
HAL Id: hal-02176771
https://hal.science/hal-02176771v1

Submitted on 8 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generalized Alignment-Based Trace Clustering of
Process Behavior

Mathilde Boltenhagen, Thomas Chatain, Josep Carmona

To cite this version:
Mathilde Boltenhagen, Thomas Chatain, Josep Carmona. Generalized Alignment-Based Trace Clus-
tering of Process Behavior. Petri Nets 2019 / ACSD 2019 - 40th International Conference on Appli-
cation and Theory of Petri Nets and Concurrency, Jun 2019, Aachen, Germany. �hal-02176771�

https://hal.science/hal-02176771v1
https://hal.archives-ouvertes.fr

Generalized Alignment-Based Trace Clustering
of Process Behavior

Mathilde Boltenhagen1, Thomas Chatain1, and Josep Carmona2

1 LSV, CNRS, ENS Paris-Saclay, Inria, Université Paris-Saclay, Cachan (France)
{boltenhagen,chatain}@lsv.fr

2 Universitat Politècnica de Catalunya, Barcelona (Spain)
jcarmona@cs.upc.edu

Abstract. Process mining techniques use event logs containing real pro-
cess executions in order to mine, align and extend process models. The
partition of an event log into trace variants facilitates the understanding
and analysis of traces, so it is a common pre-processing in process mining
environments. Trace clustering automates this partition; traditionally it
has been applied without taking into consideration the availability of a
process model. In this paper we extend our previous work on process
model based trace clustering, by allowing cluster centroids to have a
complex structure, that can range from a partial order, down to a sub-
net of the initial process model. This way, the new clustering framework
presented in this paper is able to cluster together traces that are distant
only due to concurrency or loop constructs in process models. We show
the complexity analysis of the different instantiations of the trace clus-
tering framework, and have implemented it in a prototype tool that has
been tested on different datasets.

1 Introduction

Process Mining is becoming an essential discipline to cope with the tons of pro-
cess data arising in organizations [1]. Now an organization can use some of the
available commercial tools to elicit and streamline its processes, so that its de-
cisions are based on the evidences found in the data. In any of these existing
software tools, the notion of trace variant is fundamental: it denotes a singular
sequential execution of the process from start to end. All observed traces that
correspond to the same permutation of activities (although the other data at-
tributes, e.g., the customer name, are different), are included into the same trace
variant. When trace variants are found, stakeholders then analyze them in order
to find out possible incoherences between observed and modeled behavior [2].

In reality, however, the previous flow for analyzing process data is not as
ideal as one may think. First, event logs that contain the process data stored
by an organization, can contain noise, a phenomenon that affects the capability
of identifying the right trace variant. Second, processes are not static entities
in organizations, but instead evolve over time, which implies also a drift on
the number and type of trace variants. Third, processes describing concurrent

behavior will tend to separate in different trace variants different interleavings of
the same Mazurkiewicz trace, although perhaps the analysis for all these traces
should be the same. The same applies in case of loops, where often it is not
necessary to separate traces that only differ in the number of loop iterations.

In this paper we present a novel clustering technique that is able to tackle the
aforementioned situations. Intuitively, the idea is to cluster the event log in a way
that traces in the same cluster can be very distant when considered as words,
but actually they correspond to the same trace variant when concurrency and
loop behavior is disregarded. We build upon a technique presented in a recent
paper [3], which assumes that a process model exists. This assumption is realistic
in many contexts, e.g., in Process-Aware Information Systems (PAIS), process
models are often available [4].

We extend the technique in [3] by allowing clustering centroids to now be
partial-orders or even subnets of the process model. We present properties that
relate them, and show how the subnet case can still be encoding in a SAT in-
stance. Correspondingly, we adapt the notion of inter- and intra-cluster distance
and spot quality criteria, so that a characterization of optimal clustering can be
defined by users.

We see a great potential on the techniques presented in this paper: first,
the techniques proposed can help into simplifying the analysis of event logs,
by enabling a better (more abstract) characterization of trace variants. Second,
the novel concurrency-and-loop-aware trace clustering proposed is significantly
more robust than the ones found in the literature, and tends to avoid redundancy
between different clusters.

Related work. Several techniques have been proposed in the last decade
for trace clustering [5,6,7,8,9,10,11]. They can be partitioned into vector
space approaches [5,7], context aware approaches [8,9] and model-based ap-
proaches [6,10,11]. All the aforementioned clustering algorithms consider only
the event log as input, and use different internal representations for producing
the clusters. In contrast, in a recent paper [3], we presented a different view
on clustering event log traces, by assuming that a process model exists. All the
aforementioned techniques do not allow concurrency or loop behavior.

The use of an explicit characterization of concurrency has been considered
recently in process discovery: the works in [12,13] show how to improve the
discovery of a process model by folding the initial unfolding that satisfies the
independence relations given as inputs. In the area of conformance checking,
the same phenomena has been observed: the work in [14] assumes traces are
represented as partial order, thus allowing again an explicit characterization of
concurrency in the problem formalization.

Perhaps the works more similar to the one of this paper are [15,16], where a
transition system representing the event log is clustered, so that a set of simpler
process models is generated. Tailored state-based properties that guarantee cer-
tain Petri net classes are used to guide the clustering, whereas in this work the
computation of subnets is unrestricted.

Our work is also related to [17] which clusters events and detects deviation.
However, our work focuses on an existing model and the results may consider
different directions like repairs while [17] gives a pre-processing of data.

Complexity of our works is related to [18] which demonstrates several meth-
ods for distance between automata. Even for dynamic functions, the complexity
have been proved PSPACE-complete and is even more complex for Petri nets
which is formalism used in this paper.

Organization of the paper. In the next section we provide an example of
the main contributions of the paper. Then, preliminaries are given in Section 3,
and Section 4 defines the quality criteria for trace clustering. In Sections 5 and 6
we present the two main clustering perspectives proposed in this paper, and
the complexity analysis of the problem of computing an optimal clustering is
reported in Section 7. Finally, in Section 8 we provide an evaluation of the
prototype implementation of the techniques of this paper over several event
logs. Section 9 summarizes this paper and provides futures research lines.

2 A Motivating Example

In [3], we introduced the idea of a trace clustering technique based on a known
process model. Each group of traces is related to a trace variant, corresponding
to a full run of the model (Def. 2), which serves as centroid. The traces in
the cluster must all be sufficiently close to the centroid. This allows to identify
executions of the model which reproduce typical observed traces, and also to
isolate deviant log traces which are too far from what the model describes. In
Fig. 1, we present an example of alignment-based clustering.

Our definitions deal with the distance between log traces and the centroid of
their cluster. Since these are usually presented as words over an alphabet of ac-
tions, a notion of distance on words is used, typically Levenshtein’s edit distance.
Sometimes, concurrency and loop behavior is not important to differentiate two
traces of a business process, as illustrated by the following example.

Example 1. Model of Fig. 1 describes the behaviors of users rating an app. First,
users start the form (s). They give either a good (g) or a bad (b) mark attached
to a comment (c) or a file (f). Bad ratings get apologies (a), a silent transition
(τ) enables to avoid them. Finally, users can donate to the developers of the app
(d). The company may be interested in grouping users by behavior, to visualize
the differences; for instance which profiles provide bad marks. Trace clusterings
of Fig. 1, 2 and 3 has been created, for a maximal distance of alignment to 1.

The order of concurrent actions, like writing a comment before or after giving
the rating, does not need to matter to distinguish behaviors in this process.
In the alignment-based trace clustering from [3], 〈s, f, b, a〉 and 〈s, b, f, a〉, of
unhappy customers who uploaded a file, differ only on concurrent actions, and
are separated in different clusters. In contrast, Fig. 2 shows a new trace clustering
approach where concurrency is disregarded, with the consequence that the two

s

f

c

g

b

a

τ

d

(a) Petri Net.

〈s, c, g〉
〈s, c, g, d〉
〈s, f, b, a〉
〈s, f, f, a〉
〈s, b, f, a〉
〈s, g, f, d, d〉
〈s, g, f, d, d, d, d〉
〈g, c, f, s, d, d〉
〈s, d, d, d〉

(b) Log L1

Centroids Traces Distance

〈s, c, τ, g〉 〈s, c, g〉 0
〈s, c, g, d〉 1

〈s, b, f, a〉 〈s, b, f, a〉 0
〈s, f, f, a〉 1

〈s, f, b, a〉 〈s, f, b, a〉 0

〈s, g, f, τ, d, d〉 〈s, g, f, d, d〉 0

〈s, g, f, τ, d, d, d, d〉 〈s, g, f, d, d, d, d〉 0

non-clustered
〈g, c, f, s, d, d〉 NA
〈s, d, d, d〉 NA

(c) Clusters

Fig. 1: Alignment-based Trace Clustering (ATC).

previous traces now belong to the same cluster. Underneath, the method uses
partial-order runs (called processes) of the model instead of sequential runs,
shown on the first column of Fig. 2.

Furthermore, donating twice or four times to the developers of the app
represent very close behaviors and accordingly, similar profiles. Hence traces
〈s, g, f, d, d〉 and 〈s, g, f, d, d, d, d〉 should then be clustered in the same group.
This is why we propose yet another trace clustering technique that allows for
repetitive behavior in the same cluster, that uses subnets of the process model.
Then the two traces below belong to a unique cluster, shown in Fig. 3.

Furthermore, aligning traces to the model is fundamental to avoid clustering
(highly) deviant traces. For instance, the log trace 〈g, c, f, s, d, d〉 is left non-
clustered in our work, but would be clustered with 〈s, g, f, d, d〉 for a trace clus-
tering based only on the log. We compared the results of clusterings to [11] which
grouped data by attributes frequency and occurrences, e.g. the activity names.
Those traces are then groups with fitting traces.

Centroids Traces Distance

s

c

g

τ 〈s, c, g〉 0

〈s, c, g, d〉 1

s

f

b

a 〈s, b, f, a〉 0

〈s, f, b, a〉 0

〈s, f, f, a〉 1

s

f

g

τ

d d
〈s, g, f, d, d〉 0

s

f

g

τ

d d d d
〈s, g, f, d, d, d, d〉 0

non-clustered
〈g, c, f, s, d, d〉 NA
〈s, d, d, d〉 NA

Fig. 2: Alignment and Partial Order based Trace Clustering (APOTC).

3 Preliminaries

3.1 Process Models and Trace Clustering

We assume process models are described as Petri nets [19]. Formally:

Definition 1 (Process Model (Labeled Petri Net)). A Process Model de-
fined by a labeled Petri net system (or simply Petri net) is a tuple N =
〈P, T, F,m0,mf , Σ, λ〉, where P is the set of places, T is the set of transitions
(with P∩T = ∅), F ⊆ (P×T)∪(T×P) is the flow relation, m0 is the initial mark-
ing, mf is the final marking, Σ is an alphabet of actions and λ : T → Σ ∪ {τ}
labels every transition by an action or as silent.

Semantics. The semantics of Petri nets is given in term of firing sequences.

Given a node x ∈ P ∪ T , we define its pre-set •x
def
= {y ∈ P ∪ T | (y, x) ∈ F}

and its post-set x•
def
= {y ∈ P ∪ T | (x, y) ∈ F}. A marking is an assignment of

a non-negative integer to each place. A transition t is enabled in a marking m
when all places in •t are marked. When a transition t is enabled, it can fire by
removing a token from each place in •t and putting a token to each place in t•.
A marking m′ is reachable from m if there is a sequence of firings 〈t1 . . . tn〉 that
transforms m into m′, denoted by m[t1 . . . tn〉m′.

The set of reachable markings from m0 is denoted by [m0〉. A Petri net is
k-bounded if no marking in [m0〉 assigns more than k tokens to any place. A Petri
net is safe if it is 1-bounded. In this paper we assume safe Petri nets.

Centroids Traces Distance

s

f

c

g

b

a

τ

d

〈s, c, g〉 0

〈s, c, g, d〉 1

s

f

c

g

b

a

τ

d

〈s, b, f, a〉 0

〈s, f, b, a〉 0

〈s, f, f, a〉 1

s

f

c

g

b

a

τ

d

〈s, g, f, d, d〉 0

〈s, g, f, d, d, d, d〉 0

non-clustered
〈g, c, f, s, d, d〉 NA
〈s, d, d, d〉 NA

Fig. 3: Alignment and Model Subnet based Trace Clustering (AMSTC).

Definition 2 (Full Run). A firing sequence u = 〈t1 . . . tn〉 such that m0[u〉mf

is called a full run of N . We denote by Runs(N) the set of full runs of N .

Given a full run u = 〈t1 . . . tn〉 ∈ Runs(N), the sequence of actions λ(u)
def
=

〈λ(t1) . . . λ(tn)〉 is called a (model) trace of N . When the labeling function λ
is injective, like in the model of Fig. 1, we sometimes identify the transition t
with its label λ(t). Then, full runs coincide with model traces. Examples for the
model of Fig. 1 are 〈s, c, g〉, 〈s, f, b, a〉, 〈s, f, g, d, d, d〉.

Definition 3 (Log). A log over an alphabet Σ is a finite set of words σ ∈ Σ∗,
called log traces.

Fig. 1c shows log traces of recorded behaviors.

Definition 4 (Trace Clustering). Given a log L, a trace clustering over L is
a partition over a (possibly proper) subset of the traces in L.

Figures 1 and 2 show two different examples of trace clustering, with 5 and
4 clusters respectively.

Alignment-based trace clustering is a particular form of trace clustering:
it relies on a model N of the observed system. The idea of alignment-based
trace clustering is to explicit the relation between log traces and full runs of
N . Concretely, each cluster of log traces will be assigned a full run u of N ,

s

e1

f

e2

b

e3

a

e4

d

e5

d

e6

d

e7

Fig. 4: Example of process of the Petri net in Fig. 1

presented as the centroid of the cluster. Hence, traces in the same cluster are
not only similar among them, but they are related to a run of the model, which
together validates a part of the model and explains the observed log traces.

Definition 5 (Alignment-based Trace Clustering (ATC) [3]). For a log L
and a Petri net N = 〈P, T, F,m0,mf , Σ, λ〉, an alignment-based trace clustering
of L w.r.t. N is a tuple C = 〈{u1 . . . un}, χ〉 where u1 . . . un (n ∈ N) are full runs
of N which serve as centroids for the clusters and χ : L→ {nc, u1 . . . un} maps
log traces either to the centroid of its cluster χ(σ), or to none of the clusters,
denoted by nc.

Each set χ−1(ui), for i ∈ {1 . . . n}, defines the cluster whose centroid is ui. The
set χ−1(nc) contains the traces which are left non-clustered.

Fig. 1 shows a clustering of the traces of a log L1 based on a model N . For
this cluster, χ−1(〈s, g, c, τ〉) is also the set of sequences: {〈s, c, g〉, 〈s, g, c, d〉}. We
remark that the traces 〈g, c, f, s, d, d〉 and 〈s, d, d, d〉 have not been classified for
this clustering.

3.2 Partial-Order Semantics

In full runs of a process model, transition occurrences are totally ordered. How-
ever transitions can be handled in different orders for the same process in case
of concurrency. In the model of Fig.1 traces 〈s, b, f, a〉 and 〈s, f, b, a〉 follow the
same process but differ by the order of the transitions.

They can however be seen as two linearizations of a common representation
based on partial-order runs which represents a process.

Definition 6 (Partial-Order Representation of Runs: Process). A (non-
branching) process P of a Petri Net N = 〈P, T, F,m0,mf , Σ, λ〉 is a tuple P =
〈B,E,G,B0, Bf , h〉 where:

– (B,E,G,B0, Bf) is a non-branching, finite, acyclic Petri Net, i.e.
• its causality relation G+ is acyclic, and
• it has no forward and no backward branchings:

∀b ∈ B ∃!e ∈ E ∪ {⊥} b ∈ e•
∀b ∈ B ∃!e ∈ E ∪ {>} b ∈ •e

where ⊥ and > are virtual events satisfying ⊥• def
= B0 and •> def

= Bf .

– h : (B ∪E)→ (P ∪ T) is a function that maps the non-branching process P
in the Petri Net N with the following relations:
• h(B) ⊆ P and h(E) ⊆ T
• ∀e ∈ E, h|•e is a bijection between •e and •h(e), same reasoning for h|e•
• h|B0

is a bijection between B0 and m0, likewise for h|Bf

Fig. 4 shows a process of the Petri Net in Fig. 1. Each event ei corresponds to
a transition of N (for instance h(e2) = f).

Definition 7 (Process representation of a full run). Every full run u of a
(safe) model N induces a process of N . This process is unique up to isomorphism
[20] and is denoted by Π(u).

In general, a process represents several full runs, which differ only by the or-
dering of concurrent actions. For instance, both sequences 〈s, f, b, a, d, d, d〉 and
〈s, b, d, d, d, f, a〉 induce the process of the Fig. 4.

We write Runs(P) for the set of full runs of the process P. For every full run

〈e1 . . . en〉 of a process P of a Petri netN , the sequence u
def
= 〈h(e1) . . . h(en)〉 ∈ T ∗

is called a linearization of P. Every linearization of P is a full run of N .

3.3 Distances Between Log and Model Traces

A key element in this work, and in Process Mining in general, is to align log traces
to full runs of the model. In this work, in particular, we target good alignment
between every log trace σ ∈ L and the centroid of its cluster u = χ(σ). By the
labeling λ of transitions of the model, full runs are mapped to words over the
alphabet Σ of actions, called model traces, and the quality of the alignment
between σ and u can be quantified as the distance dist(σ, λ(u)), where dist is a
distance between finite words over Σ. In this paper, we use Levenshtein’s edit
distance, which is usually considered appropriate in Process Mining.

Definition 8 (Levenshtein’s edit distance). Levenshtein’s edit distance
dist(w1, w2) between two words w1 and w2 ∈ Σ∗ is the minimal number of
edits needed to transform w1 to w2. Editions can be substitutions to a letter by
another one, deletions or additions of a letter in words.

We will abuse notations, and write dist(σ, u) for dist(σ, λ(u)), and dist(u1, u2)
for dist(λ(u1), λ(u2)). For example, the full run 〈s, g, c〉 and the log trace
〈s, g, d, c〉 have only one difference: the addition of d. They are at distance 1.

4 Quality Criteria for Trace Clustering

Fig. 5 shows two alignment-based trace clusterings of a new log L2, based on the
model N of Fig. 1. The two clusterings have been created for the same model
and log, and contain different centroids.

In this section, we provide criteria which contribute in the qualification of a
good clustering. We have identified the following criteria:

Clustering Centroids u Traces σ dist(σ, u) Quality criteria

C1

〈s, c, g, τ〉

〈s, f, g〉 1
d(C1) = 2

∆(C1) = 12

n(C1) = 3

č(C1) = 0.83

Φ(C1) = 3

〈s, c, g〉 0
〈s, g, c〉 2
〈s, c, g, d〉 1

〈s, b, f, a〉

〈s, f, b, a〉 2
〈s, c, b, a〉 2
〈s, b, f, a〉 0
〈s, b, c, a〉 1

〈s, f, τ, g, d, d〉 〈s, f, g, d〉 1
〈s, f, g, d, d, d, d〉 2

non-clustered
〈s, f, a, a, a〉 NA
〈s, f, b, d, d〉 NA

C2

〈s, f, g, τ〉
〈s, f, g〉 0

d(C1) = 2

∆(C2) = 14

n(C2) = 4

č(C2) = 1.0

Φ(C2) = 2

〈s, c, g, d〉 2
〈s, f, g, d〉 1

〈s, f, b, a〉

〈s, f, b, a〉 0
〈s, f, a, a, a〉 2
〈s, c, b, a〉 1
〈s, b, f, a〉 2
〈s, b, c, a〉 2

〈s, f, b, d, d〉 2
〈s, f, g, τ, d, d, d, d〉 〈s, f, g, d, d, d, d〉 0

〈s, g, c, τ〉 〈s, c, g〉 2
〈s, g, c〉 0

Fig. 5: Two possible clusterings for the same set of trace logs.

– d(C), maximum distance between a trace and the centroid of its cluster :
this criterion, defined by maxσ∈L\χ−1(nc) dist(σ, χ(σ)), will be minimized to
increase the fit of the centroids to their traces. In case of a log containing
noise, a small distance may induce many non-clustered traces.

– ∆(C), sum of distances : the sum ∆(C) def
=
∑
σ∈L\χ−1(nc) dist(σ, χ(σ)) can

be seen as a variant or a refinement of the previous criterion d(C). It will
also be minimized in order to get the most representative centroids.

– n(C), number of clusters : The number of clusters provides an interesting
perspective, which is analogous to the number of trace variants of a process
model, but in this case from the log perspective.

– č(C), ratio of clustered traces: this ratio, defined as č(C) def
= |L|−|χ−1(nc)|

|L| , is

close to 1 for a process model that covers most of the behavior of the log.
č(C) also highlights the ratio of distant traces, i.e. traces that deviate from
the model, for a given maximum distance d(C).

– Φ(C), inter-cluster distance : the distance between the centroids is also an
important parameter. For an ATC C = 〈{u1 . . . un}, χ〉, the inter-cluster

distance is defined as Φ(C) def
= mini 6=j dist(ui, uj). A larger distance involves

distant clusters, this is why this parameter should be maximized in order to
prevent overlay between the clusters.

Most of the detailed criteria come from the Data Mining domain [21,22]. Other
measures like the Dunn [23], which compares distances between items that share
or not a cluster, and the Silhouette [24], that computes if items is close enough
to their clusters instead of the others, help the user to analyze its clustering. As
usual when multiple parameters are taken into account, there will not exist in
general a unique clustering optimizing all the criteria together. Instead, every
clustering problem should consider a good balance between the parameters to
optimize. Our tool, which is described in section 8, returns the optimal clustering
for a given pre-defined setting.

Example 2. Fig 5 shows two ATCs of the model N of Fig. 1 and a new set of
log traces L2. The results differ on the parameters to optimize. The first one
minimize the inter-cluster distance Φ(C1) for a given distance between the trace
and the centroid d(C1) to 2. However, some traces are left non-clustered which
do not appear in the second clustering. In contrast, the centroids are closer
(Φ(C2) < Φ(C1)) and the number of clusters is larger (n(C1) < n(C2)).

5 Fitting Centroids to Concurrency

The aim of ATC is to group traces which are similar to a full run of the model.
In this section, we want to go further and allow one to cluster together traces
which differ only by the order of execution of transitions which are presented as
concurrent in the model. In the ATC of Fig. 1, traces 〈s, b, f, a〉 and 〈s, f, b, a〉
are clustered separately, and since no model trace is at distance ≤ 1 to both
of them, every ATC C which would cluster them together would have an inter-
cluster d(C) > 1. Yet, 〈s, b, f, a〉 and 〈s, f, b, a〉 are perfectly aligned with two
different interleavings of the same execution of the model, if one understands
“execution” as process like in Def. 6. The following definition of trace clustering,
precisely uses processes as cluster centroids.

Definition 9 (Alignment and Partial Order based Trace Clustering
(APOTC)). As full run clustering, an alignment and partial order based trace
clustering, of a log L and a Petri net N = 〈P, T, F,m0,mf , Σ, λ〉, is a tuple
C = 〈{P1 . . .Pn}, χ〉 where P1 . . .Pn (n ∈ N) are processes of N which serve as
centroids for the clusters and χ : L → {nc,P1 . . .Pn} maps log traces either to
the centroid of its cluster χ(σ), or to none of the clusters, denoted by nc.

5.1 Quality Criteria for APOTC

All the quality criteria of ATC are considered in APOTC, but they need to be
redefined now that centroids are processes. Indeed we need to compare log traces
to processes, which represent (finite) sets of full runs. Naturally, the distance
between a model trace σ and a process P will be defined as the distance to its
closest linearization of P.

Definition 10. We define the distance dist(σ,P) (abusing notation dist again)

between a trace σ and a process P as dist(σ,P)
def
= minu∈Runs(P) dist(σ, u).

This allows us to define d(C) and ∆(C) for APOTC like for ATC, respectively as
maxσ∈L\χ−1(nc) dist(σ, χ(σ)) and

∑
σ∈L\χ−1(nc) dist(σ, χ(σ)) with χ(σ) are pro-

cesses.
The inter-cluster distance of an APOTC C = 〈{P1 . . .Pn}, χ〉 is also de-

fined as for ATC, as the minimum distance between two centroids: Φ(C) =
mini 6=j dist(Pi,Pj), using the appropriate notion of distance between processes:

Definition 11. The distance between two processes is the minimal distance be-

tween their linearizations: dist(P,P ′) def
= min u∈Runs(P)

u′∈Runs(P′)
dist(u, u′).

Example 3. Fig. 2 shows an APOTC of the model and log of Fig. 1. Traces
〈s, b, f, a〉 and 〈s, f, b, a〉 can now be clustered together, yielding a smaller n(C)
for equivalent ∆(C) and d(C).

5.2 Relating APOTC to ATC

Any ATC can be casted as an APOTC. All the full runs centroids of an ATC,
which are sequential executions, can be represented as processes using Def. 7. The
following theorem explains how this transformation affects the quality criteria
of the clusterings.

Theorem 1. For any ATC Cu = 〈{u1 . . . un}, χu〉, we define ∀i ∈ {1 . . . n}
Pi

def
= Π(ui) and χP

def
= Π ◦ χu (by convention Π(nc) = nc) inducing CP =

〈{P1 . . .Pn}, χP〉 its corresponding APOTC of the same process model N and
the same log L. The distances below follow the properties:

1. d(Cu) ≥ d(CP) and ∆(Cu) ≥ ∆(CP) with equality if the model is sequential
2. Φ(Cu) ≥ Φ(CP) with equality if the model is sequential
3. n(Cu) = n(CP) and č(Cu) = č(CP)

Proof. We first observe that the obtained set {P1 . . .Pn} is by Def. 7 a set of
subnets of N and χP maps every clustered log traces to a subnet and non-
clustered log traces to nc. Then CP = 〈{P1 . . .Pn}, χP〉 is indeed an APOTC.

1. Every trace σ of L is either clustered (χu(σ) = ui, i ∈ {1 . . . n}) or non-
clustered (χu(σ) = nc). The maximum distance between traces and centroids
d(Cu) depends only on clustered traces: ∀σ ∈ L\χu

−1(nc) dist(σ, χu(σ)) ≤
d(Cu). By Def. 7 χu(σ) ∈ Runs(χP(σ)). Then for any clustered trace σ, we
have d(CP) ≤ dist(σ, χP(σ)) ≤ dist(σ, χu(σ)) ≤ d(Cu) with equality if the
model is sequential (no other run in Runs(χP(σ))). Furthermore, ∆(C) is
the sum of the distances: ∆(CP) ≤ ∆(Cu).

2. Let ui and uj , i, j ∈ {1 . . . n}, be two centroids of the ATC. The cor-
responding processes of those centroids are defined by Pi = Π(ui) and

s

f

c

g

b

a

τ

d

Fig. 6: A subnet of the Petri Net in Fig. 1. Only transitions s, g, f , τ , d are kept.
Transitions in light gray do not belong to the subnet.

Pj = Π(uj) and ui ∈ Runs(Pi) and uj ∈ Runs(Pj). This implies
dist(Pi,Pj) ≤ dist(ui, uj) with equality if the model is sequential (no other
run in the processes). Consequently Φ(CP) ≤ mini6=j dist(ui, uj) = Φ(Cu)
with equality if the model is sequential.

3. This is immediate by definition of χP . ut

As a summary, casting an ATC to an APOTC improves the distances between
traces and centroids; in contrast, the resulting APOTC may get a lower (i.e.
poorer) inter-cluster distance than the ATC. The number of clusters and ratio
of clustered traces are preserved.

This means that clusters that were distant in the ATC may become closer
in the APOTC, which appears negative when seen from the perspective of good
clusterings presenting distant clusters. But, in the other hand, clusters that
become closer will typically be those that one precisely wanted to merge because
they represent different interleavings of processes. This is exactly what happens
in Example 3. Merging clusters then results in a lower number of clusters n(C),
which also helps to get a human understandable clustering and facilitates the
analysis of the results by decision makers.

Example 4. When casting the ATC of Fig. 1 to an APOTC, the clusters with
centroid 〈s, b, f, a〉 and 〈s, f, d, a〉 become two clusters with the same process as
centroid. This leads to an inter-cluster distance Φ(CP) = 0 for the APOTC. But,
after merging these two clusters, one gets the better APOTC presented in Fig. 2.

6 Fitting Centroids to Concurrency and Repetitive
Behavior

In Fig. 2, we show that APOTC separates process arising from traces corre-
sponding to different number of loop iterations, e.g., the traces 〈s, g, f, d, d〉 and
〈s, g, f, d, d, d, d〉. The issue is due of the finite size of runs of processes. Indeed
process centroids are partial order runs which do not allow loops and infinite se-
quences of events. To overcome this limitation, we introduce subnets of models.

Definition 12 (Subnet of Petri net). A subnet of a Petri net N =
〈P, T, F,m0,mf , Σ, λ〉 is a Petri net 〈P, T ′, F|T ′ ,m0,mf , Σ|T ′ , λ〉 with T ′ ⊆ T ,

and FT ′
def
= F ∩ (P × T ′ ∪ T ′ × P).

Fig. 6 presents a subnet of the model of Fig. 1. Observe that our definition
of subnets, based on selecting transitions, restricts the semantics of the net and
cannot produce new behaviors. Formally:

Lemma 1. Every full run (resp. process) of a subnet of a Petri net N , is a full
run (resp. process) of N .

We now formalize AMSTC, which consider subnets as centroids:

Definition 13 (Alignment and Model Subnet-based Trace Clustering
(AMSTC)). For a log L and a Petri net N = 〈P, T, F,m0,mf , Σ, λ〉, an
alignment and model subnet trace clustering, of L w.r.t. N is a tuple C =
〈{N1 . . .Nn}, χ〉 where N1 . . .Nn are subnets of N which serve as centroids for
the clusters and χ : L → {nc,N1 . . .Nn} maps log traces either to the centroid
of its cluster χ(σ), or to none of the clusters, denoted by nc.

Fig. 3 shows an AMSTC of log traces based on the model of Fig. 1.

6.1 Quality Criteria for AMSTC

All the previous criteria for ATC and APOTC also apply to AMSTC, but the
notion of distance needs to be adapted again. The quality criteria d(C) and
∆(C) rely on the distance between log traces and the centroids of their clus-

ters. Here, centroids are subnets, and the distance is defined as dist(σ,N)
def
=

minu∈Runs(N) dist(σ, u). Computing this distance corresponds to aligning the
trace to the model.

The inter-cluster distance, Φ(C) is the minimal distance between two subnet

centroids, now defined as: dist(N ,N ′) def
= min u∈Runs(N)

u′∈Runs(N′)
dist(u, u′).

Example 5. Fig. 3 shows an AMSTC of the Petri Net and the log traces of Fig. 1
for d(C) = 1. Then the traces 〈s, g, f, d, d〉 and 〈s, g, f, d, d, d, d〉 are grouped in
the same cluster.

Intra-cluster distance. If applied unrestricted, AMSTC can use as centroids,
subnets with branchings and loops, and then cluster together very different log
traces. The intra-cluster distance aims at controlling this aspect. For instance,
taking as centroid the complete net of Fig. 1 would not yield a satisfactory
AMSTC. Instead, traces in the same cluster should be similar and represent
a generalized notion of trace variant. This criterion is quantified by the intra-
cluster distance Θ(C). Clusterings with low Θ(C) will be preferred.

– Θ(C), the intra-cluster distance: Before defining the intra-cluster distance of
a clustering C, we focus on each of its centroids separately: for every centroid
Nk, define

Θ′(Nk)
def
= sup
P,P′∈Proc(Nk)

dist(P,P ′)
(1 + ε)max(|P|,|P′|)

where |P| denotes the number of events in P, and ε > 0 is a parameter set
by the user in order to limit (more or less) the influence of long processes.
Indeed, when the subnet Nk has loops, it has infinitely many processes,
arbitrary large, which yields arbitrary large distance to the smaller processes.
Yet, such subnets may be relevant, as illustrated by Example 6. This is why
our definition penalizes more for distances between small processes.
Finally, the intra-cluster distance of a clustering C = 〈{N1 . . .Nn}, χ〉 is:

Θ(C) def
= max

k
Θ′(Nk)

Example 6. The AMSTC of Fig. 3 has only one centroid with a loop. Because of
the loop d, this centroid has infinitely many processes. With ε = 0.1, the intra-
cluster distance of this AMSTC is bounded by 2.39, increasing ε to 0.5 returns
Θ(C) = 0.12 which penalizes significantly less the loop in the subnet centroid.

6.2 Relating AMSTC to APOTC

Every APOTC CP induces an AMSTC whose subnet centroids are subnets are
defined according to the process centroids of CP .

Definition 14 (Subnet induced by a process). Every process P =
(B,E,G,B0, Bf , h) of a model N = 〈P, T, F,m0,mf , Σ, λ〉, induces a subnet

of N defined by Ψ(P)
def
= (P, h(E), G|h(E), h(B0), h(Bf)).

Fig. 6 shows the subnet corresponding to the last process of Fig. 2. All the
transitions in the process belong to the subnet, and the loop fits traces with
arbitrary repetition of activity d (for instance 〈s, f, g, d, d〉 and 〈s, f, g, d, d, d, d〉).

The following theorem relates APOTC and the induced AMSTC, analogously
to Theorem 1 for ATC and APOTC.

Theorem 2. For any APOTC CP = 〈{P1 . . .Pn}, χPi
〉, we define ∀i ∈ {1 . . . n}

Ni
def
= Ψ(Pi) and χNP

def
= Ψ ◦ χP (by convention Ψ(nc) = nc) inducing CNP =

〈{N1 . . .Nn}, χNP 〉 its corresponding AMSTC of the same process model N and
the same log L. The distances below follow the properties:

1. d(CP) ≥ d(CNP) and ∆(CP) ≥ ∆(CNP) with equality if the model is acyclic
2. Φ(CP) ≥ Φ(CNP) with equality if the model is acyclic.
3. n(CP) = n(CNP) and č(CP) = č(CNP)

Proof. The correspondance APOTC-AMSTC is similar to the correspondance
ATC-APOTC demonstrated in Theorem 1. When properties exactly coincide
between ATC and APOTC for sequential models, same results are found between
APOTC and AMSTC for acyclic models: without loops, every subnet has a single
process and the distances are preserved. ut

As subnets may allow infinite runs, the sum of differences ∆(C) between log
traces and centroids may decrease in an expansion from APOTC to AMSTC.
Unfortunately, the inter-cluster distance Φ(C) can also be lower.

When AMSTCs meet APOTCs. Observe that, in our definition of AM-
STC, only the behavior of the subnets is considered. Hence, nothing penalizes a
clustering for having dead transitions in a cluster, i.e., transitions which do not
participate in any full run of the subnet. Intuitively, this situation is not satis-
factory since we expect the subnets to give information about the part of the
net which really participates in the observed traces. By the way, notice that the
subnets induced by processes following Def. 14 never have any dead transition.
These subnets also have another property: they all have at least one full run. Let
us call fair an AMSTC in which every centroid has these two properties. The
following theorem establishes a relation between APOTCs and fair AMSTCs.

Theorem 3. For a log L and an acyclic and trace-deterministic3 model N ,
the transformation defined in Theorem 2 establishes a bijection from the set of
APOTC to the set of fair AMSTCs C with intra-cluster distance Θ(C) = 0.

Proof. Since N is acyclic, for every process P of N , the subnet induced by P has
no other process than P itself. This proves that any AMSTC C obtained from an
APOTC has intra-cluster distance Θ(C) = 0. It is also fair as we noticed earlier.

Now, every centroid Ni of a fair AMSTC C with Θ(C) = 0 has a single process
(call it Pi): indeed, since the model is trace-deterministic, every subnet centroid
in C having two different processes would lead to Θ(C) > 0. This establishes a
bijection between the centroids of fair AMSCs with intra-cluster distance 0, and
the processes of N , which serve as centroids in APOTCs. This bijection between
centroids induces naturally our bijection between APOTCs and AMSTCs. ut

In summary, AMSTC handles both concurrency and repetitive behavior, and
under some situations behaves similarly to APOTC.

7 Complexity of Alignment-based Trace Clusterings

For a log L and a model N , one is typically interested in computing a trace
clustering (ATC, APOTC or AMSTC) C of L w.r.t. N of sufficient quality, i.e.
satisfying some constraints on the quality criteria d(C), ∆(C), n(C), č(C). . . We
will see that, at least from a theoretical point of view, the complexity lies already
in the existence of a clustering, and the specification of many quality constraints
does not change the complexity.

For a non-empty log L and a model N , there exists an ATC C of L w.r.t. N
having č(C) > 0 (i.e. such that at least one trace is clustered), iff N has a full
run. Indeed, when no constraint is given about the quality criteria d(C), ∆(C),
n(C), Φ(C). . . , any full run of N can serve as centroid, and any log trace can
be assigned to any cluster. The same holds for APOTC, where centroids are
processes of N , since N has a process iff N has a full run; it holds again for
AMSTC, taking into account the constraint that any subnet used as centroid
should have a full run, or the stronger constraint that the subnet should not
have any dead transition, as discussed in Section 6.2.

3 N is trace-deterministic if the mapping u ∈ Runs(N) 7→ λ(u) ∈ Σ∗ is injective.

Now, deciding if a model has a full run u, corresponds to checking reachability
of the final marking. The problem of reachability in Petri nets is known to be
decidable, but non-elementary [25], and still PSPACE-complete for safe Petri
nets. But the complexity trivially drops to NP-complete4 if a bound l is given
(with l an integer coded in unary) on the length of u.

In practice, relevant clusterings will not use very long full runs (or processes
for APOTC) as centroids. Also for AMSTC, no very long full run will be consid-
ered in the computation of d(C), ∆(C) or Φ(C). Typically, a bound l on the length
of the full runs can be assumed, for instance 2 times the length of the longer log
trace. Let us call l-bounded a trace clustering satisfying this constraint.

Theorem 4. The problem of deciding, for a log L, a model N , an integer bound
l, integers dmax, ∆max, nmax and a rational number čmin, the existence of a l-
bounded ATC (respectively APOTC, AMSTC) C of L w.r.t. N , having d(C) ≤
dmax, ∆(C) ≤ ∆max, n(C) ≤ nmax and č(C) ≥ čmin, is NP-complete.

Proof. As observed earlier, the problem is NP-hard even with the only constraint
that at least one trace is clustered (i.e. č(C) > 0, or equivalently č(C) ≥ 1

|L|). It

remains to show that it is in NP: indeed, if there exists a (l-bounded) clustering,
there exists one with no more that |L| clusters (forgetting empty clusters cannot
weaken the quality criteria); and, by assumption, the size of centroids (defined as
|σ| for ATC, |P| for APOTC, number of transitions in the subnet for AMSTC)
is bounded by l. So, it is possible to guess a clustering C in polynomial time. For
APOTC and AMSTC, one can also guess in P time the full run u ∈ Runs(χ(σ)),
for every clustered trace σ, which will achieve the dist(σ, χ(σ)). Now, checking
that C satisfies the constraints, only requires to compute Levenshtein’s edit dis-
tances and minima over sets of polynomial size. This can be done in P time. ut

For ATC, the problem remains in NP with an additional constraint on the
inter-cluster distance (Φ(C) ≥ Φmin) because the inter-cluster-distance can be
computed in P time.

On the other hand, incorporating new constraints like bounds on Φ(C) for
APOTC or AMSTC, or on the intra-cluster distance Θ(C), may increase the
complexity. The principle of the algorithm remains: guess non-deterministically
a clustering, then check if it satisfies the constraints. Hence, the complexity
depends on the complexity of the algorithm used as an oracle to check, given
a log, a model and a clustering C, if C satisfies the constraints. Precisely, if
there exists such an oracle algorithm in some complexity class A, then the l-
bounded trace clustering problem is in NPA. For instance, for APOTC, checking
if Φ(C) ≥ Φmin is in NP; in consequence, the trace clustering problem with such
constraint is in NPNP. We get the same result for constraints on the intra-cluster
distance (Θ(C) ≥ Θmin) for AMSTC.

4 NP-hardness can be obtained by reduction from the problem of reachability in a safe
acyclic Petri net, known to be NP-complete [26,27].

8 SAT Encoding and Experimentation

The NP-completeness established in Theorem 4 for our trace clustering problems
suggests to encode them as SAT problems. For each clustering problem, our tool
DarkSider constructs a pseudo-Boolean5 formula and calls a solver (currently
minisat+ [28]). Every solution to the formula is interpreted as a trace clustering.
This is already what we did for a version of ATC presented in our previous
paper [3], to which we refer the reader for a more detailed description of the
SAT encoding. Here, we present the main ideas for the encoding of AMSTC,
which is done in the same spirit6.

The assignment of log traces to clusters in an AMSTC C = 〈{N1 . . .Nn}, χ〉
is encoded using variables (χσk)σ∈L, k=1...n meaning that χ(σ) = Nk. Variables
(ckt)k=1...n, t∈T code the fact that transition t appears in subnet Nk.

In order to encode that a sequence u = 〈t1 . . . tn〉 is a full run of N (or of a
subnet Nk), we use a set of Boolean variables:

– τi,t for i = 1 . . . n, t ∈ T : means that transition ti = t; and
– mi,p for i = 0 . . . n, p ∈ P : means that place p is marked in marking mi

reached after firing 〈t1 . . . ti〉 (remind that we consider only safe nets, there-
fore the mi,p are Boolean variables).

They are involved in constraints like, for instance:

– Initial marking:
(∧

p∈m0
m0,p

)
∧
(∧

p∈P\m0
¬m0,p

)
– Transitions are enabled when they fire:

∧n
i=1

∧
t∈T (τi,t =⇒

∧
p∈•tmi−1,p).

Finally, variables δσi are used to detect and count the mismatches between
a (clustered) log trace σ ∈ L and the (closest) execution of the subnet χ(σ)
which serves as centroid for its cluster. These variables are needed to encode
the constraints d(C) ≤ dmax and ∆(C) ≤ ∆max, or to construct a minimization
objective for the solver when one wants to find AMSTC which minimize these
quantities.

As explained in Section 7, dealing with constraints about the inter-cluster
and intra-cluster distance pushes our AMSTC problem out of the NP complexity
class. Concretely, this means that such constraints are not adapted for a SAT
encoding. Instead, we use an approximation of the inter-cluster distance, by
bounding the number of common transitions between centroids, and the intra-
cluster distance, by bounding the number of transition per centroids.

8.1 Experimental results

Our tool DarkSider7 implements the computation of ATCs and AMSTCs and
optimizes the inter-cluster distance and the proportion of clustered traces.

5 Pseudo-Boolean constraints are generalizations of Boolean constraints. They allow
one to specify constant bounds on the number of variables which can/must be as-
signed to true among a set V of variables.

6 Due to AMSTC being the most general trace clustering, our experiments focus on
this method.

7 https://github.com/BoltMaud/darksider

Model |L| Clustering
Formulas size Execution

d(C) n(C) Φ(C) č(C)
Reference |T | |P | Variables Constraints Time (sec)

Fig. 1 8 7 12 ATC 13854 26457 0.66 2 3 3 1.0
Fig. 1 8 7 12 ATC 13854 26457 0.50 0 3 2 0.25
Fig. 1 8 7 12 AMSTC 27306 51897 1.52 2 2 2 1.0
Fig. 1 8 7 12 AMSTC 27306 51897 1.14 0 3 1 0.83

Fig. 1 8 7 300 ATC 348800 641530 1252.53 2 3 2 0.91
Fig. 1 8 7 300 AMSTC 868592 1641844 1449.14 2 2 4 0.99

subnet of M1 [29] 17 14 12 ATC 98924 218568 9.18 2 3 1 0.38
subnet of M1 [29] 17 14 12 AMSTC 191876 418462 15.76 2 2 5 0.54

subnet of M1 [29] 17 14 100 ATC 433491 925574 124.57 2 3 3 0.80
subnet of M1 [29] 17 14 100 AMSTC 1185839 2573419 5659.75 2 2 5 0.95
subnet of M1 [29] 17 14 100 AMSTC 1185839 2573419 ao:100.16 2 2 5 0.95

M1 [29] 40 40 12 ATC 297176 678664 108.30 3 2 5 0.41
M1 [29] 40 40 12 AMSTC 713769 1656046 88.27 3 2 5 0.5
M1 [29] 40 40 100 ATC 692247 1385046 ao: 309.50 3 3 3 0.80
M1 [29] 40 40 100 AMSTC 4978835 11559283 ao: 230.12 3 3 3 0.83

Table 1: Experimental results for the computation of ATC and AMSTC with
our tool DarkSider, obtained on a virtual machine with CPU Intel R©Core i5-
530U-1.8GHz*2 and 5.2GB RAM.
ao (almost optimal) indicates experiments where we stopped the SAT solver
before it finds an optimal solution; this way, we got much better execution times
and still very satisfactory solutions.

We firstly experimented the clusterings of the model in Fig. 1 and the logs of
Fig. 5. We increased the log size and the model size to observe the limits of finding
optimal solutions of our alignment-based trace clustering problems. Log traces
are slightly noisy, to show different kinds of solutions. As the computation of
∆(C) takes time due to the numerous combinations for the pseudo-SAT encoding,
this criterion has been removed for testing various sizes entries. Likewise, for
the complexity reasons explained in Section 7, our tool does not implement the
optimization of the inter-cluster distance Φ(C); it simply computes it a posteriori.

Table 1 shows experimental results. Our encoding automatically gets the
minimal number of required clusters which is usually a parameter to set [22].
Notice that our tool computes optimal clusterings for a given setting w.r.t. the
inter-cluster distance. Of course, this quest of optimality is very expensive in
computation time. This is why, for the larger problems, we stopped the solver
after it found solutions that we considered close to the optimal. These experi-
ments are labeled ao in Table 1. For the model with 17 transitions and 14 places
and 100 traces, this dramatically decreased the execution time from 5659.75 to
100.16 seconds.Furthermore, for larger logs and larger models, like 100 traces
and the model M1 of [29], we stopped the computation of the optimum, however
we got almost optimal results with a ratio of clustered traces to 0.83, where the
optimum would be 0.95.

9 Conclusion and Future Work

In this work, we have investigated novel alignment-based trace clustering tech-
niques, that generalize the notion of centroid in different directions: concurrency
and repetitive behavior. The paper proposes quality criteria for characterizing
trace clustering, and adapts them for each one of the new instantiations pro-
posed. Also, the situations where the two different instantiations collapse are
described formally. Furthermore, a complexity analysis on the different instan-
tiations of the methods is reported. The approach has been implemented and
tested over some datasets, showing that it can be applied in practice.

As future work we have many avenues to follow: first, we plan to investigate
the SAT encoding and interaction with the SAT solver, so that a better perfor-
mance can be attained. Second, we plan to explore applications of the theory of
this paper; we see several possibilities in different process mining sub-domains,
ranging from concept drift, down to predictive monitoring.

Acknowledgments. This work has been supported by Farman institute at ENS

Paris-Saclay and by MINECO and FEDER funds under grant TIN2017-86727-C2-1-R.

References

1. van der Aalst, W.M.P.: Process Mining - Data Science in Action, Second Edition.
Springer (2016)

2. Carmona, J., van Dongen, B.F., Solti, A., Weidlich, M.: Conformance Checking -
Relating Processes and Models. Springer (2018)

3. Chatain, T., Carmona, J., van Dongen, B.F.: Alignment-based trace clustering.
In: Conceptual Modeling - 36th International Conference, ER 2017, Proceedings.
(2017) 295–308

4. Dumas, M., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Process-Aware Informa-
tion Systems: Bridging People and Software Through Process Technology. Wiley
(2005)

5. Greco, G., Guzzo, A., Pontieri, L., Saccà, D.: Discovering expressive process models
by clustering log traces. IEEE Trans. Knowl. Data Eng. 18(8) (2006) 1010–1027

6. Ferreira, D.R., Zacarias, M., Malheiros, M., Ferreira, P.: Approaching process
mining with sequence clustering: Experiments and findings. In: Business Process
Management, 5th International Conference, BPM 2007, Proceedings. 360–374

7. Song, M., Günther, C.W., van der Aalst, W.M.P.: Trace clustering in process
mining. In: Business Process Management Workshops, BPM 2008 International
Workshops, Milano, Italy, September 1-4, 2008. Revised Papers. (2008) 109–120

8. Bose, R.P.J.C., van der Aalst, W.M.P.: Context aware trace clustering: Towards
improving process mining results. In: Proceedings of the SIAM International Con-
ference on Data Mining, SDM 2009. (2009) 401–412

9. Bose, R.P.J.C., van der Aalst, W.M.P.: Trace clustering based on conserved pat-
terns: Towards achieving better process models. In: Business Process Management
Workshops, BPM 2009 International Workshops, Revised Papers. (2009) 170–181

10. Weerdt, J.D., vanden Broucke, S.K.L.M., Vanthienen, J., Baesens, B.: Active trace
clustering for improved process discovery. IEEE Trans. Knowl. Data Eng. 25(12)
(2013) 2708–2720

11. Hompes, B., Buijs, J., van der Aalst, W., Dixit, P., Buurman, H.: Discovering
deviating cases and process variants using trace clustering. In: Proceedings of the
27th Benelux Conference on Artificial Intelligence (BNAIC 2015). (2015)

12. Ponce de León, H., Rodŕıguez, C., Carmona, J., Heljanko, K., Haar, S.: Unfolding-
based process discovery. In: Automated Technology for Verification and Analysis
- 13th International Symposium, ATVA 2015, Proceedings, Springer (2015) 31–47

13. Ponce de León, H., Rodŕıguez, C., Carmona, J.: POD - A tool for process discovery
using partial orders and independence information. In: Proceedings of the BPM
Demo Session 2015 Co-located with the 13th International Conference on Business
Process Management (BPM 2015). (2015) 100–104

14. Lu, X., Fahland, D., van der Aalst, W.M.P.: Conformance checking based on
partially ordered event data. In: Business Process Management Workshops - BPM
2014 International Workshops, Eindhoven, Revised Papers. (2014) 75–88

15. de San Pedro, J., Cortadella, J.: Mining structured Petri nets for the visualization
of process behavior. In: Proceedings of the 31st Annual ACM Symposium on
Applied Computing. (2016) 839–846

16. Mokhov, A., Cortadella, J., de Gennaro, A.: Process windows. In: 17th Interna-
tional Conference on Application of Concurrency to System Design, ACSD 2017.
(2017) 86–95

17. Lu, X., Fahland, D., van den Biggelaar, F.J., van der Aalst, W.M.: Detecting
deviating behaviors without models. In: International Conference on Business
Process Management, Springer (2016) 126–139

18. Benedikt, M., Puppis, G., Riveros, C.: Regular repair of specifications. In: Pro-
ceedings of the 26th Annual IEEE Symposium on Logic in Computer Science, LICS
2011. (2011) 335–344

19. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the
IEEE 77(4) (April 1989) 541–574

20. Engelfriet, J.: Branching processes of Petri nets. Acta Informatica 28(6) (1991)
575–591

21. Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. The-
oretical Computer Science 38 (1985) 293–306

22. Berkhin, P.: A survey of clustering data mining techniques. In: Grouping multidi-
mensional data. Springer (2006) 25–71

23. Dunn, J.C.: A fuzzy relative of the isodata process and its use in detecting compact
well-separated clusters. (1973)

24. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation
of cluster analysis. Journal of computational and applied mathematics 20 (1987)
53–65

25. Czerwinski, W., Lasota, S., Lazic, R., Leroux, J., Mazowiecki, F.: The reach-
ability problem for Petri nets is not elementary (extended abstract). CoRR
abs/1809.07115 (2018)

26. Stewart, I.A.: Reachability in some classes of acyclic Petri nets. Fundam. Inform.
23(1) (1995) 91–100

27. Cheng, A., Esparza, J., Palsberg, J.: Complexity results for 1-safe nets. Theor.
Comput. Sci. 147(1&2) (1995) 117–136

28. Eén, N., Sörensson, N.: Translating pseudo-boolean constraints into SAT. JSAT
2(1-4) (2006) 1–26

29. Taymouri, F., Carmona, J.: Model and event log reductions to boost the com-
putation of alignments. In: Proceedings of the 6th International Symposium on
Data-driven Process Discovery and Analysis (SIMPDA 2016). (2016) 50–62

