A quantitative Mc Diarmid's inequality for geometrically ergodic Markov chains - Archive ouverte HAL
Article Dans Une Revue Electronic Communications in Probability Année : 2020

A quantitative Mc Diarmid's inequality for geometrically ergodic Markov chains

Résumé

We state and prove a quantitative version of the bounded difference inequality for geometrically ergodic Markov chains. Our proof uses the same martingale decomposition as \cite{MR3407208} but, compared to this paper, the exact coupling argument is modified to fill a gap between the strongly aperiodic case and the general aperiodic case.

Dates et versions

hal-02177452 , version 1 (09-07-2019)

Identifiants

Citer

Antoine Havet, Matthieu Lerasle, Éric Moulines, Elodie Vernet. A quantitative Mc Diarmid's inequality for geometrically ergodic Markov chains. Electronic Communications in Probability, 2020. ⟨hal-02177452⟩
128 Consultations
0 Téléchargements

Altmetric

Partager

More