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The Ito-Tanaka Trick : a non-semimartingale approach

Laure Coutin* Romain Duboscq' Anthony Réveillact
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Abstract

In this paper we provide an Ito-Tanaka-Wentzell trick in a non semimartingale context. We
apply this result to the study of a fractional SDE with irregular drift coefficient.
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1 Introduction

Consider the following ODE :
t
Ty = T +/ b(s,xs)ds, te€l0,T], z€ R, (1)
0

with b : [0, T]xR? — R? a given vector field. The well-posedness of this equation is obviously related
to the smoothness of the coefficient b and in particular famous counter-examples to uniqueness can
be derived even in dimension one. The so-called Peano example fits into that paradigm and consists
of choosing :

d=1, xp=0, b(t,z):=V2sgn(z)\/|z],

for which any mapping of the form ¢ +— +(t — t0)? (with ¢y in [0,T]) is solution to (). However,
the seminal works [I4] [I5] put in light the remarkable fact according to which the well-posedness of
the ODE can be obtained under very week conditions on b by adding a random force to the system,
which then becomes the following SDE :

t
X =z —|—/ b(s, Xs)ds + oWy, te€[0,T], xzo€RY (2)
0

with ¢ > 0 and W a Brownian motion on R? (we use the notation X to stress than the solution is
not deterministic anymore). This phenomenon is usually referred to regularization by noise effect
or stochastic reqularization. To be more precise, pathwise uniqueness can be obtained for Equation
@) for any vector field b satisfying weak regularity conditions : a boundedness assumption ([I4]) or
a Ladyzhenskaya-Prodi-Serrin (LPS) type condition (see [9]) b € L4(]0, T]; LP(R%)) :

d 2

—+-<1, pqg=>2. (3)
P q
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In addition, this result can be captured and quantified by the so-called [t6-Tanaka trick or Zvonkin’s
tranform (J5]) which reads as follows :

T T
/ b(t, X, + z)dt = —F(0, Xo + z) — / VE(t, X, + ) dW,, (4)
0 0

and which relates the process X to the solution F : [0,7] x R? — R? of the parabolic system of
PDEs
O F(t,x) + LXF(t,x) = b(t,z), V(t,z) € [0,T) x R?, (5)
F(T,r) =0, VacRY

with LX®(z) := b(s,z)- V®(2) + 2 Ad(x). Indeed, one can prove (see for a precise statement |5, [])
that the solution F' to the PDE admits two weak derivatives in space and one in the time variable
which entails that for any positive time ¢, the mapping

¢
x / b(s, Xs + x)ds
0
is more regular than the field b itself (recall Relation ().

Note that investigating such regularization effect for ODEs finds interest in fluid mechanics equa-
tions which take the form of (non-linear) transport PDEs (we refer to [I] for a survey on that
account). For that purpose, the LPS condition () provides a natural framework in which fits this
paper. However determining if the counterpart of the previous paradigm for ODEs transfers to
non-linear transport PDEs is valid or not is mainly an open question. Although, most references in
the literature, where regularization effects for SDEs are obtained, are based on the Ité-Tanaka trick
it does not constitute the only technic for that regard (see for instance [T}, 3]).

In this paper we investigate a general framework in which the It6-Tanaka trick is valid. Indeed, at
this stage, one can point out at least two limitations to Relation (). First, the strong link to the
PDE (@) seems to be bound to the semimartingale realm (where one relates an SDE as a probabilis-
tic counterpart of a parabolic PDE using the It6 formula). Another limitation is to investigate if
Relation () can be extended to random fields b. Note that this step seems somehow mandatory to
study the (possible) regularization phenomenon for a class of fluid mechanics equations which takes
the form of non-linear transport PDEs (we refer to the comment [5], page 6] on that question). For
instance, counter-examples can be derived in the case where b is random as this extra randomness
can cancel the effect of the noise W. As an example, consider b : [0,7] x R? — R? a non-smooth
deterministic field, and b : Q x [0, 7] x RY — R? defined as : b(w,t,z) := b(t,z — cW;(w)), then it
is clear that SDE
dX; = b(t, X;)dt + odWy,

is equivalent to the deterministic ODE (by setting x; := Xy — oWy) :
dxt = b(t,xt)dt

This example enlights the fact that somehow the randomness and space variables (w,z) have to
be decoupled for a relation of the form (@) to be in force. In [4], the authors have extended the
Ito-Tanaka trick to that framework, for which the improvement of regularity is obtained if the field
b is Malliavin differentiable. In particular, this extra randomness is harmless for the regularity in
the space variable for b if (w,x) are "decoupled".

In this paper we revisit the It6-Tanaka trick for random fields b and a non-semimartingale driving
noise. More specifically, we bound ourselves to the case of a fractional Brownian motion (fBm) noise



which allows one to compare our results with for instance the work [3] in which pathwise uniqueness
is proved for SDEs of the form (with W replaced by a fBm) but without using the Ité-Tanaka
trick. Our approach is based on the use of Malliavin calculus arguments allowing one to escape the
semimartingale context and to consider random fields b. To illustrate our key argument, we provide
informal computations in the following particular example : d =1, b: R — R (so b is deterministic
and does not depend on the time variable). We stress that our main result is valid in any finite
dimension and for a time-dependent vector field b, which is random (more precisely adapted accord-
ing to assumptions presented in Section B]). Consider once again the solution X to the SDE (),
and let (P/X);>o the transition operator associated to it. For any fixed time ¢ > 0, assuming that
the random variable A; = b(t, X; + x) is square integrable, one can apply the Clark-Ocone formula
(which will be recalled below as Relation (I3])) to get

t
Ay = E (A4 Fo] + / E (D, A/l 7] dW,
0

where D denotes the Malliavin derivative (which will also be recalled in the next section). Hence,
very formally, integrating with respect to ¢, we obtain :

T T T t
/ b(t, Xy + x)dt = / PXb(t, Xo + z)dt + / / D P b(t, X, + 2)dW,dt
0 0 0 0

T T rt
PXb(t, Xo + z)dt + / / %Pff SOt X + x)dWdt
0

/ PXb(t, Xg + dt+/ / Pt O(t, X5 + x)dtdWs,

where we have used stochastic Fubini’s theorem. This relation exactly matches with the Ito-Tanaka
trick (@) as the mild solution F' to the PDE (Bl writes down as :

T
—/ Pt)fsb(t,x)dt, te0,T], =€ R, (6)

From these simple and very formal computations, one can make several remarks. First, the
regularization effect is contained in the form of the solution to the PDE (using the semigroup as-
sociated to X). Then, this approach seems restricted to the deterministic case, as a measurability
issue would prevent one to define the stochastic It6 integral fo fT 9 PX.b(t, X + z)dtdW, even
in the case of an adapted random field b. This problem has been solved in [4] where the PDE has
to be replaced by a Backward Stochastic PDE whose solution is explicitly given as the predictable
projection of the solution to the PDE (&)). However, BSPDEs can only be solved and studied in a
semimartingale context. The main idea of this paper is to use the classical representation of a fBm
as the Ito integral of a well-chosen kernel against a standard Brownian motion, and to the apply
(several times) the Clark-Ocone formula to a functional of the form (@l). This functional will not
be a solution to a PDE (or a BSPDE) which fits with the well-known result according to which the
fBm cannot be related to a Markov semi-group, but it somehow plays this role. The several use of
the Clark-Ocone formula allows us to precisely take into account the randomness coming from the
field b and from the noise. Hence we obtain a generalization of the Ité-Tanaka trick as Theorem [
We apply this result to recover the well-posedness of the fractional SDE associated to b in Theorem 21

Finally, we would like to make a comment on the reference [3] where the authors prove the well-
posedness of the fractional SDE. The proof relies on two ingredients: the study of the Fourier trans-
form of the occupation measure related to W (to be more specific, on the (p,7)-irregular property
of W) and the reformulation of the SDE as a Young-type ODE where the time-integral of the drift



is reinterpreted as a Young integral. The (p,y)-irregular property of W provides the regularization
effects of W and the authors do not rely on the It6-Tanaka trick but on a kind of discrete martingale
decomposition and a Hoeffding lemma. We remark that this martingale decomposition possesses
some similarities with the Clark-Ocone formula. In Section l] we follow the same reformulation (and
the argument to construct the Young integral) to prove the existence and uniqueness of a fractional
SDE but we do not prove exactly the (p,~)-irregular property since we rely on more straightfor-
ward strategy in Sobolev spaces (at the cost of an embedding to recover estimates in Holder spaces).

We proceed as follows. In the next section we present the main notations. The main result (Theo-
rems [I]) is presented in Section 3. The application to uniqueness of fractional SDEs (with additive
noise) with adapted coefficients is presented in Section @l The proof of Theorem [Ilis postponed to
Section

2 Notations and preliminaries

2.1 General notations

Throughout this paper T denotes a positive real number, A stands for the Lebesgue measure and
B(E) denotes the Borelian o-field of a given measurable pace E. We set also N* the set of integers
n with n > 1.

For any z in R, we denote by xj, the k-th coordinate of x that is = (z1,...,zq).

For any r,¢ € N*, we denote by C"(R?) the set of r-times continuously differentiable (real-valued)
mappings defined on R We also let C2°(R?) the set of infinitely differentiable mappings with com-
pact support.

Let ¢ : R — R belongs to C*(R?), ¢ € N* ny,...,ngpi1,...,p; in N with Zle nf' = n, we

denote by % the partial derivative of ¢ with respect to the variables x; with order k;. Vg
i=19Ti™"

will refer to the gradient of ¢. Finally for any z and h in R?, we write V*¢(z) - h* the action of
the k-order differentiable of ¢ (noted V*¢(x)) on h* := (h,...,h). Finally, we denote by A the

Laplacian operator.
For p,m € R, we set

wrr®?) = {o e R FH(([L+[67)™/2) € LPRY) },
the usual Sobolev spaces equipped with its natural norm

[P——— Hf’l ((+ |£|2]m/2¢)‘

Lr(R%)
where ¢(€) = F(¢)(€) and F (resp. F~!) denotes the Fourier transform (resp. the inverse Fourier

transform).

We also make use of the following notation : let (£, B, ) be a mesured space and (G, || - ||¢) be a
Banach space, and r > 0. We denote by L"(€;G) the space of measurable mappings ¢ : £ — G
with

\ww%wyzéwmw%uww<+w.

Depending on the context, the definition of the integral will be made precise.



2.2 The fractional Brownian motion

Let (£, F,P) be a probability space, d € N (d > 1) and B := (B1(s), ..., B4(5))se(—oc0,r] @ stan-
dard R%-valued two-sided Brownian motion (with independent components). We set (Ft)te(—oo1]

the natural (completed and right-continuous) filtration of B. We assume for simplicity that F =
o (B(s), s € (—o0,TY).

More generally, for any R%valued stochastic process (X (t))te(,ooﬂ we will denote by X7 the jth
component of X.

The main object of our analysis will be d-dimensional fractional Brownian motion
W = (WlH(S)’ R Wf(s))se[O,T}a

defined as

Wi(s) = /8 <(5 — u)f*1/2 _ (_u)fﬂm) dBj(u), sel0,T], je{l,---,d}

where H is a given parameter in (0,1) \ {%} A crucial decomposition is on analysis relies on the
following split of the fBm W as follows :

W].H(s):/s [(s_u)f*ﬂ—(—u)f*”ﬂ dB;(u)

= [ wr =m0+ [ [l - )t 4y w)
= Wit s)+ WPt ), (7)

Note that for a given (s,t) with ¢ < s, the random variable le’H(t, s) is independent of F; whereas
the process W2H .= (W2 ¢, $))tef0,s] 18 (Ft)iepo g-adapted. It is worth noting that this decompo-
sition is somehow natural in the context of stochastic regularisation and was already used in [2] as
only the component W contributes to the regularising effect we will describe in the next sections.

We now turn to the notion of (smooth) adapted random field.

Definition 1 ((smooth) adapted random field).

(i) A random field is a Fr @ B(RY)-measurable mapping ¢ : Q@ x R — R.

(i) An adapted random field is a Fr@B([0, T])@B(RY)-measurable mapping ¢ : Qx [0, T]xR? — R
such that for any x in R, (-, x) is (Ft)tejo,r)-adapted.

(iii) A smooth adapted random field is an adapted random field ¢ such that x — p(w,t) is infinitely
continuously differentiable with bounded derivatives of any order for A\QP-a.e. (w,t) in [0,T]x
Q.

We denote by P := (Pt)te[oﬂ the Heat semigroup. For simplicity, we will use throughout this
paper, the following notation for the conditional expectation.

Notations 1. Fort in [0,T], we set B[] := E[-|F].



2.3 Malliavin-Sobolev spaces

In this section, we introduce the main notations about the Malliavin calculus for random fields.

Definition 2. (i) Consider S,.,. be the set of cylindrical random variables, that is the set of
random fields F : Q x R — R such that there exist :

neEN", 0< vy <m< <7 <T, ¢:R"xRY=ReCPR"™)

such that
F(w,z) = @(B(m), - ,B(w),z), weQ, xR (8)

(ii) The set of cylindrical random fields denoted by S, consists of random fields F : [0, T]x QxR —
R such that there exist :

neEN, 0<y <m<-— < <T, ¢:[0,T]x(RH" xR =R
such that

F(w,t,z) = o(t,B(m1), - ,B(m),z), weQ, zeR? tel0,T], 9)
where ¢(t,-) € C° (RY)" x RY), vt € [0,T], and

sup ([le(t, )l + [1£0(¢, ) lloo) < +00
te[0,7

with £ any partial derivative of any order.

(iii) The set of adapted cylindrical random fields denoted by Suq, consists of adapted random field
is a random field F : [0,T] x Q x R? — R such that there exist :

neEN , 0<y <m<- < <T, ¢:[0,T]x (RH" xR =R
such that
F(w,t,z) = p(t,B(71 At), - , Bl At),x), we xe R, te [0, 77, (10)
where ¢(t,) € C° (RY)" x RY), vt € [0,T], and

sup ([lo(t, )l + [[L(t, ) [[oc) < +o00
te[0,7

with L any partial derivative of any order.
Obviously, Sy, CS and Sgq C S.
We now define the Malliavin derivative of any adapted random field F' in S.

Definition 3. Let F' in S with representation ([9). Then, we define the Malliavin gradient DF' of
F as follows :
DF :[0,T] x Q x R — LP([0, T]; RY)

with for any j in {1, -+ ,d},



We can now define Malliavin-Sobolev spaces associated to the Malliavin and the spatial deriva-
tives for random fields.

Definition 4. Set m € R.

(i) We set DY™P the closure of S,.,. with respect to the seminorm || - ||ptmp» with
T
IF s = B Byma] + [ E (100 ] a0 )
(ii) We set Dy the closure of S with respect to the seminorm | - ||D1 mp With
T
1Py o= [V Gt (12)

This definition, requires some justifications. Indeed, note that DVEF = V¥DF for F in S,.,.
In addition, as proved in [4 Lemma Appendix A.1 and Lemma Appendix A.2|, the operators DV*
(and so V¥ D) are closable from S to LP([0,T] x  x R% R%).

Remark 1. By definition
Sud C ]Dll,’m’p, Ym>0,p>2

We conclude this section with two properties of the Malliavin derivative.

Lemma 1. (i) (Chain rule). Let F be in S and G be in S,,.. Then, for any t in [0,T], F(t,G)
belongs to S, and :

oF

(D E(,G))(u) = (D E(t,2))(u))e=c + 5— oz,

( G) ( JG)(u)a ] € {1"" ’d}’ u € [O’T]'

(ii) Let m a real number, p > 2, t in [0,T] and G be in DY™P. [f G is F;-measurable, then for
a,nyj € {17 7d} :

((D;G)(5))s>t =0, where the equality is understood in L*(Q x (t,T)).

2.4 Clark-Ocone formula

Let S;.,. be the set of random variables of the form F' = ¢(B(t1),---,B(t,)) in S (that is that do
not depend on the x-variable). We start with the following lemma whose proof can be found for

instance in |11} 12].

Lemma 2. The operator

{DP: Srv. — L2([0,T] x Q;RY)
Eo o (Bs[(DF)($)sefon

is continuous with respect to the L?(2)-norm. In particular in extends to L*(Q).

Consider F : 2 — R a random variable with E[|F|] < +00. Then for any ¢ in [0, T},
F=E/[F +Z/ ()ldB;(s) (13)
(D7F) (u) = E[(DF)(w)]

Note that by Lemma [ the operator (Es[DsF1])s is well-defined even though F' is not Malliavin
differentiable.



3 Main result

Assumption 1. Let m € R, p > 2 and « in R. An adapted random field f : [0,T] x Q x R — R
is said to enjoy Assumption [ if :

1/2— Ha—1/p>0 and fe]Dll;mfa’p.
We set :

Notations 2. (i) Given an adapted smooth random field f, we set for 0 <t <u<s<T, x €
Rd, ] € {1’ ad} :

fi(s,tx) =Be[f(s,2)]  and  gj(s,u,x) = (D7 f(s,2));(u) = By [(Dj f(s,2))(w)]  (14)
(ii) For fived x in RY, let

/T (s— t2Hf(5 W2 (t, s) + z)ds, te[0,T], (15)

= Et |:/ Pﬁ(87t)2Hf(S’ WZ’H(t, S) + ﬂ?)dS s t e [O,T] (16)

With these notations at hand we can state a non-semimartingale counterpart of the Ito-Tanaka-
Wentzell trick for as:

Theorem 1. Let f : [0,7] x @ x R* — R be an adapted random field and (p,m, ) such that
Assumption [ is in force. Then, ¥t € [0,T], we have

t t
fr, WTH + x)dr :/ Pﬁrng(r, WH(’I“) + x)dr
0 0

d ot opt
e [Py g £ W ) ) = ) 2 )
s 0 Ju 2H &€ 5
d t ot o
+ Z/ / Pt ayerr 505 (rw W2 () + ) (r — )1 2drdu
j=1 0 Ju J

d_ ot gt
- Z/o / Pﬁ(rfu)ng(r,u, W2H (u,r) 4 ) (r — u)H_l/zdrdBj(u), (17)
=170 Ju

where the equality holds in L>([0, T]; LP(£2; W™P(R%))).
Remark 2. Note that the second term in the right-hand side of Formula (I7) rewrites as :

t ot
/ / Pﬁ(r_u)gHVfa(r, u, WQ’H(u, r)+z)(r — u)H*1/2dr -dB(u),

whereas the third term is some sort of divergence term with respect to both the Malliavin derivative
and the usual spatial derivative. More precisely, if we define div"®) this joint divergence operator
(applied to a random field F : Q x R?) as :

d
3
(w,T) — i .
(dw F> = E_ oz, F(,x))(u)],
then the third term rewrites as

/ / H 1/2P 1 (7’ u) (div(w7m)f(7a7 y)) (u)|y:W2’H(U77’)+$drdu

We postpone the proof of this result to Section [l



4 Application to fractional SDEs

In this section, we use Theorem [ to obtain new results concerning the existence and uniqueness of
SDEs with singular drifts and additive fractional Brownian motions. Our result applies in fact to a
reformulation of such SDEs as Young ODEs and we state some key results around these equations.

4.1 Main result
We consider the following SDE

t
X, =X, +/ b(s, X,)ds + WH, (18)
0

where b : Q x RT x R? — R is an adapted (generalized) function and (W/7);>0 a fractional
Brownian motion of Hurst index H € (0,1). By making the following change of variable

Y= X =W

and setting, V(u,z) € RT x R?,
Ay (x) :/ b(s,z + WH)ds, (19)
0

we can relate ([I8]) to the following Young type ODE

t
%:%+/AMKL (20)
0

where the integral is understood as a nonlinear generalization of the Young integral, VZ € C7([0, T]; R%),
t
/ Ags(Zs) = lim Z 6 Ay (Z0),
0 |H[0,t] |—0
[u,v]€M[g 4

with
0Ay (7)== Ay(z) — Ay(z),

and Iljy , denoting a discretization of [0,¢]. Before stating our result, we need the following "chain
rule" assumption on the Malliavin derivative of b.

Assumption 2. Let £ > 2, q,p € [1,40], k € R, 1 € [0,1] and 0,5 € [¢, 00| such that
1 1

—( ————— >+k—1—c—i>0 and —+ —=—. (21)
o 7

We assume that b is an adapted function which belongs to L*(Q; LA([0, T]; WP (RY))) and that:

i) there exist a function a function V' € L°(Q; LI([0,T); Wk=-P(R¥*9))) and a mapping v €
L7(Q; L=([0, T] x R¥*)) such that

Dgb(t,z) =V (t,z)v(0,t), VO<t<T,P—a.s.,

where, Yt € [0,T], V'(t,z) is Fi-adapted for any x € R? and v(0,t) is a F; adapted function
for any 0 <0 <t,

i) there exists C1 € L7 (Q;RY™) such that one of the following statement is in force



o forany0<O0<s<t<T,
lv(0,t)| < C1]0 — t|1T, (22)

e 1 =0 and v(0,t) = C11{y<s where Ty, is a random variable with values in [0,1],
We can now give our result.

Theorem 2. Let T > 0. Under Assumption[2 (see below), there exists 5 > 1/2 such that Equation
(20) admits a unique solution Y € C#([0,T];RY).

Remark 3. The equality obtained in Theorem [ holds in L>([0,T]; LP(; W™P(R%))). However,
in the proof of Theorem 3, we bound an increment of each term in L*(Q; W™P(R®)). That is why
we need the stronger Assumption[d.

Remark 4. Even though b might be defined in the sense of generalized functions (or Schwarz
distribution), the Young integral 20) can still be well-defined due to reqularization effect of (W )i>q
whereas the integral of the drift in (I8) does not make sense. Nevertheless, it is possible to define a
notion of "controlled solution” for ([I8]) (see [3]).

4.2 The Cauchy problem for Young ODEs

We recall here some results on the nonlinear Young integration procedure and the Cauchy problem
related to the Young ODE. Here, we simply give the results from [3] but the reader might also be

interested in |7, [6], [10].

Definition 5. Let T' > 0, 8,7 € (0,1], I = [0,T] and V,W to Banach spaces. For all n € N, and
any mapping A : I x V. — W, we define the norm

6Asi(z) — 6 As
|Allg, = sup Sup’ +(2) W)lw

5,t€[0,T) x,yeV |t — 5|ﬁ|$ - ?/R//
s#t TFyY

)

and

3 (97844 4() | cr vaw
HA”ﬁ,nJr“/ = ”QnA”ﬁ,a,-i- sup sup 5 3 v )7
k=0 s,t€7[£0,T} z€RE ’t — S’

s#t

where © denotes the Fréchet derivative from V to W.

We can now proceed to state the results from [3]. The first result concerns the existence of the
nonlinear Young integral.

Theorem 3. Let 3,v,p > 0 with B+~vp > 1, V,W two Banach spaces and I a finite interval of R.
We consider A € CPY(I,V; W) and Y € CP(I; V). For any s,t € I such that s < t, the following
nonlinear Young integral exists and is independent of the partition

t
ATYVT = li 5Auv Yu
/8 d ( ) Hpartit%g of [s,t] Z ’ ( )
|H‘~>O [u,U}EH

Furthermore, we have

1. for all u € [s,t], the equality

/St Agr(Yy) = /Su Aagr(Yr) + /ut Aar(Yr),

10



2. the following bound

/ A (V) — AL (V) (t — 5)PtP

Sﬁmp HAH&“/HYng([;\Q
w
3. for all s,t € I such that s <t and R > 0, the map
t
Vo) [ )
is a continuous function from ({Y € CP(L;V); ||[Ylco(r,vy < R}, ||‘||Loo([s7t};v))X(Cﬁ’,y(I, VW), ||
Hﬁ?’y) tO W'

The next result gives the existence of a solution to the Equation (20).

Theorem 4. Let > 1/2, v €[0,1) such that

B(l+~v)>1.

We consider A € CP7([0,T);RY). There exists a solution Y € CP(]0,T];R?) to the nonlinear Young
differential equation 20). Furthermore, there exists a constant C' depending on 3,v,T and || A||,
such that

1Y les o,y < C(IYol +1).

We finally state a uniqueness result which only relies on the regularity of A.

Theorem 5. Let f > 1/2, v € [0,1] such that A € CPY*Y. Then, there exists a unique solution
Y € CP([0, T); RY) to the nonlinear Young differential equation (20).

4.3 Proof of Theorem

To obtain such results in our context, we need Theorem [Il and, from there, we essentially have to
derive the proper bounds on A in adequate Sobolev spaces. Before proceeding in this direction, we
recall the smoothing properties of the heat semigroup.

Lemma 3. Let m,y € R and p € (1,00). For any f € W™P(R?) and 7 € RT™, we have
1P: fllymo@ay S 77721 f lwrm—n ray-
We are now in position to prove the following result.

Proposition 1. Under Assumption[3, there exists v > 0 and 3 > 1/2 such that, up to a modifica-
tion, A € CP([0, T];C;+7 (RY)) where C;JW(RCZ) is the space of bounded and 1 + y-Hdlder functions.

Proof. Step 1: By Assumption [2] there exist 1,9 > 0 such that

d £9
S T PO g ————
oH  Hi g PR
By Theorem [ and (IJ), we have that, for any z € RY, §A4,(z) is given by

t
0 As () :/ PﬁTQHb(T, WH () + x)dr
d ot gt 9
+ Z/ / Py e g 0 W 2 (u,r) + @) (r — )2 drdB; (u)
jfl S u

11



t gt
+ Z/ Py %prj (ryu, W (u,r) + 2)(r — w) "2 drdu

j=1 S u J
d_rt gt
o Z / / Pﬁ (r—u)2H prj(r’ U, WQ’H(ua T) + x)(r - u)H_l/erdBj (u)a

]:1 S u
where we denote

DPbj(r,u, ) = (DPb(r, 2));(u).

We first estimate each term from the right-hand-side in the Lf(€Q;Wt4/P+e12(R9))-norm. We

denote
d 1 /1 2 1
m=1+-+eg=k+—=(z—-—-— €.
p H q

By a density argument, we can assume that b is a smooth random field. For the first term, we have,
thanks to Holder’s inequality and Lemma Bl

< /
M}m,p(Rd) S

S (8= )20 b g

t
‘PﬁTQHb(T")HWm,p(Rd)dT5/ p1/202 0 ater |y, S| [—

H/t P anb(r;-)dr

07T};Wk,p(Rd)) :

We now turn to the second term and use the BDG inequalit together with Lemma B to deduce
that, for any j € {1,...,d},
t rt ¢ 11/¢
- U / / Po oy, B W2 ) ) — 0) =2 drd B (u)
S u

Wmp(R?) |

t t 2 ¢/21 /¢
SE (/ (/ (r— u)*1+2/z+1/q+esza(r,u, .)Hwk,p(Rd)dr> du>

. 1/2
< (/ (t— U)Q/””HbH%Z(Q;Lq([o,T];Ww(Rd)))du)

5 (t _ S)(1+52)/2+1/£

||bHL“(Q;Lq([O,T};W’“’p(Rd))) :

By similar arguments, Jensen’s inequality and ii) of Assumption 2] we can bound the fourth term.
We obtain, for any j € {1,...,d},

t t
| [ P Bulby (W2 ) s = )" By )

¢ 11/¢

t t
¢ / / P oo DRt W2 (7)) — )2 drd By (u)

wmp(R?) |
’ q1/¢
=E

‘ Wm.p(RY)

t ¢ )
> j > . _ o NH-1/2
SE (/S (/u E, |:HP2}{(ru)2Hbj (r, Wo" (u,r) + )v(u,r) Wm’p(Rd)] (r—u) dr> du)

(/ 9\ /2
<E (/ (/ (r — u) "1+ areg, [C1Hb’(r, -)||Wk7L,p(Rd)] dr> du)

*Burkholder-Gavis-Gundy inequality

907 1/¢

S 1/

12



S (8 = )22 o paqo,ry - may) -

We finally estimate the third term. We have, for any j € {1,...,d},

t t
/ / Pﬁ(r_u)wasz)%j(r, W2AH (u,r) + ) (r — w)¥ Y 2drdu

Wm,p (]Rd)

t t
< / / (r — u)~ Y+ /ety [Cl ¥/ (r, -)HW;C_L,p(Rd)} drdu

; 1/2
5/8 (t — w)?"=E, [C}]*E, [Hb'Hiq([o,T];wk-W(Rd»] o,

¢ 1/¢
W’W(Rd)]

HL"(Q;Lq([ovT};W’“*L’p(Rd))) '

which leads to

t gt
E / / P%(T_u)gHaijij(r,u, WAH (u, 1) + ) (r — )TV 2drdu

S (t _ S)1+€2+2/£ Hb/
Step 2: From the Sobolev embedding
W1+d/p+51,p(Rd) SN C;-H(Rd),

for any 0 < v < 1, we deduce that

1/

¢
E 645 llGriv@a| < Clt—s/"T/* (HbHLZ(Q;Lq([O,T];Ww(Rd))) + Hb/HLcr(Q;Lq([o,T];Wkwp(Rd)))> -

It follows from Kolmogorov’s continuity theorem that, up to a modification,
A€ C(0,7]:¢, (RY).
O

As a direct consequence from the previous proposition, it follows from Theorem [l that Equation
[20) admits a unique solution.

5 Proof of Theorem I

As the reader will realise, Formula (I7) is valid for any fixed z in R? and any pair (s,t) with
0 <s<t<T. Hence, to avoid cumbersome notations we fix in this proof :

r=0, s=0, t="1T.

Throughout this proof, C' will denote a generic constant that may vary from line to line. The proof

is divided into several steps. For any N in N* and 7 in {0,--- , N}, we set tfv = z% To prevent
notations to become cumbersome we will often write ¢; instead of tzN )
In the following we make use of the following notation : For i in {0,...,N — 1}, and s > t;41,

we set,
6i,s(W27H) P (51,i,S(W2,H)’ . ,5d7i78(W2,H)) :
(23)
Opyis(W2HY) o= (W2H(t 1, 5) —W2H(t;,5)),, ke{l,...,d}

Step 1 : We first assume that f belongs to S,q4, that is there exist

neEN", 0<y <m< <7 <T, ¢:[0,T] x (RHY" xR 5 R

13



such that
fty) =@t By At), -, Blya At),y), y eRY e[0T, (24)

and ¢(t-) is bounded and admits bounded partial derivatives of any order which are uniformly
bounded in ¢ on [0,7]. Hence, for any 0 < r < v < s < T, for any F,-measurable random
— L@ak (with ¢ € N*, v € {0,1,...,4},

variable G, and for any operator £, of the form L, 7

i=1"Yq

Vi, Ve, P15, D¢ IHNWIth z@ 1 Zi —’U)

P1 . 2 Dj Lyf(s,y))(u)]z= G‘ + sup

STIBP s (oo £ f (5, 9) (W)=

O<u<s<T 0<u<s<T j=1
- 0

<3 s 8—cyw<s,b,y>>' <.
1 0<u<s<T | Ub;

Throughout this step, C' will denote a generic constant which may differ from line to line and which
depends on : T', H, d and on :

n

0

sup En
Vi

0<s<T i

zyso<s,->H < 4o,

=1 8}

where £, denotes any partial derivative of order less or equal to 4.

First of all, the Clark-Ocone formula (I3]) applies to the random variable F'(t) (defined as (IX))
allows one to decompose for any time ¢ the random variable F'(t) as follows :

F(t) = +Z/ £))(w)] dB;(u), t € [0,T). (25)

By defintion, F'*(t) = E; [F'(t)] and set G(t j 1 ft F(t))(u)] dBj(u) so that
F(t)=Ft)+G(t), te][0,T]. (26)

Using Definition (1)) of F' we have for any ¢ in {0,--- , N — 1} that :

T T
F(tiv1) — F(t;) = / Pﬁ(sﬂgm)wf(&W2’H(75i+1,5))d5 —/ Pﬁ(s%i)wf(«?,WZH(ti,5))d5

tit1 t;

i 2.H
= _/ P%(S_tipr(S, W= (t;, 8))ds
ti

T
+)
tit1

tit1
= —/ PL (s— t)2Hf(3 w (ti78))d8
t

—

P
2

o (s—tiy1)

2 f (8, W2’H(75z‘+1, s)) — Pﬁ(s,ti)wf(sa W2,H(tl., s))| ds

T
+1 [Pﬁ(s—tﬂ_l)mv{ B PLH(S—ti)QH] f(87W2,H(ti+17s))dS
i+1
b Py L5 W 00,80 — £, 1,50 . @
z+1

We aim here to use a Taylor expansion. To this end we set (using Notation (23))) :

W2H (. 5,0) .= W2H(t;, 5) + 0 6; (W), 0 0,1]. (28)

14



With this notation at hand, the last term in this expression writes as follows :

PL(S t; 2Hf(5 WQ’H(tiJrlaS)) - Pﬁ(sfti)wf(&WQ’H(tz‘,S))
= VP L (s—t; )sz(S W (ti, s)) - 51‘78(W2’H)

R 1% 2
+ 5 Z 312 P—QL (s—ti)QHf($7 Q’H(tia 3)) ((51'7]?,3( W Z’H))
k=1 "k

d
1 H?
2 Z Or.Ox PQH(S t; 2Hf(8 7 2H(tlas))5zks(” ’H)(Si,&s(WZH)
k=Tikt ROTE

1
+3 /0 V3Pﬁ(s,ti)2Hf(s,W2’H (ti,5,0))do - (61-73(W2’H))3.

To proceed with our analysis we apply the Clark-Ocone formula ([I3]) to each element

ﬁpﬁ(s_ti)w f(s, WQ’H(tzﬁ s))
w1th£—ay (for k in {1,--- ,d}) orﬁ—(9 a for k,¢ in {1,--- ,d} with k # ¢. We have

LP (s—t:) 2Hf($ W2’H(ti73))

2H

By, 2P o F5, W 1) +Z/ (LPs (oo (5. W21 (11 5))) ()] dBy ().

Since W2H (t;,5) is F;,-measurable, the first term of the right hand side is :
By, [ﬁpﬁ(s—mwf(saWQ’H(tz‘,S))] = ﬁpﬁ(s—ti)wfa(sati’WQ’H(’%A8))7
whereas Lemma [[l implies that :

(Bu | D5 (£P s (oo f (s, W (11,5))) (w)] ) = (£P (oo gi(s,u, W (1:,5)))

b
ti<u<s ti<u<s

where the equality is understood as processes in L?(Q x [0,T]) and where we recall Notation (I4).
Hence

EP% (sfti)QHf(S’ W27H(ti, S))
d s
=LP 1o pyen (s, L, W2H(t;,5)) + Z/ LP (o ty20195 (5, U, W2 (i, 5))dB; (u).

Thus
Pﬁ(s—ti)QHf(sa WZ’H(tHh s)) — Pﬁ(s—ti)”{f(s? WQ’H(tz‘a s))
9

= 8—.%'kp 1 (S ti )2Hf (S tZ’WZ (tus)) 5k,i,s(W27H)
k=1

)D)

k=1j

3

_l’_

M=

tit1 B
7 o W B 0 1OV

d_ rs
Z (st 93 (8,0, W (8, 8))d B () 0 s (W)

tz+1 axk 2
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d
; 2H 2
T3 5o Pt (oo (5. W (1,9))dBj () (0. (W)
k

k=1
1 & 0?
+ = Pi., . aS,ti,WQ’H ti,s))dB;(u) ¢ Z'SWQ’H(SZ'SW2’H
Qkle;jk#amkaw 1 (omtyen (ti, 9))dBj (u) S s (W)t (W)
N ~ [ P ; W2H (1, s)dB; (u) 6 i s(W2H) 80 ; (W2H
+§H;ﬁéé; i, OwpOmg (a2 95 (50 (i, 5))dB; (1) Ok .o 9t )
1 d d s 82
2 _Y p , 2.H (4. , , 2,H\s 2,H
#3220, T e W DB 00 B0V V)
1 1
5 | VP e (5 W 1,5.0)) 8- (5, (W)

Coming back to the expression (27]) of an increment of F' we obtain
F(tiy1) = F(t:)

tit1
= —/ P%(S_tiPHf(S, WZ’H(ti,S))dS

ti

T
+ / |:PL(S—ti+1)2H - P (S—ti)QH] f(sa W27H(ti+17 S))dS
tit1

2H 2H

d T
0
+
k=1"ti+1

d d T ti+1 a
+2 Z/t /t Oy, 2 o—t0)20 9 (5, u, W2 (85, 5))dBj(u) S, 5,6(W>)ds

k=1 j=1 i+1 i

9y Dotz £ (5,1 WA (t7,5)) 15,6 (W )ds

d d T

50

ES g W ) ) s
k=1 j=1""i+1 i41

1 - ’ 82 2,H 2. HA\\ 2
52 | g Paneten (s, W2t 8))dB; (w) (O, (W) " ds
k=1"t+1 77k
1 - g 82 a 2,.H 2,.H 2,.H
3 0rp0m, | stz ] (8t W (t,8)) Oi,s (W57)0p,5,6 (W5 )ds

kb=1:k£e " tit1

e[

El=1;ks0 j=1 7 ti+1

d d T s )
5 / ’ - w2H 2.1 9
+ = E E Pa . _, 2195 (8,u, (L, 8))dBj(u) 5]671-75( ) )5&1,78( ) g
2 kb=1;k40 j=1 Y tit1 Jtita Oz 0y ap (s—t:)*1 77 j w W

577 (s—t;

tit1 92
: 2,H (1. } ‘ 2,Hys 2,H
/t¢ &’UkaCCzP?lH yer 95 (8, u, W2 (4, 8))dBj (u) Ogyi,s (W) 00,5 (W5 )ds

1 T 1
L[ g W0 - G0
tit1 0

10
= levk(ti,tzﬂrl)' (29)
k=1
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We now compute an increment of G. To this end we first remark that (recall Notation in (I3]))

Z / DY F(t))(u)dB;(u)
:Z /t E, [Dj < /t Py f(s,WQ’H(t,s))ds> (u)} dB;(u)
_ Z/ / (Pt (oo S (5 W (2,)) ) ()L | dsdBy(w)

:; /t /u D <Pﬁ(sft)wf(s,WQ’H(t,s))) (w)dsdB; (u), (30)

where the first equality is a consequence of the stochastic Fubini theorem as for any j in {1,...,d}

/TE E, [Dj (/UT pﬁ(s_t)QHf(s,WQvH(t, S))ds) (u)} 2] du
/ / “D Pl (s—nyer f (s, WH(L, s)))( )H duds

SC/ 1T — uf? du < 400.
t

In addition, since for any ¢, W (¢, s) is F;-measurable, Lemma [ implies that

(D (P o F s W2 (0.90)) (W) = (P (opongls W (1.5)))

u u

Thus,

Z//P (s g(s,u, W (2, 5))dsd Bj (u).

This form allows us to proceed in the analysis of an increment of G. Indeed,

G(tH—l G
/t / 2H(s tiv1) 2H91(8 u, W (z+17 s)) — Pﬁ(s—ti)ng(s,% WQ’H(ti7S)) dsdBj(u)
i+1
i+1 .-
B Z/t / Pﬁ(sfti)Qng(S’uaW ’ (ti,S))deBj(u)
=17t u
d
) Z/t P et W i, 90) = P gy W i, )] s By
i+1 Ju

d T T
+ Z /i+1 /u [Pﬁ(sfti)”{gj(saua W2,H(tz'+1, s)) — Pﬁ(s,ti)mgj(s,u, WQ’H(ti, 5))] dsdBj(u)

It (T 2,1
_ Z/t / P%(S_ti)gng(s,u,W " (ts,5))dsdBj(u)
j=1""% v
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In a similar fashion than the computation of an increment of F', we expand using Taylor expansion
the second term to obtain

Pﬁ(S*ti)Qng(S’ u, W27H(tl-+1, S)) — Pﬁ(87ti)2ng(S’ u, W27H(tia 5))

1 2
= Vpﬁ(sfti)”fgj(sa u, W27H(tia 5)) : 6i,s(W2’H) + §V2Pﬁ(37t¢)2ng(5? u, W2’H(7fi, S)) . (5i7s(W2’H))
1 1
+ 6 /0 vspﬁ(é‘—ti)ng(s’ u, W»H(t;,5,0))d0 - (6i,S(W2’H))3 )

where we recall Notation (28]). Plugging this expansion in the expression above, we get

G(tz—i—l) G(t )

2H

/ / 1 (s—tig) y2r 95 (8, W2H(t;1,8) — P (s—t;)211 95 (8, W2H (t;,1,5))| dsdB;(u)
'L+1
* Z /t / {vpﬁ(sfti)ﬂigj(s’ u, W27H(tia 5)) : 6i,s(W2’H))} deBj (u)
1Y tit1
1< 7T ) . Lo
+ 5 Z/ / [v Pﬁ(s—ti)Qng(Saua w= (ti,S)) ’ (62,3(W ’ )) )] deB](u)
1+1

d T /T 1
1
j= tit1

d tiy1 T "
- Z / / Pﬁ (Siti)Qng(S, u, W2’ (tl', S))deBj (u)
_ t; u

Mm

tla 75z+1 (31)

As a consequence, using Relation ([26) with ¢t = 0, we get :

N-1
=— lim (F(tit1) = F(ti) = (G(tiv1) — G(t)))
N—+o0 P
5
= li I (ti, t Lo (i, t;
i 3 (3 st - Yttt
N-1
== lim > (Nt tin) + Taltis tien) + Tua(tis tign) (b tin) = Tos(tistivn)  (32)
N—+o0 4
=
N-1
+ Nligtloo : R(tutz—l—l)
1=0
with
10
R(titip1) = Tio(ti tis1) + Ts(tition) + O Tig(tistivn) = Y Togltistign),
k=6 =

where the terms involved in this expression are defined in (29) and in (31]).
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By Lemma [ (postponed at the end of this section), we have that

lim Z Lia(titiv) = / ft, widt, (33)

N—+4o00 4
1=0

lim Z I 3( 3 (tistit1) Z/ / L (s— t)QHVfIfa(S7W2’H(t, $))(s — t)H_1/2d3 -dB(t), (34)

N—+oo 2H

- T T
0
lim g 11,4(ti,ti+1)(ti7ti+1) = E /0 /t %Pﬁ(s_t)ng(s,t, W2t $)) (s — )T 2dsdt,
0 j=1 J

N—~oo 4
1=

(35)
N—1 T T
i Zzg Ir5(tis tiv1) = —/0 /u P 2 gi(s,t, W2 (¢, s))dsdB;(t), (36)
and that
Glm Z; R(ti, tiz1) = 0. (37)
Step 2 :

In a first step, we have proved Formula ([7) for f in Suq for any (s,t,z) in [0, T]?> x R? (s < t). We
now extend it to any element f in ID)1 %P To this end, we set the operators :

Apgs: D™ %P — L([0,T); LP(; WP (R?)))
f = (ALHS(ta x))te[O,T]@E]Rd 3

t
Apns(tz) = / £ WH 4 2)dr
0

and
{ARH5: Saa — L>=([0,T; LP (€ W™ (RY)))

[ = (Aras(t, ©))iepo 1) verd -
with

Apns(f)(t,z) = / Py F(r, W () + 2)dr

+ Z/ / P 1 L (r—u) 2H f (T,u, W2’H(u,r) —|—£C)(’I“ _u)H71/2drdBj(u)
0
P — g, 2,H _\H-1)2
+]Z:;/O /u 57 (r—w)*! axjgj(r,u,W (u,r) +z)(r —u) drdu

d  pt ot
- Z/ / Pﬁ(rfu)Qng(T’ u, WH (u, ) + ) (r — u)H_l/erdBj(u). (38)
In Step 1, we have proved that for any f in S,q

Arns = Arms, in Lo([0,TT; LP(Q; W™P(RY)).
Note also that by definition,

IALas (DI < N Fll Lo (qo,m;0 (2w mer () -
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So Formula (7)) holds true for any adapted random field f in D};’m_a’p (that is the equality of the

operators Ar s and Agps) is we prove that Arpg is a well-defined bounded operator on ]D)zl,’mfa’p )
We thus prove that for any adapted random field f in ]Dzl,’m_a’p we have that :

[ARHS ()| Lo (0,73 Lo wmr ey S 1 Ippm—ecr- (39)
Proof of (39) :

We remark that the following estimates are different from the ones in the proof of Theorem [ (see
Remark B). Let f be an adapted random field in Dy™ *?. We now estimate each term in the
L>=([0, T); LP(; W™P(R?))) space with p > 2 and 1/2— Ha —1/p > 0. For the first term, we have,
by Hoélder’s inequality,

dr
Lp(Q;Wmep(R4))

t
/ P opf(r,-)dr
0 2H

t
S -]
Lr(@wmr(®y) - Jo 12

t
S /O r N F ) o gwrm—on may) 4

ST o o, rpx g m—en )

which yields

H ; P o f(r,-)dr ST HYPY £ oo xwm—anm(may)) -

Lo ([0,T];Le (; WP (R4)))

We now turn to the second term. It follows from the BDG, Minkowski and Holder inequalities that,
for any j € {1,...,d},

t t
[ [ Py g 0 W2 ) )= )12 )
0 Ju J

5(/0

Lr(Q;Wmp(R4))

9 1/2
du
Lr(Q)

1/2

t
[ =01, (10 s

t
S ( /0 (¢ —u)' =22/ ”%p([o,ﬂxn;wmmp(Rd)))d“)

S Tl*HC‘!*I/q ”f|’Lq([07T];LP(Q;Wm_a’p(Rd))) '

By rather similar arguments, we estimate the fourth term as

t gt
/ / P%(T_u)gHg;?(r, w, W2H (u,r) 4+ 2) (r — w)# =V 2drd B (u)
0 Ju Lp(Q;Wmp(RY))

. 9 1/2
< / du
0 Lr ()

t 1/2
< (/0 (t - u)1—2H(a—1)—2/png(7.’u, ')”%P([QT}xQ;W’”O"P(Rd)))du>

< TlfH(a71)73/(2p

t
[ =0 2B, g0 - dr

19511 L (0,772 x s wm =0 )

Finally, we have, for the third term,

t t
9 2,H H-1/2
/0 /u Pﬁ (r—u)2H a—xjgj (Ta u, w (ua T) + x)(r - u) drdu

Lr(Q;Wmop (R4))
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t ot
S/0 /(r—u)_l/Q_Hang(rﬂh')HLP(Q;WmvP(Rd))drdu

S T3 HO2/P) 0 Lo (0. 12 x 0 Wm - () -

Since each term in (7)) is linear with respect to f and from each of the previous estimates, we can
deduce that Formula ([7) is in force for any f in Dy™ *?. O

Lemma 4. With the notations of the proof of Theorem [, the convergences (33)-(30) hold true in
L2(9):

(1)
Nl_igloo Z Iia(titivr) = / ft, wi
(ii)
N—-1 T T
lim Y I s(ti i) = /O /t P (o _penV I (s, W2H (2, 8))(s — )T 2ds - dB(¢).

N—+o00 o
(iii)

lim Z Il4 tl7tl+1 tzaterl Z/ / 8$ % s tQHg](S,t,WQH(t S))(S—t)Hﬁl/Qdet,

N—+o00 =0
(also see Remark (2 for this term).
(iv)
lim Z IZ 5 tla tz-i—l Z/ / LH (s— t)Qng(S7 t, W27H(t7 s))deBj(t)'

N—~oo 4
1=0

Proof. Throughout this proof, C' denotes a positive constant (which can vary from line to line) and
that represents the sup norm of f and its derivatives up to order 4.

Proof of (i) :

We set using Decomposition (@), W2 (s, s) := W (s), for any s. We have that
tit1 I
I (s, tigr) — / f(s,W(s))ds
t;

- /ti+1 (P L (s—ti)2Hf(87W2’H(ti7$)) - f(s,W2’H(s,3))ds) ds
t

2H

tit1
= _/ (P%(S_ti)wf(s, W2H(t;,5)) — Pof(s, W2H (t, s))) ds
t;

_ /ml (Pof (s, W (t;,)) — Pof (s, WM (s, 5))) ds.
t;

Since the semigroup P is associated to the heat equation, the first term of the right-hand side can

be re-written as :

tit1
L (P s 0,5)) = 5,245, ds

i
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1 tir1 . (sft¢)2H
5 / v AP, f (s, W>H (8, 5))|drds
t; 0

IN

c /ti+1 2
— sup (s —t;)“""ds.
4H s€[0,T] Jt; ’

Thus,
N-1 tiv1 2
E Z / <Pﬁ(37ti)2Hf(Sa W27H(tia 5)) - f(Sa W27H(5’ S))) ds

i=0 't

N—1 2

tit1
Z / (s —t;)*ds
i=0 Yt

— 0.
N—+o00

<C

We now turn to the second term. Since
E UWQ’H(U, 5) — WH(y, s)‘Q] < Ju— oMy < s, (40)
we deduce that

27 1/2

E

N=L o i
Z/ (f(s; W2 (ti,8)) = f(s, WP (s,5))) ds
i=0 7t

N-1 t

CZ/ g “W2’H(ti,s) —WQ’H(S,S)‘Q] Y2 4
i=0 Vi
-1

IN

=

‘1+min{H,1/2}

IN

™

ol

C [tig1 —t;

)

—
N—+o0

So Item (i) (or equivalently (B3))) is proved.
Proof of (ii) :
Fix k in {1,--- ,d}. First note that as f belongs to S,q, and since W2 (¢, s) is F;,-measurable
(s > ti+1), we have that :
g, |2 p fes w2 | = 2Lp (s, W2H (1, 5))
17 8yk %(S—tiPH ) 19 - 8yk %(S_tiPH t; \2» 19 .
Hence, (ii) will be proved if the following holds true for any & in {1,...,d} :
N—-1 .1 9
lim

P ; 9 5,W2’H tiyS))0k.is w2 ds
N=eo i—0 Ytit1 8yk ﬁ(sitl)QHftl( ( )) ki, ( )

= ' / D0 b 8 W (1 8)) (s — )T P dsd By (1) (41)
o Ji Oy A
By definition, (recall Definition (23) for the increments of W?2)
T 9

I3 k(b i) = S Dby (s—ty2n fii (5, W (8, 5))0k,s(WH ) ds
t¢+1 yk‘ 2H
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9 " tit1 .
- P (s— t')QHfzg(&Wz, (tias)) / (8 — u) 71/2dBk(u)ds
t

z+1 8yk 2H ' 7

bt 2O H H—1/2
/ / 8—PL (s—to)2 J1, (8, W22 (ti, 8)) (s — u) ™~ 2dsdBy,(u),
t; ti1 9Yk 2H

where the last equality is justified by the stochastic Fubini theorem. Indeed,

tit1
0 2,H (4
Etl Ls ti)2H—f(37W (tzas))

tit1
- / /
tiy1 Ji; H 8yk

tz+1
< C/ / 2H Lduds < +o0.
tiy1 Jt;

Using this expression, the [t6 isometry and the independence of the disjoint increments of the
Brownian motion, we get that

2
(s, w2 (t,,s))

S P e S (s —u>2H—1duds]

2
(s — u)zH_lduds]

2

tit1
E . 2,H NH—1/2
A Il,3,k(tl7 t2+1 /t . ayk 2H (s—t; )2Hft (3 w= (tz, 8))( tz) deBk(U)

2
1+1
<2E Z / - %(8 12m [ (8, W2H(t;,5)) <(s —u)fI=12 (5 — ti)H*1/2> dsdBy(u)
tit1 tit1 o u o B H-1/2 2
+2E i a—%Pﬁ(S*ti>2Hfti(5’ W= (t;,8)) (s — t;) dsdBy(u)
— [h T 2,H H-1/2 H—1/2 i
=2 /t BV gy Pttt fi s W2 1)) ((s—u) —1/2 _ (5 —¢;)H-1/ )ds du
1=0 7 i+1
N—-1 tit1 tit1 B 2
+2y / " / 5o Pogtoegpn T8 WA (t,9) (s 1112 |
i—o i i
<2CSy,
where
—1 et T 2 tiv1 2
Sy = Z / / (s —u)I=12 — (s — ti)H_l/z‘ ds| + / (s —t;)T=12ds| | du.
i—0 Yt tit1 t;
A direct computation gives that imy_, 1o, Sy = 0. It remains to prove that the process
4 9 2,H H—-1/2
t— /t Pﬁ(s,t)QHa—xkfta(s’W (s, t)(s =) / ds, (42)

is continuous in L?(2 x [0,77]) in order to verifies the assumptions of [8, Theorem 2.74] in order to
deduce that

Lit1
/ f“)yk Py fi (s W3 (81, 9)) (s — )1/ 2dsd By (u)
t; t;
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N%oo / / ay L (s— t)2Hfta(87 W2,H(t7 8))(8 - t)H71/2d8dBk(t)

2H

First, we prove the domination assumption. Using the change of variable u = s — ¢ and the fact
that f is a smooth random field, we obtain the following estimate

T
/ P et fﬂ,wﬂﬂwxnw—wﬂﬂﬂ@
t

T—t
/0 PﬁzﬂH 8—%ff(u +t, W2H (u 4t ) 2 du

~

T—t
</ w12 du < (T — )41/,
0
We now turn to the continuity of the process ([@2)) itself. By the change of variable u = s — ¢, we

essentially have to prove that f&(u +t, W (u +t,t)) is continuous with respect to t. The only
difficulty is the continuity of ¢ — f&(u,y) for any (u,y) € [0,T] x R%. Clark-Ocone’s formula gives

d T
) =B )]+ 3 [ EAD, () 0)]dB ()
j=1
then, we derive
d ot
fitus) = Bl + 3 [ B D, () 0)]aB; )
j=1
which is continuous with respect to ¢ uniformly in (u,y). This ends the proof of ({I]).
Proof of (iii) :

For fixed i € {0,--- ,N — 1}, 5,k in {1,--- ,d}, s € [ti+1,T], we set

0
i g5 (1) = gy o 12 95(8,u, WA (8,5)),
M jk,s(r) ::/ @i jks(w)dBj(u),  Nig,s(r) = / (s — u)H_%dBk(u), r € [ti tiya]-
t; t;

so that M; ;. and Nj, ¢ are continuous martingales. Note once again that since f belongs to Suq,
@ j.k,s(u) is uniformly (in 4,7, k, s,u) bounded P-a.s. Thus

Il4 tlatl-i-l ZZ/ M,]ks H—l)Nzks(tH—l)d
+1

k=1 j=1 ti

The integration by parts formula for semimartingales implies that

tz+1 1
M; e s(tiv1)Nig,s(tiv1) — 1j:k/ i jrs(w)(s —u) ¥ 2du
t

tir1 tit1
= Mi,j,k,s(r)dNi,k,s(r) + Ni,k,s(r)dMi,j,k,s(T)- (43)

ti t;

We show below that both terms in the right hand side do not contribute to the limit. Indeed, using
the fact that the co-variation [B;(-), Bj:(-)] = 0 for any j # j, we get

Z/ ZZ/th,]ks (r)dN; 1 s(r)ds 2

bit1 = 1j5=1
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tit1 tiriq

d d T T
- Z Z Z/ / E Mi,jk,S(r)dNi,k,S(T) Mi’,j’,k’,s'(T/)dN@'/,k/,s/(7“/) dsds’
t; t

i,i'=0 k,k/=1j,j'=1" ti+1 Jlir 1

N d d z+1
=22 2. / / / Mo (1) Migr e (r)] (s = r)H =2 (s" = )B4 2 drdsds’
=0 k=1j,j'=1 tig1 Jtir1 St
N-1 d d _ .
_ ZZ T tit1 E[OC . . o NH-1/2/ _  \NH—1/2 ,
o ig.be,s (W) j g, (w) ] du(s — 1) (s" =) drdsds
i=0 k=1 j=1"ti+1 Jtiv1 Jti ti
N—-1 T i
= < / / H — Y2 (s — ) H=12 0 dsds’
N i=0 vti+1
N-1 2
¢ /tz+1 /T H-1/2
=N (s —r) 2ds | dr
N ; ti ( tiv1
— 0. (44)
N—r+o00

Now we turn to the analysis of the the second term in the right hand side of ({3)). The first arguments
follow the same line as for the term above (using mainly the independence of the components of the
Brownian motion B). Indeed, we have :

2

N-1 t,+1
- / [ B Ikl 0 s
=0 k, k'=1j= tit1 Jtip1 It
1 & tz+1
< C Z / / / E [|Nj s (r) Ny g (7)|] drdsds’
0 k,k'=1j5=1 tiv1 Jtip

H

d i1 r r 1/2
Z / / / </ v)2H1dv/ (s — v)2H1dv> drdsds’. (45)
i=0 k,k'=1 tit1 Jtip1 t;

So plugging this estimate in ([@3]), we get

Q

2
z/ zz/”vvm A, () ds
bitl p=1 j=1
N-1

tir1 T r 1/2 2
<C Z / / (/ (s — v)2H1dv> ds | dr
i—0 ti tir1 t;

N-1 tir1 T r
<C Z / / / (s —v)* " tdvdsdr
i=0 “ti Lit1 vt
— 0. (46)
N—+o0

So to summarize, Relations ([A3]), [#4]) and (40) imply that :
N-1 d T 2

tit1 L
lim E Iy 4(t, — )" 2 dud =0.
N—1>I-Ii-loo Z Lati; tiv1) Z Z /t, @i jj,s(u)(s —u)" " 2duds

i=0 j=1 tiv1
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However we have that :
2

d tir1 1 T T
E Z( /t . /t i jjs(u)(s — u) 2 duds — /0 /t 8yjP2}{(st)zng(s,t,WQ’H(t,s))(s—t)H_l/zdsdt>

7j=1
[ 2
d N=1 ;01 [ oT 1 -
=E > / / Qi jjs(u) (s —u) T2 ds — / Oys P (o 95 (8,0, W (u, 8)) (s — )1 /2ds | du
j=1 i=0 Yt tiy1 u
- d N-—1 tiv1 T ) tis ) 2
=E Z / </ Bij,s(u)(s — U)H_Eds - / @ jjs(u)(s — u)H_5d5> du
j=1 i=0 “ti u u
T 2
d N=1 .4\ T
<22 |33 [ [ it - basdu
[ |7=1 =0 ti u
2
N-1 t1+1 tz+1
+2E Z / / ,J]s( )(S—U) stdu
=1 i= ti
=:2(La1+Ta2).
with
’Biyj7s(u) = ai7j7j73(u) - ayj Pﬁ(sfu)Qng(S? u? W27H(u’ S))'
The proof of (iii) is then established if we prove that
lim 1174,1 + 1174,2 = 0. (47)
N—4o00

Note first that :

ﬁi,j,s(u)
= 8 (P 1 (s—t; )gng(S u, WQH(tZ,S)) - P%(S_u)zng(s,u, W2’H(u, S)))

= (P oo = P gmayn ) 9oy, W2 (1,9)
+ Pﬁ(s—u)QH (amjgj(S, u, W2,H(ti’ S)) - a:ngj(sa u, W27H(ua 5)))

1 u
= _5/ AP%(S—TPH@CJ'QJ’(S’% W2 (t;, s))dr
ti

1

; Pa - w2 VO, 95(s, u, W2H (t;,5,0))d0 - (W (t;,5) — WH (u, 5)), (48)

where we recall Notation (28). Using once again the fact that f belongs to S,q, we immediately
obtain that

d
|Bijs(u)| < C ((u —ti)+ Y (W (i, s) - W (u, s)\) , (49)
k=1
from which we deduce that (using ({0)))
(I140)"?
d N-1 .4, 12 )
<CZZ/ / (u—t;) +ZE“W2H2€ ) — W (y, 5)‘] (s —u) T~ 2dsdu
7j=1 =0 k=1
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=

-1

tit1 T )
<C / / <(u—t¢) + |u—t¢|mm{H’1/z}> (s—u)H_%dsdu
t u

i

I
=)

1

0.

l

N—

+

o0

Thus

lim 1141 =0.
N—+o00

The convergence of the term I 42 is easy to handle as :

1/2 tit1 t1+1
(11,42) <Z (s — w7 2E [Ja g5 (u)]* ” dsdu
7j=1 1=0 ti
tiv1  ptiv
gCZ/ / (s —u)" " 2dsdu
i=0 Jti uw
— 0
N—+o0

So (1) is proved.

Proof of (iv) :

Recall that

7+1
1275(ti,t2‘+1) = — Z/ / Pﬁ(s_ti)zng(S,u, W27H(ti’3))dsdBj(u).

Hence :
2125 tistitt) +/ / P% (s—u)2i 95 (8, U, W2H (1, 5))dsdBj(u)
d N-1 tir1 T .
-y /t | / (Poa oampr = Paoagprr ) 9505, W (1, 5))dsd By ()
j=1 i=0 7t u
-1 tit1 T
S [ P oy WA 0 5)) = gy, W ) s )
j=1 i=0 “ti u
d N—1 tir1 T
=33 [ etwdsdsw
j=1 i=0 “ti u
with
Ws,ti(u)

<P L (s—t;)2H — P . U)QH) 9i(s,u, w2H(t;,5)) +P I [gj(s,u, W2H (4, 5)) — 95 (s, u, w2 (y, s))] .

Hence using the [t6 isometry,

1/2

iy

i+1) / / P (s—u)2i 95 (8, U W2H(t;,5))dsdBj(u)
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Up to the gradient, the quantity s, is very similar to f; ; s defined in ([@8) and using ([@9]) and #0),
we get

1/2

Z 125 t27tz+1 / / P (s— u)2ng(8 u, W (ti,s))dsdBj(u)

bt min{H,1/2}
<C Z / / ((u — ti) + |7fi+1 — tl'| ’ > dsdu
i=0 7t u

— 0.
N—+o0

O

Lemma 5. We use notations introduced in the proof of Theorem[d, the following convergences hold
true in L*(Q)

(i) N
1
NLiIJIrlOO @Z: I o(ti tiv1) + Nlirilw ZZ; I g(ti, tig1) =0,
(i)
N—1
A}i_rfloo ; Ipa(ti tiyr) + Nl_i)ffrloo ; I 3(tistiv1) =0,
(iii)
hm Z I q7(tistiv1) =0,
(iv)
]\}I—IPOOZIlS tzatz-i-l =0,
(v)
hm Z I o(tistiy1) =0,
(vi)

lim Z Il ,10 tz,tz—i—l = 0.

N—oo

Proof. Proof of (i)
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As we will see some cancellations appear among the terms in the rest. We start with one of

these cancellations, that is we first prove that

N
. L2(2)
Ngmw Z I o(ti tigr) + NLHJI:OO ZO I 6(ti,tiy1) =" 0. (50)
i
Recall first that
T
I o(ti, tiv1) = : Pﬁ(s—tm)”’ N Pﬁ(s—ti)”’] fls, W2 H (ti41,5))ds
i+1
IR 2H—1 2,H
- _ / (5 ) AP L (s—u) 2Hf(5 w= ( z+1a5))dUd8
tiv1 vt
1t T 2H-1
— —5 (S ) AP 1 s u 2Hf(5 W ( Z+155))d5du‘ (51)
t; tit1

Concerning the term I ¢(¢;, ;1) we have

I G(tiati-i-l)

1 T 52 2,H 2,HY\?
2 0 P21H (s ti)2Hf (37 | (ti7 S)) (5k7i78(W ’ )) ds.
k=1 7.+1 yk‘

So

I G(tiatiJrl)

1 T 2, H 2,H |2 f 2H -1
3 502 P2}{(37ti)21{f (s, W>"(t;,5)) (‘&ﬁ,i,s(W : )‘ —/ (s —u)*"~ du) ds
i1 Yt 9Yk ti

tiv1
+ = Z/ / u)?H- 1AP1 L (st ng(s WQH(tl,s)) dsdu
t; tiv1

=: 1161 (ti, tig1) + L162(ti, tiv1)-

As a consequence using (BIl), and letting :

A(ti,ti1)
/ - / w) 1 (AP Lotz S (5, WA (i, 5)) = AP pon f (s, W (ti44, s))) dsdu,
o (52)
I o(ti, tiy1) + I 6(ti, tiy1) writes down as
Iio(tistivr) + Tie(tis tivn) = Tiea(tis tigr) + A(ti, tigr).
Hence, (B0) is proved if we prove
N-1 2
Jlim E ;0 Liga(titiv1)| | =0, (53)
and
N-1 2
Jim E E% Aty ti1)| | =0. (54)
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We start with an analysis of Term I3 61 (¢;, ti11), and we write I 61 (¢, tiy1) = % Zi:l L6 1k (tis tig1),
with

T 82
Iig1k(titivt) :=

tit1
52 L(s—ti)2Hf (s, w2 (¢, s)) (‘5k,i,s(W2’H)|2 — / (s — u)ZH_ldu> ds.
tit1 Oyj; A t;

We have by letting p; s := %Pﬁ(s—ti)ﬂff (s, W2H(t;, s)), and

2,H |2 i 2H -1
€is,k ‘*— {514: i, s W ){ (S — u) du. (55)
ti
We have
N-1 2
Z Ig1k(ti,tivn)
i=0
N 1
=2 / / E Pi,sPi! s'€i,s kEt/ [ez s’ k] dsds’
1,4/ =0;1<1’ tiv1 by —_—

=0

+ Z / / pz,spi,s/fi,s,kei,s’,k] dsds’'
1+1 z+1
<C Z / / |€zs k€i s’ k” dsds’
z+1 1+1

2
'L+1
gcz(/ A ldvds>
Lit

So (B3)) is proved. Convergence (4] is obtained as follows. Note first that :
APy (g f (5, W (13,)) = APy (oo (5, W (1141, 5))|
< ‘APﬁ(S,ti)sz (s, W (t;,5)) — AP () o f (s, WP (752‘+1,8))‘

+ ‘APL(S_t,)QHf(s,WZ’H(tz‘H,S)) AP (o yyen [ (s, w2 (z+178))‘

<CZ\5,“8W2H\+C/ )2,

where C' depends on the sup norms of partial derivatives of ¢ (recall ([24])) up to order 4 and where
we have used the definition of the Heat semigroup as in (5I)). Thus, since

E [0k,i,s(W>M)op 1 s (W] = 0,Vi £ 7,

we have (recalling (40]))

2

N-1
Z Aty tivr)
i—0
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2

d N—-1 tig1 T
<C> E / / (s — u)? 71 |6y s s (WA | dsdu
k=1 i=0 Vi tit1
N-1 tiy1 T U 2
+C / (s —u)*1 / (s — A" drdsdu
i—0 Yt tit1 t;
d /N-1 . . T . 2
< CZ ( / / (8 - U)QHfl‘tH_l - ti’mm{H’l/2}d8du>
k=1 \i=0 “ti tit1
— 0,
N—+o00
which proves (B4).
Proof of (ii)
The second cancellation is the following
N
i Z Ioq(tistivr) + Ios(tis tiv1) = 0. (56)
1=

Before getting into the computations, it is worth noting that I5 1 (¢;, t;+1) (vespectively Io 3(ti, tit1))
has the same structure (up to the Brownian integral) than Iy o(t;,t;41) (respectively I (¢, tit1)
and Iy 7(t;, ti11)). So the proof will follow the same lines as in the one of (i). For the sake of
completeness, we tough provide the main arguments. Recall that

I 1(75z,7fz+1

/t+1/ P (s—tis1)? _Pﬁ(sfti)QH] 9;(s,u, WM (t; 11, 5))dsdB;(u)
z+1
/ / / PIAP, (g (s,u, W (6, 5)) drdsd B, (u)
z+1
tit1
- ‘Z/ / / rPITIAP L yen (95(s,u, W (41, 8)) — g5(s,u, W2 (8, 5))) drdsd B (u)
tit1 t;
z+1 [
/ / / 2 IAP L(s— t)QHg](S U, w2 (t@',S))deSdBj(u)
z+1
d ¢
1 1+1
B 52/,5 / /t ) (Apﬁ(s—r)w - AP L (s—t; )2H) gi(s,u, WHH (t;,))drdsdB;(u)
i+1

d 1 3

1 ”1 0

~3 Z / / / r)2H-1 9720 Pﬁ(sfr)gng(s,u, W2H(t;,5,0))d0 605 (W )drdsdBj(u),
j=1ke=1"ti+1 k%ye

where we recall Notation (28)). In addition
Ip3(ti, tiv1)

d 7 T
1
=52 / / P e V205 (5,0, W2 (1,5)) - (05,5 (W2M))* dsd B (u)
] 7+1
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d
1
Sr x| H/ TP e- a1 (5o W (,80) s (V2 )8, (W) s B )

j=1kl=1;k#
1 ¢ 2 2
3 ZZ/HI 8yk P (s gy ds (8,0, W2 (t5,5)) (81, (W) dsd B (u).
j=1k=1""b “

IQ 1(tu tz-l—l) + 12 3 tw tz—i—l)

1
2 /t / OO0y P (o t)2m 9 (8,0, W (3, 5)) 6 o, s (W )53 0,6 (W) dsd B (w)
i+1

(92 2 [him _
/ / ax (s t)QHgJ(S u, W (ti,s)) |:((5i7k75(W2’H)) —/t (S —7“)2H 1d’l“ dsdBJ(u)

1
tisn 0 3xi8xz 5 (s—r

1 d i+1 1 83
52 / / / )21 Py oy g5 (s,u, W (83, 5,0))d0 bg,5.(W> ) drdsd Bj (u)

t
Z 1+1
2 /t+1/ /t ) ( 1 (S 7) 1 (s t)QH) g](s u [[ (tl,s))di deB ( )
J_— @

=:Ch (tla z+1) + 02(tz,tl+1) + C3(tlat2+1) + 04(t27tl+1)

So obviously, (B6]) is proved if we prove that

N-1
> Colti ti)
i=0

These three terms are of similar form and their treatment will follow the similar scheme, so we give
all the details for C1(t;,t;11) and present only the key ingredients for Co(t;,t;11) and Cs(t;, tiy1).
Hence we start with C1(¢;,ti41).

2

Set fis ik = %Pﬁ(‘s_ti)ng (s,u, W2H (t;, s)) We write C(t;,ti+1) as

2

lim E =0, Vre{1,2,3,4}. (57)

N—+o0

d d
Ci(ti, tivr) Z Z Chje(ti tizr)
G=1 kb=1;k£0

with obvious notations. We have for j, k, ¢ (with k # ¢),

N—1 2

Z Chjke(tis tivr)

=0

Il
DO

/ / / E Hosik 0 ulbs’ i k.0, u6z k S(W ’ )6i,€,s(W27H) Eti/ [6i’,k,s’(W27H)5i’,€,s’(W2’H)] dsds'du
=0;i<i’ Y til 4 -0
+ Z / / / ;us i,ulbs’ ,z,u(sz k S(W )5i,£,s(W2’H)6i,k,s’(W2’H)6i,€,s’(W27H)] dsds'du
'L+1

2

<CZ/T (/ /Z+1 v)2H- 1dvds> du

z+1
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—
N—>+oo
With the previous notation and using Notation (G5,
1 d d
Caltis tiv1) = 5 ZZ /t / s, ki 5, k05d B ().
j=1k=1" "+l
So we have
2
tu tz—i—l
d d N 1
<cC / / / 61787]96@ s k’] dsds’du
j=1k=1144'= tirp1 Vil
2
N-1 T tir1 2
<C Z / / (s —v)* 1 tdvds
i=0 tiv1 Jt;
— 0
N—+o00
We now turn to Term Cs(t;,t;41), for which we have :
N-1 2
Z Cs(ti tiv1)
N-1 .7 tit1  flivi
<O [ e R 5 (Y dra s
i,i'=0 t /+1Vt1+1 ti t;
2
N—-1 tz+1 fisn 1/2 2
<C Z / / (5 — 7)1 (/ (s — v)QH_ldv> drds
i=0 t1+1 tz ti
N-1 tz+1 3 2
<C / / (s — v)zH*ldv ds
1=0 tiv1 Jti
— 0.
N—+o00

Following the same lines and using once again the uniform boundedness of derivatives (spatial and
in the Malliavin sense) of f, we get immediately that

N-1 2 N-1/ 7 i, 2\ ?
E (| Caltirtisr) Z(/ / |fi+1—tz|m‘“{2H’1}dvd8>
i=0 i=0 \”ti+1 i
— 0
N—+o0

Proof of (iii)
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We have Iy 7(t;, tiy1) = %Zig:l;bgg Iy 7k e(ti, tiy1) with

T 2
0
I g e(tis tivr) == Pﬁ(s,ti)sza(S,fi, W2 (5, 8)) 6116 (W) 505 s(WHH)ds.

ti+l 8:[%8:@

Fix k # ¢ and set :
2

Piks = axkaxzpﬁ(sﬂgiFHfa(S,ti,WQ’H(ti,S)).

We have

N-1 2

Z L7 ge(tistive)

=0

N-1 T 2

82
P (S_ti)nga(s,ti, V[/'Q’H(ti7 s)) 5k7i,S(W2’H)5Z,i,s(WQ’H)ds

=K
OxpOxy 2H

i=0 Vtit1

/ / E Pikl,sPi! k0,s" 5]9 K s(WQ,H)(SZ,i,s(WQ’H) Eti/ [616,1'/,3’(WQ,H)(SZ,Z'/,S/(WZH)] d‘Sd‘S,
tit1 Jt i+

=0;i<’ 5

+Z / / (01,151,500 (W), (W2 ) S50 (W) b 1,50 (W] dsdls’
'L+1 z+1

it v)2H -1 i
<C / / dvds
Z tit1 Ji;

<CN-! Z/ /tz“ V)2 gy ds
i=0 Vi1t

=CON'Y (T —t)™ = (g — ta)* — (T — ti1) "]
=0
— 0.
N—4o0

Proof of (iv)

Term I g(t;, tiv1)

d
> Digpeltitiv),

M:“

Il 8 tzatz-i-l
J=1k,b=1;k#£0
with
Z+1 2,H 2.H
Tgiamaltistiva) - /+1/ (%k(%g 2H(5 t)”’gﬂ(s u, W (ti’s))dBJ(u) Ok,i,s (W) 00,1,s(W5T )ds.
Fix k#£ ¢, j. Set
82

7k7£7i7u7s = axkaxﬁ Pﬁ (8—t1)2ng(87 u? W2,H (tl7 S))'

Fix ¢, we have
1+1 t'H’l
/ / Vietyisu,s 0B (1) O s (W) 505 (W) ds = / / Vi toi 5Ok .5 W30 1 ((WHH)dsd B (u).
i+1 i i1
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Then, it follows that

N—1 2

> Diggpeltistiv)

1=0

2

7+1
Z/ / Vi, liu,s lc,z,s(vv7 )5€,i,s(W2’H)d5dBj(u)
'L+1

Ry 4 2,H 2,H i
= / E / '7k,£,i,u,s6k,i,s(W7 )5ﬁ,i,s(W’ )dS du
i—0 Yti tit1
py bt 2,H 2,H 2,H 2,H
B / / g U Vb, Vs A Ok s (W) O i ot (W) 84 s (W) 004,50 (W) | disds”
i—=0 Yti+1 Jtiy1 ti
N-1 T tiv1 2
<CN! Z / (s —v)* 1 tdvds
i—=0 tit1 S
— 0
N—+o0

Proof of (v)

Term I 9(t;, tiv1)

d d
1
Lio(tis tiva) : 52 > okt tig),
G=1 kt=1:k#L

with
I ti,t W2H (t;,5))dB;(u) 6 s(W2H) 60 ; (W) ds.
10kl i) /z+l /z+1 /z+1 Ox0xy 2H(s t)QHgJ(S Uy ( i»5))dBj (1) Oki,s( )6ei,s( )ds

Fix k#£ ¢, j. Set

82
7k7£7i7u7s = 8.%,168.%,[ Pﬁ (8—t1)2ng(s7 u? W2,H(tl7 S))'

N-1 2
Z Lo jre(tistiv)
i—0
2
/ / Vi L0, s ( ) 619,2,8(WQ’H)(;Z,i,s(WQ’H)dS

z+1 z+1

/ / [/ Vi 0,508 (1) S, s (W80 5 (WG it (W) 30 (W)
1,1/ =051<1" tig1 Sty tit1

S/
Eti/+l [/ rykvevilyu’,s’dBj (u/) dsds’

ti/+1

=0
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N-1 .1

T
E
Z /tz+1 /ti-u

1=

/

SAS
/ ottt 5s s (W25 (W25 (W2 s o (WY | disds’

tiv1

—1

'L+1 2
C / / 2H Ldvds
z+1

1=

—
N%Jroo

Proof of (vi)

Term Iy 10(ti, tiv1)

d
Iy 1o(ts, tig) Z I 10,5 k0 (tis tig1),
7,k 0=1
with
e 2 H 2 H 2. H
I 10,5 k(i tigr) == 5/ Wi s,k 0g,i,s (W) 0 5 s (W) g5 s (W5 )ds,
tit1
where
33

,8,] = — P 5W27H ti, 59 do
st /0 Oxj0x1,0x¢ ﬁ(sfti)”’f(s (tis5,0))

27 1/2

N-1
> ogeeltitivn)

=0
1/2
< Zl j,Z,S )5k,i,s(W27H)5é,i,s(WZH)|2} / ds
i+1
tz+1 3/2
<C Z / </ v)ZH_ldv> ds
tz+1 t;
< CN’1/2 / /”1 P32y s
z+1
( —1/2 Z [ 3H+1/2 (T — ti+1)3H+1/2]> _CON-3H
— 0.
N—~+o0

O

Lemma 6. Let f a smooth random field (that is f € Saq). Then each term in this relation (I7)
admits a version which jointly measurable in (s,t,z,w) in [0,T])?> x RY x Q (s < t). We will always
consider this version.

Proof. Recall that f (together with all its derivatives) is by definition bounded. The result is true
for all the integrals in dt as a consequence of Lebegue’s dominated convergence. Concerning the
terms involving a stochastic integral, we refer to [I3] Theorem IV.63]. U
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