N

N

Exploiting Adversarial Embeddings for Better
Steganography

Solene Bernard, Tomas Pevny, Patrick Bas, John Klein

» To cite this version:

Solene Bernard, Tomas Pevny, Patrick Bas, John Klein. Exploiting Adversarial Embeddings for Better
Steganography. TH-MMSec, Jul 2019, Paris, France. 10.1145/3335203.3335737 . hal-02177259

HAL Id: hal-02177259
https://hal.science/hal-02177259
Submitted on 8 Jul 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-02177259
https://hal.archives-ouvertes.fr

Exploiting Adversarial Embeddings for Better Steganography

Soléne Bernard
Univ. Lille, CNRS, Centrale Lille, UMR 9189, CRIStAL
Lille, France
solene.bernard@centrale.centralelille.fr

Patrick Bas
Univ. Lille, CNRS, Centrale Lille, UMR 9189, CRIStAL
Lille, France
patrick.bas@centralelille.fr

ABSTRACT

This work proposes a protocol to iteratively build a distortion func-
tion for adaptive steganography while increasing its practical se-
curity after each iteration. It relies on prior art on targeted attacks
and iterative design of steganalysis schemes. It combines targeted
attacks on a given detector with a min max strategy, which dynami-
cally selects the most difficult stego content associated with the best
classifier at each iteration. We theoretically prove the convergence,
which is confirmed by the practical results. Applied on J-Uniward
this new protocol increases Pery from 7% to 20% estimated by Xu-
Net, and from 10% to 23% for a non-targeted steganalysis by a linear
classifier with GFR features.

CCS CONCEPTS

« Security and privacy — Domain-specific security and privacy
architectures;
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1 INTRODUCTION

Most of steganographic methods are based on the distortion mini-
mization principle, first demonstrated in Hugo algorithm [13] and
later used in Uniward [11], MiPod [17], etc. Each pixel in the image
is assigned to an additive cost related to its value and its neighbor-
hood. During embedding, the Steganographer changes the content
such that the detectability (the total cost induced by all changes)
is minimized subject to the message being communicated. This is
typically done using Syndrome Trellis Codes (STC) [7], which are
very efficient for a class of additive distortion functions.

Because the Steganographer has to face a Detector (its adversary)
in order to benchmark the practical security of the embedding
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scheme, steganography is adversarial by design. In the literature
however, this adversarial constraint is only considered by a specific
generation of embedding schemes which usually offer high practical
security. We can distinguish two classes of adversarial schemes.

(1) The first class explicitly considers an adversary (the detector)
to design the embedding scheme which attacks the detector.
For example contribution [21] proposes to optimize basic
cost functions with respect to the output of SVM classifiers or
Maximum Mean Discrepancy for a given database. However
the pioneering scheme belonging to this class is ASO [12]
(see also section 2.1) which modifies specifically the embed-
ding costs for each image with respect to outputs of a set
of classifiers. Recently ADV-EMB [19] (see also section 2.2)
modifies embedding costs computed by J-Uniward to attack
a deep learning classifier. Other embedding schemes based
on Generative Adversarial Networks (GANSs) [20] iteratively
generate a cost function in such a way that the associated
embedding is less and less detectable by the adversary. In
this case, the steganographer and the classifier are both con-
volutional networks and a global cost function, considering
both the payload constraint and the constraint on practical
detectability, is minimized.

(2) The second class of embedding schemes implicitly considers
the cost function as a proxy of the steganalyzer output, and
the embedding is tailored in order to minimize the statis-
tical discrepancy between Cover and Stego contents. This
class is associated with the concept of model-based embed-
ding which was first proposed by Sallee [16] and had been
used by different schemes such as Gibbs construction [6],
Dynamic programming based Syndrome Trellis Codes (Dy-
namic STC) [14], modeling image residuals in MiPod [17] or
mimicking the sensor noise [2].

The proposed work shares common ideas with designing tar-
geted attacks on steganalysis schemes as proposed by ASO or ADV-
EMB, but also uses iterative embedding procedure as GANs do.
Its main originality relies in the fact that it combines adversarial
embedding and game-theory in order to design a cost function
(and consequently an embedding scheme) which is more and more
secure w.r.t. an increasing set of classifiers, but also as presented in
section 4, w.r.t. other steganalysis schemes.

More specifically, this work investigates if a set of Detectors ¥
can be used to assign costs for changing values of image compo-
nents (e.g. pixels or DCT coefficients). The proposed scheme embeds
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the message such that the stego image is the least detectable image
by all f € F. Since the set of Detector F should be theoretically
infinite, an iterative scheme associated to a min max strategy is
proposed to make ¥ finite and small.

Notations

In the following, letters in bold are used to represent vectors. The
corresponding non bold letters are used for vector elements. The
caligraphic letters are used for sets. Cover and stego contents are
respectively denoted as x = (x;)*W and y = (y;)*W where H
and W are the height and width of the image. We use z = (z;)#*W
to denote the proposed adversarial stego contents. Note that z is
a special type of y. The corresponding sets are denoted as X, Y
and Z respectively. w € {0, 1} will denote the class of a content x
which is cover (w = 0) or stego (w = 1). N is the number of contents
in the data base.

2 ADAPTING COST FUNCTIONS AGAINST
DETECTORS: PREVIOUS WORKS

The most successful contemporary steganographic schemes are
based on the distortion minimization principle, where costs are as-
signed to a change of each element of cover object. During embed-
ding, a cover object is modified to communicate a message while
minimizing the total distortion measured by the sum of costs of
changing individual elements, specifically

HxwW
D(xy) = D pior(i —xi) + pidayi—x). (1)
i=1

There is no single strategy as to how to assign costs p;, which gives
rise to different steganographic schemes. Below, we review two
schemes adjusting costs p; to evade directly a particular detector f.
While both schemes have a very different background, they share a
similar strategy: to adjust cost according to the gradient of f with
respect to embedding changes.

2.1 Adaptive Steganography by Oracle

ASO [12] derives embedding costs from an ensemble of Fisher
Linear Discriminants (FLD). In the notation of this paper, the set of
all possible FLDs corresponds to ¥ and the set of FLDs extracted
from a trained ensemble corresponds to Fk, where it is assumed
that all f € ¥ are already normalized according to [12, equations
(9) and (10)]. ASO then defines embedding cost for changing a pixel
X; as

1
Pl = D () = F ).
75 feFk
- 1 -
pi =T 2, () - £
| | fe‘f"
where x} and x; denote the version of an image x with pixel (i)
increased or decreased by one. Note that f(x}) - f(x) and f(x;) -
of

f(x) are numerical estimates of the partial derivative :~. The
L

assignment of costs therefore assumes that each classifier f € Fk
contributes equally to the detectability of the image. In contrast,
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the proposed protocol detailed in Section 3 assumes the worst
case, where the detector always picks his best classifier for a given
content.

2.2 ADV-EMB steganography

ADV-EMB method [19] modifies costs p} and p; for increasing and
decreasing the (i)-pixel obtained by some prior function to evade
detection by classifier f as

pila if—%>0,
. a9
4 =1 pf if —g-=0, )

pla if—%<0,

of

where ax; 18 the partial derivative of f with respect to the value
of the (i)-pixel at its current value x; and « is a parameter that
authors recommend to set to 2. Costs g; are adjusted in a similar
way with reversed inequalities.

The proposed attack first calculates cost of pixel changes using
the standard J-Uniward. Then, all DCT coefficients are divided
into two disjoint groups: a common group L. containing (1 — )
fraction of DCT coeflicients and an adjustable group £, containing
the remaining f fraction of DCT coefficients. To embed a message
m of length ¢, the algorithm first embeds £(1 — j) bits into the
common group using the initial embedding costs p;. Costs in the
adjustable group are modified according to Equation (2), and the
rest of the message is embedded into adjustable DCT coefficients
L4, producing the final stego content carrying the whole message.

The same work also suggests an iterative scheme, where the
classifier is retrained on a mixture of stego images obtained by
attacking the classifier trained in the previous iteration in the aim
of training a more robust detector. In contrast, the goal of this
paper is to create a more secure steganographic algorithm by using
min max strategy.

3 EXPLOITING ADVERSARIAL ATTACKS

Under uniform class distribution, the error Per(f|Px,Py) of a
classifier! f : X + R on cover and stego contents with distribution
Py and Py is

Pert(f|Px,Py) = P (sign(f) # w)

= %EPX [I{f >0}]+ %EPy [I{f <0}l. (3

where I denotes the indicator function. Should the steganographer
be maximally undetectable with respect to the class of detectors ¥,
the steganographer should choose the embedding function heyy,
maximizing the error of the best classifier the detector can possess,
ie.

max min Perr(f1Px Py (hemb)), 4)
where Py (hepp) denotes the probability distribution of stego im-
ages created by embedding function hg,p, from cover images with
distribution Py. This is of course not trivial, since ¥ can contain

!Without loss of generality it is assumed the output of a detector f to be positive /
negative if content x is classified as stego / cover. Also, for improved readability, we
call f a classifier while it is the discriminant function which must be compared to
threshold zero to obtain a content class label.
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virtually any function f. In practice ¥ consists of a set of fixed
functions parameterized by 6 € ©. These functions are for example
steganographic features coupled by a machine learning based clas-
sifier, where 6 are parameters of the classifier. Alternatively, they
can be convolutional neural networks in which case 8 corresponds
to weights and other parameters of neural networks.

Assuming the set of functions ¥ to be finite, in order to find a
solution of Equation (4), we can use methods [6, 14, 19] to embed
message m into content x to create a stego content y by, minimizing
the detectability of the most sensitive detector f € ¥ instead of
maximizing Perr, i.e

min }neag_f (¥)- (5)
In (5) it is assumed that the output of the detector f is calibrated,
i.e. for example it outputs the probability that the content will
be classified as stego. This calibration can be achieved either by
passing the output through a logistic function, or by using empirical
probability distribution functions.

Equation (5) converts the problem of distortion function design
to the problem of finding a set of functions ¥, that would be suf-
ficiently rich to detect all types of steganographic distortions and
small enough such that the minimization will be possible. In the
rest of this section, an iterative protocol to construct such a set ¥
of classifiers for a fixed or a small set of architecture(s) of neural
networks is presented.

3.1 MinMax distortion function

The protocol to build a small but representative set of classifiers
relies on the ability of the steganographer to use any function
f : X — Rto derive a distortion function for embedding [6, 14, 19].
It further assumes that the steganograher possesses a reasonably
large set of cover contents X and some steganographic algorithm
hemp to initiate the protocol.

The protocol starts by creating a set of stego-contents ¥° using
the initial steganographic algorithm hep,. Then, a classifier f0 is
trained to classify contents from X and Y° and is added to the set
of available classifiers 5 = {f°}. To simplify notations, we also
define Z° = YO,

In the next iteration, the steganographer creates a set of stego
contents Z! by attacking f°. Then from Z° and Z! the steganogra-
pher generates a new set of stego contents, Y, by always selecting
the most difficult version with respect to the set of available classi-
fiers £° (which at the moment contains only f°) as

Y= z|z = argmin max f(z) ,1<i<ng, 6)
ze{2%,2}} f€F°

where z; denotes a stego content from Z~ created from a cover
content x; € X. We recall here that the output of a detector f to be
respectively positive / negative if content x is respectively classified
as stego / cover. It is why the steganographer aims at minimizing
the output of f. The steganographer then continues by creating
a new classifier f! classifying X and ! and adding it to 0. His

new set of classifiers is #1 = 0 U {f'}.
At the k™ jteration of the protocol, the steganographer creates
a set of contents Z* attacking the classifier trained in the previous
iteration fk_l‘ Contents Z°,Z1,. .., Zk are then used to create a
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Figure 1: [llustration of a creation of a stego image y° at itera-
tion k = 3 by the min max strategy using {z°, z!, 2%, z%}. We as-
sume linear classifiers and the function f(z/) is the algebric
distance w.r.t. the separation plane. Dashed lines are for pos-
itive distances, dotted lines for negative ones, and bold lines
are max; f'(z/). Here the min max strategy outputs y> = z°.

Note that the adversarial embedding fails for z? here.

Adversarial stego sets Cover set Classifiers
0 1 gkl I AR fEt

Generation of an adversarial

stego set

min max

strategy

Stego set

Figure 2: Diagram of the protocol at iteration k.

new set of stego contents Y k by selecting those that are maximally
undetectable by any detector f € %1 i.e.

Yk={zlz= arg min max f(z),1<i<n;. (7)

0 1 k k-1
2€{z},2;,...,2; }f€7:

Contents Y* are then used to train a new classifier f k between
covers X and Y, which is added to the set, i.e. 7% = Fk~1u {fk}.
The creation of ¥¥ by using the min max protocol is illustrated in
Figure 1. The whole protocol is illustrated in Figure 2.

The following theorem proves that the above protocol converges
under mild conditions on ¥, albeit it does not prove the solution
to be optimal. Consequently, this protocol avoids pathological be-
havior like periodicity.

THEOREM 3.1. Let F = {f : X — R} be a set of functions and let
FLF2 ., (Fk, ... be a sequence of subsets such that FlcF?c
... FK c ... c F. Furthermore let all functions f € F be
bounded by some constant c, i.e. (3c € R)(Vf € F)(Vx € X)(f(x) <
c).

Then the limit f(x) = limg_, o, max cik f(x) exists.
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PrOOF. Let define the function £, (x) = max = f(x). Then

for every x € X, the sequence £, (X), filoxX), ..., fK (X), ... is
nondecreasing and because of the boundedness assumption Vf € ¥
, f(x) < ¢, the sequence is bounded by ¢ as well. The monotone
convergence theorem then states that the sequence frﬁax(x) con-
verges to some value, which is denoted by f(x), which proves the
theorem. ]

The above theorem implies that, when k is large, the maximiza-
tion wrt. f € F*1is replaced by f (or a function e-close to
f. A

The protocol defines detectability f(x) as a limit

f (x) = lim max f(x).
k—co regi

Note that the security of the resulting steganographic algorithm
depends on two factors: (i) the set of all possible detectors 7 (ii)
the quality attack on the classifier f € #. Thus improving any of
them should improve the quality of the scheme.

Theorem 3.1 assumes functions f € ¥ to be bounded. This con-
dition can be trivially ensured for any function based on machine
learning classifiers, as they are already bounded (e.g. Neural Net-
works), or they can be trivially bounded by applying some scaling or
passing their output through a bounded and monotonous functions
like tanh .

4 EXPERIMENTS

To implement the protocol introduced in the previous section, we
need (i) a suitably general set of classifiers ¥, and (ii) an embedding
algorithm to embed some message into a cover object while avoid-
ing being detected by f € ¥ . The rest of this section describes the
different ingredients of our protocol, which are later used in this
experimental section.

4.1 Choice of classifiers ¥

Similarly to [9], we choose to attack Convolutional Neural Net-
works (CNN) since the classification function is differentiable and

consequently it is easy and fast, using GPUs, to evaluate % CNNs
are not detailed here, as their inner functionality is not important
for the paper and for the method. A reader interested in details is
referred to [8] for general introduction and to [15, 23, 24] for their
uses in steganography.

For the purpose of this work, it is sufficient to view neural net-
works as an efficient procedure selecting f from a large class of
functions ¥ such that f minimizes the empirical estimate of the
mis-classification error (3):

ﬁZH{f(x)>o}+
xeX

1

perr(fZXuy): |y|

E I{f(x) < 0}.
xeY
(8)

An important property of CNNs is their differentiability, which

means that a gradient - with respect to their inputs exists for
almost every x and for every f € F.

The set of classifiers ¥ is equal to all convolutional neural net-
works with an architecture known as Xu-Net [22]. We chose this
classifier for its very good performance in JPEG steganalysis, and
because its training requires less memory and is faster than deeper
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CNN s such as SRNet [4]. With shortcut connections, the depth of
Xu-Net following the shortest path is only 5, whereas it is 8 for
SRNet.

4.2 Experimental details

We detail bellow the implementations that are used to run the
presented protocol, they concern the embedding scheme, the classi-
fier/steganalyzer which is attacked, the attack, the overall strategy
to generate stego contents and the different steganalysis schemes
used to evaluate the presented embedding.

Embedding: The embedding algorithm serving to initialize the
protocol and to calculate default costs for changing elements is J-
Uniward [11]. The experiments use the JPEG version of the popular
BossBase database [3] of size 512 X 512 in grayscale format and
compressed with Quality Factor 75. All images are embedded using
an embedding rate of 0.4 bits per non-zero AC DCT coefficient
(bpnzac) at each iteration of the protocol.

Classification/Steganalysis: The proposed implementation of Xu-
Net uses the TensorFlow [1] library?. In each iteration of the proto-
col, a new steganalyzer f¥ is trained by classifying cover contents
X and stego contents Y* given by (7). This classifier is trained start-
ing with randomly initialized weights (zero mean Gaussian with
standard deviation 0.01) using 2x4000 Cover and Stego contents for
training and using remaining 2 X 6000 to estimate error rates. 290
epochs are used for training using ADAM optimization algorithm
with initial learning rate 0.001 decreased after each 5000 steps to 0.9
times the current value. Remaining parameters of Adam are kept to
default setting. The size of mini-batch is 64 (32 cover-stego pairs)
and the training uses full-size images of 512 X 512 pixels. The con-
figuration achieving the best training accuracy is used as the result
of training. The experiments were run on an Nvidia GPU Quadro
P6000 (24 GB of memory). Training XU-Net takes approximately
30 hours at each iteration k, and the generation of an adversarial
data-base 5 hours multi-threaded on 36 cores.

Attack: The ADV-EMB attack described in Section 2.2 is im-
plemented in order to adjust costs of changing DCT coefficients
according to (2). Note that in order to compute the partial derivative

g_ajc: with respect of the ith-pcT coefficient, and because XU-Net
uses a spatial image without rounding as input, IDCT is treated in
an additional layer placed as first layer. The partial derivative is
consequently handled by automatic differentiation using the func-
tion tf.gradient() from the TensorFlow library, and derivating
with respect to the image coded in the JPEG domain.

Note that it is possible that embedding using ADV-EMB fails for
some images, which means that even by modifying all costs p;, p;
of changing DCT coefficients of a cover x (e.g. f =1, L = ) w.rt
the Equation (2), the adversarial stego is classified as stego by the
classifier. As suggested in [19], in this case, the stego content which
is kept is z°, i.e. the stego obtained by J-Uniward embedding with
p=0.

ADV-EMB generates at each iteration a set of adversarial stego
Zk and a set of stego contents yk is created w.r.t the min max
strategy defined in Equation (7). In order to compute this set, one

2The codes for the experiments will be made available after publication.
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must compute all the values f(z) for f € Fklandz e Z°U
Zlu---u Zk. Because f is real-valued, it can be fairly assumed
that, for any cover content x;, there is only one z in {Z(i)’ le., R z]:}
minimizing max et f(2).

Other embedding strategies. In the paper [19] are suggested two
different iterative strategies, which are called in the following "Ran-
dom strategy" and "Last iteration strategy” and whose protocols
are illustrated in Figure 3. The random strategy differs from the
min max strategy by the attack of the steganographer, who chooses
at iteration k, for each cover, randomly and uniformly the embed-
ding scheme from Z%ZY . ..ot Z k Sothe steganalyzer trains the

classifier fk between covers X and ‘yr];ndom =Zuzlu-- -UZk.

The last iteration strategy derives from the random strategy : Z k
I - k-1
is still computed in order to fool fran dom’ but the steganographer

sends the attack ¥* . = Z¥.So fk istrained between X and
last it last it

k
‘ylast it" o )
to the min max strategy for the first six iterations.

In Table 1, the results of this two strategies are compared

Evaluation. In order to benchmark the practical security re-
lated to this new adversarial embedding scheme w.r.t. steganalysis
schemes which are different from the target adversary (here XU-
Net), we also compute DCTR [10] and GFR [18] feature sets. The
training set and the testing set here were constitued of pairs of 5000
Cover and Stego images. The regularized linear classifier [5] was
used to compute Py, defined as the minimal total classification
error probability under equal priors, Pery = minpyy, %(PrFA +Prvp)s
with Prp4 and Pryp standing for the false-alarm and missed de-
tection empirical probabilities. We also train SRNet [4] only for the
first and last iteration, because of its computational cost. The size
of images is 512 X 512, size of mini-batch is 16 (8 cover-stego pairs)
and the training lasts 290 epochs.

Adversarial stego sets Cover set Classifiers
0 1 ... k—1 k-1
z 'T f random
Generation of an adversarial
stego set
Zlc
[ train } [ train ]
k fk l .
random last it

Figure 3: Diagram of two other strategies ("random" and "last
iteration") suggested in [19] at iteration k.

4.3 Experimental results

We now evaluate the empirical security of the proposed embedding
scheme w.r.t. different steganalysis schemes. We also evaluate the
impact of the iteration parameter k and we compare the proposed
min max strategy w.r.t. other ones.

Figure 4 shows the evolution of error Perr W.r.t parameter k for
different matched classifiers f k where the term "matched classi-
fiers" means that the classifier is trained to classify cover images

IH&MMSec *19, July 3-5, 2019, TROYES, France

—+— XU-Net

S -+~ DCTR
B0 e GFR
& -+ SRNet
12,54
. *
1004+ S B s
e *
54/
¥
0 2 4 6 8

Figure 4: Pe;; of matched classifiers (this means that each
classifier is trained and evaluated on X and Y¥) for each
iteration k using different classifiers. The algorithm is op-
timized with respect to XU-net. Classifiers DCTR and GFR
are based on the combination of steganographic features
(DCTR [10] and GFR [18]) and regularized Fisher Linear Dis-
criminant classifier [5].

X and stego images Y communicated by the steganographer at
the kM-iteration of the protocol. Note also that contents in ¥¥
are selected such that they are the least detectable by the previous
trained classifier { 0, 1, ..., f¥~1}, which means that they are not
optimized with respect to the current classifier f k used to bench-
mark our embedding scheme and which is the best classifier the
detector can have since it is optimized with respect to the current
strategy of the steganalyst. This means that this evaluation scenario
obeys Kerckhoffs’ principle as the detector knows the strategy of
the steganographer.

This figure shows also that the error of the matched classifier
steadily increases for the different steganalysis methods, which
means that the resulting steganographic scheme becomes on aver-
age more and more secure after each iteration, even if after k = 6
a plateau is reached. The error rate at iteration 0 corresponds to
the error after J-Uniward steganalysis. Evaluating the quality of
the algorithm by the error Per; facing the XU-Net classifier, the
security has improved from 6.9% to 21.7% after nine iterations of
the algorithm, which is substantial.

We see that Pe,y is globaly increasing but sometimes it decreases
(see iteration k = 2). It may come from the not certainty to reach
optimization when training a new classifier, and because each clas-
sifier is randomly initialized.

If we now compare the practical security benchmarked by XU-
Net with other steganalysis schemes, we notice that the evolution
for other schemes is similar with increasing and converging unde-
tectability w.r.t. the iteration number. The improvement proposed
by this protocol is consequently not only relevant for the targeted
steganalyzer, but for a broad class of steganalysis schemes.



IH&MMSec ’19, July 3-5, 2019, TROYES, France

In Table 1 embedding strategy (7) is compared with the "random"
and "last-iteration” strategies that are suggested in reference [19].
We can see that the min max strategy offers higher practical security
until iteration k = 4, with a gain of more than 3% w.r.t. the "Random"
strategy at iteration 4 and 5% w.r.t. the "Last iteration" strategy at
iteration 2. The bad behavior of the "Last iteration" strategy can
be explained by the fact that the embedding targets a classifier
different from the one used to benchmark the scheme.?

k | o 1 2 3 4 5 6

min max 69 129 158 16.2 184 20.1 19.5
Random 69 121 124 16.2 153 154 16.2
Last iteration | 6.9 12.1 105 16.3 - 16.2 17.3

Table 1: P, (in %) given by different strategies for the first six
iterations: the min max strategy (each classifier is trained and
evaluated on X and Y*), the "random" strategy given in [19]
(each classifier is trained and evaluated on X and Z ‘buztu
...UZ¥)and finally the "last iteration" strategy where each
classifier is trained and evaluated on X and Z K,

5 CONCLUSION AND PERSPECTIVES

This paper proposes a steganographic scheme exploiting adversarial
embeddings and based on a min max strategy. This protocol can
be used to improve classical additive cost-based steganographic
schemes such as J-Uniward, but it can practically be applied on
any schemes that can locally adjust the embedding costs. Our tests
assess both the benefits of (i) iterating in order to generate more
secure stego contents and (ii) using a min max strategy instead
of randomly selecting stego contents from previous iterations or
selecting stego contents only from the last iteration.

Note also that contrary to other adversarial embedding strategies
based on tailored sampling of the costs such as GANs [20], this
scheme relies on a targeted attack to the classifier, which enables
to speed up the convergence and improves its efficiency.

Future works will be devoted to design better strategies to adjust
costs, and will also consider other strategies to attack the classifier.
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