout : a ) {}
8 }
9 #pragma omp task depend ( out : a ) {

10 #pragma omp task depend ( inout : a ) {}
11 #pragma omp task depend ( inout : a ) {}
12 }
13 }
14 }

Listing (1.1) Nested tasks with dependencies
(a) Single spawn-subtree

Fig. 1: An OpenMP code with nested tasks with dependencies and its correspond-
ing spawn-subtree. Dotted ellipses in the tree are for dependency domains.

0 in the spawn-tree represented in Figure 1a) spawns two children tasks with
dependencies (task constructs lines 5 and 9 with depend(in) and depend(out)

clauses - tasks 1 and 2 in the spawn-tree). These tasks belong to the same
dependency domain (dotted ellipse around task 1 and 2 in the spawn-tree).
Each of these tasks spawns two other children tasks with dependencies (task
constructs with depend(inout) clauses - tasks 3, 4, 5 and 6 in the spawn-tree).

The parents tasks 1 and 2 have serialized dependencies over a, ensuring
an order. However, their children don’t inherit this dependency. Without any
taskwait directive at the end of task 1 to ensure that all its children tasks have
finished before task 1 ends, all the tasks at the last level of the tree can run
concurrently. Moreover, the children of task 1 can run concurrently with task 2.
If the variable a is effectively written as suggested in the depend clauses, a race
condition on a may happen.

1 main (void )
2 va r i ab l e a , b ;
3 #pragma omp p a r a l l e l {
4 #pragma omp s i n g l e {
5 #pragma omp task depend ( in : a ) {
6 #pragma omp task depend ( inout : a ) {}
7 #pragma omp taskwai t
8 }
9 #pragma omp task depend ( in : a ) {

10 #pragma omp task depend ( inout : a ) {}
11 #pragma omp taskwai t
12 }
13 }
14 }

Listing 1.2: Unexpressed/Hidden dependencies

Unexpressed/hidden dependencies. Listing 1.2 presents a similar test
case, except that parent tasks don’t express a data dependency over a. In this
case, adding a taskwait directive is not enough to order all tasks. Since there is
no inferred writing of a between the parent tasks, they can be executed in any
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order, and even concurrently. Hence, ensuring that all children tasks are finished
does not enforce an order between other tasks at the same tree level, as the tasks
from the two lower dependency domains can run concurrently, also causing data
races. One possibility to solve this issue is to apply children dependency clauses
to the parent tasks. Thus, these dependencies are said to be unexpressed (or
hidden).

Listing 1.3 presents the same behavior: two tasks are spawned inside parallel
construct. Even without nested tasks, the same problem occurs due to im-
plicit tasks. Indeed, the parallel construct first spawns implicit tasks (one
per OpenMP thread). Due to these implicit tasks, the explicit task creations
(task constructs) represents the second level in the spawn-tree. For example, if
one considers 2 OpenMP threads, thus two implicit tasks, this listing produces
the same spawn-tree as depicted in Figure 1a. The implicit task level cannot
accept depend clauses. Hence, the dependencies expressed on the explicit tasks
are hidden to the implicit ones, causing the ordering issue as before. The same
applies when creating explicit tasks with dependencies in a worksharing-Loop
construct.

1 va r i ab l e a ;
2 main (void )
3 #pragma omp p a r a l l e l {
4 #pragma omp task depend ( in : a ) {}
5 #pragma omp task depend ( inout : a ) {}
6 }

Listing 1.3: Tasks with dependencies in implicit task

3 Related Work

The OpenMP support for tasks with dependencies has shown a growing inter-
est from the community of developers and researchers, in various topics such as
scheduling [4], data locality [3] and more generally performance optimization [6,
7]. Thus, Perez et al. propose an extension of the OpenMP task directive to
apply dependencies between different family lineage of domain dependencies [2].
The new clauses weakwait, weakin, weakout, weakinout and release refine the
dependency relationship in a two-step process starting by applying inner-task
dependencies directly to the outer-task successors at a weakwait synchroniza-
tion point. Early processing is possible as the release clause indicates that no
more dependencies will be expressed on the listed variables. Then, outer tasks
with a weak dependency clause pass down predecessors dependencies to inner
subtasks. The results obtained with these new extensions are coherent with the
theoretical study conducted by Dinh et al. [8]. In the nested dataflow model
(ND), they showed that modified scheduling algorithms achieve better locality
reuse and higher performance on large number of processors. ND is the exten-
sion of the nested parallel model (NP) with dependencies, where the fire con-
struct completes the parallel and sequential constructs representing partial
dependencies between two dependency domains. They introduced a methodol-
ogy called DAG rewriting system (DRS) to translate from NP to ND and use
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it to revisit existing linear algebra algorithms, providing material for the modi-
fied scheduling proof. But these approaches do not enable debugging of current
OpenMP task-based applications. For this purpose, data-race detection methods
exist, based on either static, dynamic, or post-mortem approaches. Nonetheless,
the majority only provides support for tasking model without data dependen-
cies. Some tools support tasks with dependencies. Protze et al. [9] proposed an
efficient and scalable OpenMP data-race detection tool called Archer based on a
static-dynamic method for large HPC applications: relying on a LLVM compila-
tion pass for static analysis and on ThreadSanitizer for dynamic analysis via code
instrumentation and Happens-before relation. They annotated the OpenMP run-
time to reduce false positives arising from synchronizations points and locking.
They defined three detection states resulting from static analysis, race free, cer-
tainly racy and potentially racy regions. On top of that information, they extend
ThreadSanitizer to take as input a blacklisted set of race-free regions, notably
reducing amount of instrumentation at dynamic analysis. In [10], they detailed
how they reported OpenMP runtime annotations into OMPT events callbacks,
providing a portable data race detection tool with support for tasks with depen-
dencies. Matar et al.[11] conducted a similar study mainly oriented to tasking
programming model, relying on ThreadSanitizer and the Happens-before relation
for dynamic analysis. They proved that their tool, Tasksanitizer, is more efficient
at task level to detect determinacy races. However, when combining nested tasks
with dependencies, their respective solutions might be related to task scheduling,
missing some possible race conditions. Our approach does not instrument every
memory access, but it tracks dependency clauses and deals with the hierarchy
of tasks, whatever the scheduling of those tasks. It is therefore complementary
to methods like Archer and Tasksanitizer.

4 Detecting Dependencies Between Non-Sibling Tasks

Section 2 showed how unexpressed dependencies or the absence of taskwait di-
rective in descendant tasks may lead to data races, despite the expression of
dependencies on some tasks. In this Section, we present our approach to de-
tect such wrong behavior. First, we will describe our approach with our main
algorithm to detect potential data races based on the expressed dependencies.
Then, since dependencies in OpenMP are passed through variables (i.e., logical
memory addresses), we present in a second part how we detect that the depend

clauses on the same address indeed concern the same variable.

4.1 Main Approach

Our main approach to detect potential data races in nested tasks is based on
spawn-tree subgraph and their isolation. Each task t in a dependency domain
will generate its own subtree in the spawn-tree. This subtree regroups all the
tasks having the task t as an ancestor. All the tasks from the subtree of t should
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be compared with the subtree spawned from the siblings of t. However, these
subtrees may not be compared in one case: if the t subtree is isolated.

A subtree is isolated if all the tasks in the subtree are enforced to be finished
before any subtree from a subsequent sibling is started. Thus, the t subtree is
isolated from another t′ subtree if, and only if, there is an ordering between t
and t′, and all tasks in t subtree are done before starting task t′ and its own
subtree. This isolation can be achieved with several methods. The first method
consists in putting a taskwait directive after the last task of each level in the
t spawn-tree. The second method encapsulates task t in a taskgroup construct
ending before task t′. A third method inserts a if(0) clause on each task of the
subtree.

If the subtree is isolated, no tasks from the t subtree may run concurrently
with t subsequent sibling tasks. On the other hand, if the t subtree is not isolated
from the subtrees of t subsequent siblings, tasks of multiple subtrees may run
concurrently. In such case, it is necessary to test each task in all subtrees in a
pairwise manner to detect depend clauses on same addresses. If this occurs, and
the address in the multiple depend clauses refers to the same variable, then a
data race may occur.

Algorithm 1: Resolve Non Sibling Dependencies

1 ResolveNonSiblingDependencies
inputs: vertex root of the spawn-tree

2 if root.children 6= ∅ then
3 for v ∈ root.children do
4 DoDectectionConflicts = true
5 for v′ ∈ root.childrenr {v} do
6 if DependencyPath(v, v′) = true then
7 Synched = CheckSynch(v)
8 if Synched = true then
9 DoDectectionConflicts = false

10 if DoDectectionConflicts = true then
11 for w ∈ subtree(v)∪v do
12 for w′ ∈ subtree(v′)∪v′ do
13 DetectConflicts(w,w′)

14 ResolveNonSiblingDependencies(v)

Algorithm 1 presents these different steps. We will describe it on a small
example. Listing 1.4 presents a task-based Fibonacci kernel extracted from the
BOTS benchmarks [14] and modified to express dependencies. In this new pro-
gram, each invocation of the fib function creates three tasks: one for each
new invocation of the fib function, and a third task to realize the sum of the
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1 f i b (n)
2 int x , y , s ;
3 i f ( n < 2 ) return n ;
4 #pragma omp task shared (x ) depend ( out : x ) {
5 x = f i b ( n − 1 ) ;
6 }
7 #pragma omp task shared (y ) depend ( out : y ) {
8 y = f i b ( n − 2 ) ;
9 }

10 #pragma omp task shared ( s , x , y ) depend ( in : x , y ) {
11 s = x + y ;
12 }
13 #pragma omp taskwait
14 return s ;

Listing 1.4: Task-Based Fibonacci with dependencies

two sub-results. The two fib invocations are independent (depend(out:x) and
depend(out:y) clauses respectively), but the last task depends from the two
previous tasks (depend(in:x,y) clause). The computation of fib(4) with this
new algorithm produces the spawn-tree displayed in Figure 2a.

In our algorithm, we study each pair of tasks in each dependency domain,
starting with the set of tasks generated by the root of the spawn-tree (l.3 and
l.5 in the algorithm). Applied to the fib(4) example, we start by studying the
tasks fib(3) and fib(2) at the first level. For each pair, we check if there
is an isolation between their subtrees, hence if these tasks are ordered and all
descendant tasks of the first task are enforced to be finished before starting the
other task. We start by looking if the two tasks are ordered. To do so, for each
dependency domain, we build a Directed Acyclic Graph (e.g., DAG) representing
the complete ordering of tasks, thanks to depend and if clauses, taskwait and
taskgroup directives. Then detecting if two tasks are ordered in a dependency
graph is equivalent to find a path between the two tasks in the DAG (l.6). If
there is a path, then the two tasks are ordered.

Figure 2b depicts the DAG generated for the dependency domain formed
by the leaf tasks in subtree B. Since the two fib invocations are independent,
there is no link between them. However, two links come from these tasks towards
the third (sum) task, due to the depend(in) expressed dependencies. Hence, an
order exists between fib(0) and (sum), and an order also exists between fib(1)

and (sum).
We then check if the first subtree is isolated. If so, it is useless to detect

potential conflicts between these subtrees (l.7-9). In the example, if the subtrees
from fib(3) and fib(2) are isolated, no data race can happen between (sum)

and the subtrees. However, it will not prevent data races between the subtrees,
as they can be executed in any order, and even concurrently.

If no isolation is detected, we need to compare every pair of tasks in the
tested subtrees (l.11-12). We check each depend clause from the two tasks to
detect potential conflicting memory access (l.13). Once all the current sibling
tasks are tested, we do the same procedure with the next level in the spawn-
tree.
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4.2 Tracking Memory Scope

The OpenMP runtime only uses the address of memory storage to express the
dependencies. When detecting conflict with addresses, two cases arise. First, the
address always identifies the same variable throughout the program execution.
It is the case for global variables. On the other hand, some addresses can be
reused throughout the program to store different variables. It is the case for heap
and stack addresses, through function calls and return statements or memory
allocation/deallocation. To ensure that the detected conflict on addresses passed
to depend clauses can actually lead to a data race, we have to ensure that the
same address relates to the same variable.

The fibonacci example can illustrate such behavior. With the dataflow based
fibonacci algorithm, we can see that the same pattern of tasks may be replicated
in the spawn-tree. It is the case for the subtrees B and C in Figure 2a.

When the program is running, the following behavior can happen. First, a
thread runs the task which is the root node of subtree B. This task declares
dependencies on stack addresses for variables x, y and s for the children task.
Upon completion of the task, stack memory is recycled for the next instructions.
If the root node of subtree C is then scheduled on this same thread, as it is
the same task as the root of subtree B, it will map the same variables to the
same stack addresses. The executing task will also declares dependencies for
variables x, y and s, which happen to have the exact same stack addresses than
the dependencies declared for the previous task. However, they are not related,
and the reuse of addresses only relates to this specific scheduling. It is necessary
to check if the use of the same addresses in multiple depend clauses are indeed
related to the same variables.

Data scoping is a key element in OpenMP, and more generally in shared
memory programming models. It describes if a specific data is shared among
threads or is local to a thread. By default, scope attribute is set to shared
for threads and implicit tasks, and to firstprivate for explicit tasks. OpenMP
provides clauses to modify the scope attribute of data: shared exhibits data’s
memory address to all threads, and private, firstprivate or lastprivate

create a thread’s local data copy (different memory address). The firstprivate
clause is a special case, the value of the variable is passed on to the local copy.
By this way, if the variable value is an address, it violates the private attribute
since all threads having the local data copy can simultaneously access the same
memory storage. If the variable is used later in a depend clause, it may lead to
a concurrent access.

To ensure that the same address in multiple depend clauses relates to the
same variable, we record the data scoping attributes at task creation. We then
study the data scoping path, i.e. the variable’s scope attribute at each level
between a task and a child task of its lineage. A color c is associated with each
tested pair of tasks and each tested address. For the two tested tasks, we go up
in the spawn-tree and check at each level if the address is a shared data, or if it
was a value passed in a firstprivate clause. In both cases, the link to the checked
level is colored with the color c. Once a common ancestor for the two tasks is
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found in the spawn tree, we obtain a direct path between the two tasks. If all
the links in the path have the same color c, it means that the tested address
was passed by the common ancestor down to the two tested tasks, and that
the address relates to the same variable. Hence, the tested depend clauses may
actually cause a data race, and the DetectConflicts phase in our algorithm raises
an issue.

(a) Spawn-tree instance of fibonacci(4)

(b) DAG generated from the de-
pendency domain formed by the
leaf tasks in subtree B.

Fig. 2: Data structures related to the task-based Fibonacci example

To illustrate this coloring search, we focus on x variables from fib(1) invo-
cations. To both tasks fib(1) from subtrees B and C for variable x, we use the
color c0. Since the variable is in a shared clause for both tasks, the links between
these tasks and their parents (respectively roots of subtrees B and C) are colored
with c0. However, the variable passed in the shared clause is a newly created
variable and does not come from a previous shared clause (or firstprivate

clause). Hence, the upward links are colored with a new color c1 (from root node
of subtree B to fib(3) task, and from root node of subtree C to fib(4) task).
For the same reason, the last link from fib(3) to fib(4) will have a new color
c2. Once this link is colored, we obtain a colored path between the two tested
tasks. However the path has multiple colors, hence the two addresses don’t relate
to the same variable. No potential data race will be raised, even if the depend

clauses use the same memory address.

4.3 Method limitations

Our method uses the same information as the OpenMP dependencies mecha-
nism, i.e, the memory address. We do not aim to detect nor instrument actual
memory access, but only to check if the dependencies declared in the OpenMP
task constructs are coherent. As we are based on the addresses passed in the de-
pendency clauses, our method may miss some data races or report false positive.

The false positive arises when the task constructs declares dependencies on
variables which are not used in the task, or in its descendant tasks. In these
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cases, our method returns a potential data race. However, since the variables are
not used in the tasks, it is not a data race. These variables might just have been
used to infer ordering between tasks with no actual read or write.

In the same way, if variables are used in a task but do not appear in a depend

clause, our method will not consider the variable. The same also happens if a
variable a variable is used in the task spawning a dependency domain, with tasks
declaring dependencies on the same variable. In these cases, out method will not
detect the potential data race.

1 #pragma omp task depend ( in : a )
2 #pragma omp task depend ( out : a ) {
3 a = some value ; }
4 l o c a l = a ;

Listing 1.5: Nested tasks with potential race conditions

The test case in listing 1.5 presents such scenario. Based only on the depen-
dency declarations, there is no way to detect when the actual memory access is
performed in the parent task, i.e, before or after the child task.

5 Tool Implementation

Our detection method is based on the task spawn-tree and the DAG built from
dependency clauses information. Building and maintaining such structures re-
quires accessing information from the OpenMP directives and internals in addi-
tion to those provided by its API: e.g., when a parallel region starts and ends,
when synchronizations occur at multiple levels, be informed of tasks creation
and retrieve their dependencies set if any. These information are tightly linked
to the OpenMP API and runtime implementation.

The OMPT [12] interface aimed at developing portable performance and
analysis tools for OpenMP. Recently released as part of the OpenMP specifi-
cation, it provides an instrumentation-like portable interface for tool callbacks.
A callback is a function that is registered during the tool initialization to be
triggered at corresponding events. In addition, OMPT specifies a collection of
inquiry functions to probe the OpenMP runtime for internal information.

Our tool can either be used at runtime or post-mortem through the gener-
ation of a trace. Both versions use the same information that can be gathered
through the set of OMPT callbacks listed below. Implementation has been done
inside the MPC framework [15], a hybrid MPI/OpenMP runtime which sup-
port the OMPT interface. During the initialization phase, we create the internal
structures and the root task of the spawn tree. Then, to instrument all OpenMP
tasks in the application, the tool registers the following OMPT callbacks to the
OpenMP runtime:

- ompt callback parallel {begin/end} t: callbacks to register the entry
and exit points of parallel regions. We use the begin event to retrieve the number
of threads inside the parallel team. During the end event, we deallocate all nodes
of the spawn tree, if any, and its related dependencies. Only the root task remains
as the code returns to the initial task.
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- ompt callback implicit task t: callback triggered during the creation
of implicit tasks. We use it to add nodes representing the implicit tasks of the
parallel region into the spawn tree.

- ompt callback sync region t: callback to register region synchroniza-
tion. Its parameters contain the synchronization type (i.e. a barrier, a taskgroup
or a taskwait) and the endpoint scope (i.e. the beginning or the end of the syn-
chronization). We use it for partitioning the dependency domain at the explicit
task level. In the runtime version, the main algorithm 1 for data race detection
is trigerred. This allows to reduce memory consumption by only keeping and ap-
plying resolution on one instance of the spawn-tree at the time. In post-mortem
version, trace generation is performed by dumping local buffers to output files.

- ompt callback task create t: callback to register the creation of an ex-
plicit task. We use this callback to add a task node to our internal spawn tree
representation at the creation of an explicit task. Such informations are stored
in local buffers in the post-mortem version.

- ompt callback dependences t: callback to register all dependencies spec-
ified on a new task. We retrieve the dependencies of the newly created task, and
update the dependency DAG of the parent task node. Such informations are
stored in local buffers in the post-mortem version.

OMPT extensions. Section 4 highlights that it is necessary to know the data
sharing attribute of a dependence to detect data races in the context of nested
tasks with dependencies. The current OMPT interface exposes the scope of a
parallel region, the spawning sequence of tasks and the dependencies between
these tasks. But it lacks a way to provide information about data-sharing at-
tributes at constructs, needed in our method to detect false positives. To do so,
we propose the following extensions to the OMPT interfaces.

1 typedef void (∗ ompt c a l l b a ck t a s k c r e a t e t ) (
2 ompt data t ∗ encounte r ing task data ,
3 const ompt frame t ∗ encounte r ing task f rame ,
4 ompt data t ∗ new task data ,
5 int f l a g s ,
6 int has dependences ,
7 s i z e t a r r a y d a t a a t t r i b u t e s s i z e ,
8 void ∗ a r r a y da t a a t t r i b u t e s
9 const void ∗ codeptr ra ,

10 ) ;

Listing 1.6: Extension to ompt callback task create t

The data sharing attributes of each variable are retrieved at task creation.
We extend the callback to also store an array with the data collection inherited
from outer scope to the new task (see Listing 1.6). This array contains values for
each variable: if a variable is shared, the array contains its address. If a variable
is firstprivate, the array contains the variable value.

1 typedef struct ompt dependence s
2 ompt data t va r i ab l e ;
3 ompt dependence type t dependence type ;
4 int add r e s s l o c a t i o n ;
5 ) ompt dependence t ;

Listing 1.7: Extension to ompt task dependence t
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The location of the address variable used in the depend clause is required
to eliminate false positive in our data race detection method. We extended the
structure exposed in Listing 1.7 to include an int value to store this location.

6 Experimental Results

An enumeration of available applications using nested tasks with dependencies
lead to a small set of candidates. Upon ad hoc test cases based on those presented
throughout the whole paper and the modified Fibonacci, the Kastors benchmarks
suite [13] provided a suitable candidate. The Strassen benchmark is a well-
known algorithm for matrix multiplication that achieves lower execution bound
than the regular method O(n3). It recursively splits the matrices and applies
the Strassen method in a divide and conquer manner, until a specified cutoff is
reached where the regular method turns back to be more efficient. We present
the output format of our tool and its associated overhead on these benchmarks.

Output description. The generated output goes along with the approach de-
scribed as follows: the nodes of the spawn tree are numbered in a breadth-first
search manner, therefore, the root has the number 0, each implicit task has the
number between [1,...,N] where N is the number of threads participating to the
parallel region, and the explicit tasks have a number between ]N,...,M] where M
is the total number of nodes in the spawn tree. Two conflicting nodes n and n′

respectively belonging to the subtree where nodes rn and rn′ are the roots and
with dependencies d and d′ on a variable address addr generate the following
output: ∗ addr < rn, n, d >< rn′, n′, d′ >

> OMP_TOOL_LIBRARIES=Ompt_tool.so OMP_NUM_THREADS=2 mpcrun ./testCase3
* 0x2b7730422e70 < 1, 3, in >< 2, 6, out >
* 0x2b7730422e70 < 1, 4, out >< 2, 5, in >
* 0x2b7730422e70 < 1, 4, out >< 2, 6, out >

The small example above is the output of our tool for Listing 1.3. The cor-
responding spawn-tree is depicted in Figure 1a. Our tool returns three potential
data races: task 3 with task 6, task 4 with task 5 and task 4 with task 6. Theses
pairs of tasks have dependencies on the same variable, with at least one being
a write, so the analysis is true. A data race is possible as implicit tasks may
run concurrently. Task 3 and task 5 have both read dependencies on the same
variable, hence no order is required. Hence no issue is raised for this pair.

We also applied the Archer and the Tasksanitizer tools on this example.
Tasksanitizer correctly unveils a data race, whereas for Archer, the analysis being
applied on the current execution scheduling, the data race is not detected on
every run. Both tools, upon detection of a race condition, only retrieve a subset
of possible cases/scheduling leading to the race condition. In our ad-hoc cases,
Tasksanitizer did find many false positives, mainly arising from poorly support
of taskwait and dependencies in nested tasks with dependencies context.
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Fig. 3: Overhead for multiple fibonacci values and number of threads.

Study of overhead. We evaluated our tool overhead on the Fibonacci and
the Strassen benchmarks. The tests were conducted on an Intel XEON node
with 28 physical cores and 186GB of memory ram. In our results, we illustrate
the slowdown factor (i.e. execution time with a tool divided by the time of the
standard version of the code) for different tools: Archer, our tool with both
online and post-mortem analysis. Tasksanitizer exhibited very high overhead
for Fibonnacci (from one hundred to several thousands) and was segfaulting on
Strassen, hence its results are not displayed.

Archer is more complete and performs more analyses than our tool. We use
this time as an upper bound overhead to not overcome.

The evaluation of the modified Fibonacci was conduct on the Fibonacci values
fib(x),where x ∈ {4, 13, 23, 30}, representing respectively the creation of 12,
1128, 139101 and 4038804 tasks at runtime (see Figure 3). For a small number
of tasks, the online version is efficient, whereas the trace-based version is slower
than Archer. This is due to our tracing mechanism which is very basic (no I/O
delegation or asynchronism), and the cost of waiting to write the trace is too high
regarding the benchmark execution time. For a large number of tasks the online
version spends to much time checking each pair of tasks, and has prohibitive
overhead. On the other hand, tracing becomes very competitive. The evaluation
of the Strassen benchmark was conducted on square matrices with power of two
sizes from 512 to 8192. Two cutoffs were set for the switching value to regular
method and for the max depth, controlling the task nesting up to four levels. On
Strassen (Figure 4), overheads of both online and trace-based methods are lower
than Archer. The slowdown is up to 7.7 for online resolution and a maximum
of 4.6 for trace generation. With online resolution, only size 4096 provides high
overheads. Further investigation is needed to understand these results.
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Fig. 4: Overhead for multiple Strassen matrix sizes and number of threads.

7 Conclusion

Since version 4.0, the OpenMP standard includes the notion of data dependencies
between tasks created by the same parent (either another task or a thread). But
combining nested tasks with data dependencies may lead to race conditions, some
uncovering unexpressed/hidden dependencies. This paper proposed an algorithm
to detect such problems based on the depend clauses exposed by the programmer.
We implemented this method in a tool providing both dynamic and post mortem
approaches, based on the recently released OMPT interface and our extensions
for data sharing attributes. We demonstrated that this method can effectively
detect race conditions with a reasonable slowdown compared to existing tools.
The proposed OMPT extension for data sharing attributes can be useful for any
tools relying on addresses passed in clauses. For future work, we plan to study
a restricted use of code instrumentation to detect data accesses inside OpenMP
tasks, and then be able to detect any data races between depend clauses and
actual variable accesses.

Acknowledgments: This work was performed under the Exascale Computing
Research collaboration, with the support of CEA, Intel and UVSQ.

References

1. OpenMP Architecture Review Board: OpenMP Application Program Interface Ver-
sion 5.0, November 2018
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