
HAL Id: hal-02176684
https://hal.science/hal-02176684v1

Submitted on 8 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Methodology of a network simulation in the context of
an evaluation: application to an IDS

Pierre-Marie Bajan, Christophe Kiennert, Hervé Debar

To cite this version:
Pierre-Marie Bajan, Christophe Kiennert, Hervé Debar. Methodology of a network simulation in
the context of an evaluation: application to an IDS. ICISSP 2019: 5th International Conference
on Information Systems Security and Privacy, Feb 2019, Prague, Czech Republic. pp.378-388,
�10.5220/0007378603780388�. �hal-02176684�

https://hal.science/hal-02176684v1
https://hal.archives-ouvertes.fr


Methodology of a network simulation in the context of an evaluation:
application to an IDS

Pierre-Marie Bajan1, Christophe Kiennert2 and Herve Debar2

1IRT SystemX, Palaiseau, France
2Telecom SudParis, Orsay, France

{f author, s author}@irt-systemx.fr, {f author, s author}@telecom-sudparis.eu

Keywords: Evaluation Methodology, Cybersecurity, Network Simulation

Abstract: This paper presents a methodology for the evaluation of network services security and the security of protection
products. This type of evaluation is an important activity, considering the ever-increasing number of security
incidents in networks. Those evaluations can present different challenges with a variety of properties to verify
and an even larger number of tools available to compose and orchestrate together. The chosen approach in
the paper is to simulate scenarios to perform traffic generation containing both benign and malicious actions
against services and security products, that can be used separately or conjointly in attack simulations. We use
our recently proposed method to generate evaluation data. This methodology highlights the preparation efforts
from the evaluator to choose an appropriate data generating function and make topology choices. The paper
presents the case and discusses the experimental results of an evaluation of a network-based IDS, with only
benign traffic, only malicious traffic, and mixed traffic.

1 INTRODUCTION

Companies and governments need to evaluate the se-
curity of their current systems and all new systems
they create. The evaluation of targets, like services
and security products, covers a broad range of proper-
ties (performances, security, compliance with specifi-
cations, etc.) and a large variety of tools exist to eval-
uate these properties. With current methods, it is dif-
ficult to compose and orchestrate these tools to eval-
uate all the properties of services and security prod-
ucts. The best solution so far is provided by testbed
environments, but they require a lot of resources and
workforce to set up and maintain.

Our recent paper (Bajan et al., 2018) proposed a
new method to generate large-scale evaluation data.
This method is independent of the virtualized struc-
ture and can work on overlay networks used in testbed
environments or on a lighter and more limited virtual
network that are more scalable. Our method does not
run real-life applications to generate traffic but uses a
single program that reproduces model data while re-
specting some properties of that data (size, duration,
acknowledgment by services, etc.). Thus, this method
significantly reduces the resource requirements for
the generation of evaluation data.

In this paper, we propose a methodology to eval-

uate security products and services with the proposed
network simulation. This methodology aims to help
the evaluator to identify the inputs required by the net-
work simulation but also to choose a correct simula-
tion topology according to the evaluation goals (use
of external components, selection of inputs, the con-
stitution of the ground truth, etc.). We illustrate that
methodology with the example of the evaluation of
the Intrusion Detection System (IDS) Suricata with a
network simulation prototype.

In this paper, we present in section 2 the funda-
mental concepts of the evaluation of services and se-
curity products. Section 3 showcases the network
simulation through experimental protocols to evalu-
ate services and security products. In section 4 we
apply our experimental protocol for to the evaluation
of the IDS Suricata. Finally, we conclude our work in
section 5.

2 FUNDAMENTAL CONCEPTS

Figure 1 illustrates the different elements involved in
an evaluation. As previously mentioned, we consider
as evaluation targets either services or security prod-
ucts. Their evaluation requires an environment that



Figure 1: Elements of an evaluation

provides a network and actors. However, depending
on the type of evaluation, it can involve both types of
targets. For example, security products can be in-line
products that are placed in the network so that incom-
ing traffic has to go through them before reaching its
destination, like a firewall, or they can be out-of-band,
like an authentication server.

In-line security products only work when listen-
ing to traffic between actors (like regular users and
attackers) and services. Thus the evaluation of such
products requires the presence of services alongside
the security product. On the other hand, the evalu-
ation of a service does not require the presence of a
security product. Similarly, an evaluation that verifies
the compliance with specifications of a service does
not require the presence of an attacker.

2.1 Targets of Evaluation

Services and security products are the targets of a
large variety of evaluations, each with different goals
in mind. Such evaluations aim to verify specific prop-
erties that can be different for services and security
products. In this section, we describe the main prop-
erties for services and security products.

2.1.1 Service

A service must be able to meet the needs of the users
(supporting enough requests for operational use, com-
pliance to the specifications, etc.) with acceptable
performances overhead (memory, CPU, I/O, energy,
etc.). It must also be able to resist the actions of an
attacker in the case where a security product does not
adequately protect it. Thus, the evaluation of services
must verify the following properties:

• compliance with the specifications

• workload processing capacity

• resilience to attacks

The first goal of the evaluation of a service is
to verify that the service complies with its design.
For services produced with model-driven engineering
(UML, SysML, etc.), there are two steps to this eval-
uation: a validation of the model (does this service
answer the needs?) and a verification of the model
(was this service correctly built?). In (Gogolla and
Hilken, 2016), the authors propose essential use cases
for model exploration, validation, and verification of a
structural UML model enriched by OCL (Object Con-
straint Language) invariants and demonstrate them on
a model validator.

The workload processing capacity is an evaluation
of the capacity of the product to handle a large number
of requests and significant stress. The goal of such an
evaluation is to ensure that the service will be resilient
when in operation and can meet the demands of users.
This evaluation can determine if it allocated enough
resources to the service, or it can provide inputs to
improve the performances of the service. For exam-
ple, (Nahum et al., 2007) studied the performance of
a SIP server according to the scenario and use of the
protocol.

Lastly, a service can be evaluated based on its re-
silience to attacks. Security products do not protect
all services, and they need to be able to resist attacks
on their own. The goal of such an evaluation is to de-
termine the scope of the attacks the service can resist
or is vulnerable. This evaluation aims to find vulnera-
bilities due to configuration flaws and vulnerabilities
specific to the service itself.

2.1.2 Security Products

There exists a wide variety of security products: fire-
wall, IDS, antivirus, WAF (Web Application Fire-
wall), SBC (Session Border Control), DLP (Data
Leak Prevention), etc. It is necessary to know how
well they detect and/or block attacks (accuracy, attack
coverage, workload processing capacity) and how
much overhead they impose on the system. Therefore,
the evaluation of security products aims at validating
the following properties:

• policy accuracy

• attack coverage

• performance overhead

• workload processing capacity

Policy accuracy regards the correctness of the
judgment of the security product. That judgment can
take different forms: detecting an attack, accepting
credentials, detecting abnormal behavior, etc. The
evaluation of this property requires the security prod-
uct to judge a mixed set of interactions (attack/regular,



accepted/rejected, etc.). The correctness of that judg-
ment depends on the policy of the security product
that can be flawed or impacted by configuration is-
sues. In (Garcia-Alfaro et al., 2011), Garcia-Alfaro et
al. presented a management tool that analyzes config-
uration policies and assists in the deployment of con-
figuration policies of network security components.
The goal is to ensure the absence of inconsistencies
in the policies of security products on the network.

The evaluation of attack coverage aims to deter-
mine the range of attacks that can affect the judgment
of the security product. It ensures that the security
product is not affected by known attacks or vulnera-
bilities. The configuration of the product impacts the
attack coverage of a security product. The configu-
ration must be a trade-off with the number of wrong
decisions (false alerts, false acceptances, false rejec-
tions, etc.) generated and the number of correct de-
cisions, as highlighted by the base-rate fallacy issue
presented by Axelsson in (Axelsson, 2000).

Finally, the evaluation of performance overhead
deals with the resources consumed by the security
product. However, performance overhead usually fo-
cuses on the impact of the addition of a security prod-
uct on the performances of the network. An inline se-
curity product analyzes the network traffic that passes
through it. Therefore, if the security product has poor
performances, it can slow down the overall traffic on
the network. Similarly, if an out-of-band security
product replies to requests slowly, it can also impact
the performances of services that depend on that se-
curity product. For example, the use of DNSSEC to
secure DNS against cache poisoning has a negative
impact on the performances of networks, as pointed
out in (Migault et al., 2010).

2.2 Evaluation Environment

As previously mentioned, the evaluation of targets
like services and security products verify all kinds of
aspects. A large variety of tools exists to evaluate
those aspects.

Workloads drivers like ApacheBench and SPEC
CPU2017 are drivers that produce large amounts of
data to stress specific resources of the target (CPU,
network, memory, etc.). However, the produced traf-
fic is dependent on the tool and is detrimental to in-
line security products that require a learning phase,
such as anomaly-based IDS. Also, it only tests some
of the functionalities of the target.

To test all functionalities of a target, we previously
mentioned that model validation and verification tools
exist, but evaluators usually have to manually test the
functions or draft homegrown scripts to do so.

The best way to generate attacks on a target is
to either manually generate attacks or use an exploit
script. Exploit databases like Metasploit allow the
evaluator to test a large variety of attacks targeting
specific products. However, exploits and homegrown
scripts are specific and not scalable.

Other methods also exist to look for vulnerabili-
ties in a target like fuzzing and vulnerability scanners
(e.g., Arachni, OWASP, Wapiti, OpenVAS, etc.).

All these tools and methods require a network or
virtualized structure. It can be a physical network
dedicated to the evaluation of products, a virtual net-
work existing above a physical network (overlay net-
works) or a virtual network with solely virtual net-
work equipment. The choice of the network will de-
pend on the resources of the evaluator, but it can be
costly and time-consuming to set up and maintain.

On that structure, the different tools previously
mentioned can be deployed multiple times across the
network to create a testbed environment, where the
evaluator will be able to produce evaluation data for a
large scale network with full control.

However, not all evaluators can afford such a
testbed environment. Thus, evaluators can also use
external data rather than generating them. They can
use traces of large-scale experiments on other struc-
tures. Those traces may be publicly available to the
community to serve as an evaluation standard and
comparison point: DARPA(Cunningham et al., 1999),
CAIDA(Phan et al., 2017), DEFCON(Cowan et al.,
2003), MawiLab(Fontugne et al., 2010), etc. How-
ever, publicly available traces are often not adapted to
the needs of the evaluation and are quickly outdated.

Another method is to use real-world production
traces and mix in several attacks from known exploits.
Despite being the solution that provides the most re-
alistic data, the evaluator can never know for sure that
no attack in the traces is left unidentified. Moreover,
traces from real-world production are difficult to ob-
tain and pose the issue of revealing data to the eval-
uator that may compromise the activity of the entity
providing the traces. Anonymization techniques can
solve this problem but often at the cost of losing data
that may be useful for the evaluation.

To sum it up, the evaluation of services and se-
curity products has many objectives with a lot of dif-
ferent tools that can achieve each of these objectives.
The difficulty for an evaluator is to successfully com-
pose or orchestrate the existing tools and methods to-
gether to achieve those objectives in order to obtain
a complete and thorough evaluation. Moreover, the
composition of those tools must represent a reason-
able amount of time and resources for the evaluator.



3 EVALUATION
METHODOLOGY

Testbed environments propose the most complete so-
lution to evaluate products, but they are also very
costly, mainly due to the network structure. The ap-
proach in (Bajan et al., 2018) aims at addressing this
issue. As previously explained, the network can be a
physical network, an overlay network or a simulated
network (virtual network built with virtual network
components). Most testbed environments use over-
lay network or simulated network to connect virtual
machines as end-points. Those virtual machines must
be sophisticated enough to run applications that will
interact with the evaluation target. For that reason,
lightweight virtual machines are usually not used be-
cause of their limited capacity. Smith and Nair called
those two types of virtual machines respectively sys-
tem virtual machines and process virtual machines in
(Smith and Nair, 2005).

Having system virtual machines deployed on a
large scale consumes many resources and requires
substantial maintenance. Therefore, a method was
proposed in (Bajan et al., 2018) to generate data at a
large scale with the support of a lightweight network
simulator, Mininet. The generated data is undifferen-
tiated between benign and malicious data.

Its principle is to reproduce model data at a cus-
tomizable level of realism on a lightweight virtual net-
work that might not support running the applications
that have generated the data. Applications are not run
on virtual machines to generate the evaluation data.
Instead, this method relies on data reproducing func-
tions that produce similar evaluation data with the re-
sources available on the network support. External
equipment can be connected to the virtual network
and can interact with the simulated agents.

3.1 Services

The goal of this network simulation is to have a
method to generate data at large scale, with data re-
alistic enough for the needs of the evaluator, with
smaller constraints than current methods (usually
testbed environments or traces).

Figure 2 shows the general topology of the net-
work simulation. The virtualized structure of the sim-
ulation creates the hosts and connects them in a simu-
lated network. The evaluated target is connected to
that network along with other external components
that the evaluator may use. To use the simulation, the
evaluator must provide the model data that the sim-
ulation will reproduce. The evaluator must provide
model data must for each elementary action (short

Figure 2: Simulation general topology

set of interactions between the service and a client).
Those elementary actions will correspond to entries
of the ground truth of the actions taken by the users,
which is called the scenario.

To ensure the compliance with the specifications,
we select as elementary actions each functionality of
the evaluation target. The evaluator must manually
execute each functionality of the service and record
the resulting data, which form the model data. The
nature of that data can change according to the input
requirements of the data generating function of the
simulation. It can be values, logs, network traces, etc.

The level of realism is not an actual input of the
simulation model, but one of the simulation parame-
ters. It corresponds to a data generating function that
reproduces the model data while preserving one or
several properties of the model data (size of packets,
acknowledgment by the service, waiting time, etc.).
The evaluator must choose a level of realism so that
the service finds the real data and simulated data to
be equivalent in respect to the properties preserved by
the data generating function.

The third input required for the simulation is the
scenario. This scenario is composed of sets of el-
ementary actions and parameters specific to the el-
ementary action. Those elementary actions are the
functionalities of the services. Just like the function-



alities might require parameters, the evaluator has to
provide elementary action parameters necessary for
the compliance to the specification. For example,
if the service has an authentication functionality, the
evaluator needs to provide the model data of the ”con-
nection to the service” elementary action and there-
fore to provide a set of credentials as elementary ac-
tion parameters.

Figure 3: Sequential diagram of the simulation

Figure 3 illustrates the sequential process of the
simulation with the elements previously explained.
The figure displays only one of the virtual hosts of the
n hosts that interact simultaneously with the target. In
this example, the evaluator gives a scenario that re-
quired the host Hi to simulate the elementary action
A1 followed by the action A2. The virtual host gen-
erates the data on the client side of A1 with the data
generating function f corresponding to the selected
level of realism. The host gives f the model data of
the action A1 and the elementary action parameters in
the scenario. With an appropriate scenario, the net-
work simulation can make a large number of clients
use all the functionalities of the service over the re-
quired period of time, verifying both the compliance
to the specifications and the workload processing ca-
pacity.

For the production of attacks, there are two so-
lutions: the evaluator can either provide inputs for at-
tacks as he would for other elementary actions or con-
nect an external source of attacks (exploit database,
physical attacker, vulnerability scanner, etc.) to the
simulated network. The simulation model uses the
same data generating function to produce malicious
or benign data.

The last step of every evaluation is the analysis of
the experimental results. This step is a comparison
of the ground truths of the different components of

the evaluation: services, security products, network,
and users. The evaluator compares the ground truth
of the evaluated target with the ground truth of others
components. Thus, in the study of discrepancies, we
can ascertain if the mistake comes from the evaluated
product or the evaluation method.

The network simulation provides the network en-
vironment and actors (regular users and attackers).
The ground truth analyzed for the actors are the sce-
nario and control data (data exchanged between the
simulation control and the virtual hosts) generated by
the simulation. It displays which elementary actions
were simulated by which host with which parameters.
For the network, an analysis of the network traces can
constitute a ground truth. Indeed, by identifying spe-
cific URLs or specific packets, or if the attacker comes
from an external component, it can also be identified
in traces based on the IP address. We then compare
that ground truth to the simulation scenario or control
data.

3.2 Security Products

When evaluating an in-line security product, the eval-
uator needs to configure the simulation to generate
traffic between users and services. The evaluator
needs to construct a realistic activity model of the pro-
duction of the services (the scenario) and capture the
model data of single entries of that activity model.
The evaluator may construct different scenarios ac-
cording to different situations (regular use of services,
overload of requests, under attack, etc.) and generate
simulation data of several services protected by the
same security product. The attacks can be elemen-
tary actions of that scenario or external components.
To ensure a proper evaluation of the attack coverage,
we advise the use of an external component for the
attacker.

In the evaluation of an out-of-band security prod-
uct, the evaluator is no longer required to generate a
simulated activity between users and services. The
evaluator must first identify the actors interacting with
the functionalities of the security product and repro-
duce these interactions. They can be interactions be-
tween the security product and users or between the
security product and the services, or both. The evalu-
ator must then capture the model data of those inter-
actions.

The network simulation can either be used as the
sole evaluation tool of the security product or only as
the network component. The network can simulate
a large number of hosts playing the role of either an
attacker, regular users or services and connect a se-
curity product at any point of the simulated network



(Figure 2). That way, only the network simulation is
needed for the evaluation, but a consequent amount
of work is required of the evaluator to ensure substan-
tial attack coverage. It can also connect an external
attacker, external service and security product to its
simulated network and only generate benign traffic.
That way, only the inputs necessary for the benign
traffic are required for the simulation. However, just
like in the evaluation of services, the addition of the
ground truth of the external component is left to the
evaluator.

We mentioned in 2.1.2 that the evaluation of secu-
rity products consists in the verification of four prop-
erties: policy accuracy, attack coverage, workload
processing capacity and performance overhead. The
network simulation can verify these properties on a
security product.

The policy accuracy represents the accuracy of
the judgment of the security product, and its eval-
uation depends on the configuration of the security
products. To properly evaluate this property a reliable
ground truth is required. Its difficulty depends on the
topology chosen, more precisely if it includes external
components or not. If the evaluation includes external
components, additional work must be done to gener-
ate a complete ground truth of the evaluation, but the
external network interface of the components make
their traffic easily identifiable.

The ”attack coverage” property also generates ad-
ditional work for the evaluator according to the topol-
ogy choice. If the simulation simulates the attack-
ers, the evaluator must capture a large amount of the
model data added to match the variety of attacks of an
external attacker.

The ”workload processing capacity” property is
inherent to the simulation method. The method aims
to generate consequent benign traffic along with at-
tacks for an evaluation closer to production context.
This need for mixed traffic in the evaluation of secu-
rity products was a challenge that was already high-
lighted by the US Department of Commerce and in-
stitutes like the MIT in 2003(Mell et al., 2003). So
far, the best solution was testbed environments.

The last property of the ”performance overhead”
evaluation requires an additional step to the experi-
ment. The network simulation can be supported on a
single server. It is quite easy to measure the perfor-
mances of the server as a whole for two experiments.
The first experiment is the simulation without the se-
curity product, and the second experiment consists of
the same simulation with the security product. The
difference between the two should provide the perfor-
mance overhead due to the security product.

Figure 4: Topology of our evaluation of Suricata

4 EVALUATION OF AN IDS:
EXPERIMENTAL RESULTS

In this section, we present an application of the pre-
vious methodology for the evaluation of a security
product, focusing on the IDS Suricata. The goal of
this evaluation is to verify the impact of a consequent
volume of benign data on the detection rate of Suri-
cata. We also want to look for differences in the anal-
ysis by Suricata between live and offline traffic. We
call live analysis the alerts generated by Suricata dur-
ing the simulation and offline analysis the alerts gen-
erated by Suricata from the network traces captured
from the simulation. The main difference between the
two analysis is that during the live analysis, Suricata
is under stress to keep up with the flow of data passing
through it, while in the offline analysis Suricata reads
the traces at its own pace.

Figure 4 shows the topology of our evaluation of
Suricata. The simulation is created and managed by
the prototype described in (Bajan et al., 2018). We
chose to have an external service and external attacker
to evaluate the IDS. We set up Suricata with the rules



of EmergingThreat as available on January 2018. We
left the basic configuration of Suricata. The external
service is a webmail server (Postfix + Roundcube)
that we set up to look like the webmail server of a
small company. The external attacker is OpenVAS, a
vulnerability scanner. We used the scan named ”Full
and fast” that test 62 families of vulnerability. We
scan the external server, and the probe passes through
the simulated network. This scan lasts an average of
23 minutes and starts 3 minutes after the start of the
simulation scenario of 30 minutes of benign activity.

The simulated hosts are the employees of a small
company. The employees all follow the same script
of activity shown in Figure 5.

Wait X seconds

Connect to webmail

Read last email

Disconnect

p = 0.5

Wait X seconds

Connect to webmail

Read last email

Send email

Disconnect

p = 0.5

p = 0.2

p = 0.8

Figure 5: Script of the benign activity

Figure 5 represents the decision graph of the el-
ementary actions performed by each host. The host
waits X seconds before deciding with a probability
of 0.5 to perform the first series of elementary actions
(connect→ read email→ disconnect). It then waits X
seconds again and decides with a probability of 0.2 to
perform the second series of elementary actions (con-
nect→ read mail→ write mail→ disconnect). Each
simulated host repeats that script for the whole dura-
tion of the simulation.

We regulate the intensity of the generated benign
traffic with the number of hosts simulated during the
experiment (50, 100, 150, 200 or 250 hosts), and
we control the intensity of the script by changing
the waiting period X between each series of elemen-
tary actions (10 or 30 seconds). The data generat-
ing function (selected by the level of realism) that
we choose for this evaluation is a function that gener-
ates the same packets as the model data but modifies
some elements so that the webmail server may accept
them. They are two types of modifications: modi-
fications for the sake of variability and modification
for the sake of functionality. The first kind modifies
a part of the content of the model data that may dif-
fer from user to user (examples: credentials, email
content, etc.). The second modifications focus on el-
ements that are time sensitive and, therefore, must be
changed to be accepted by the service (e.g., the token
ID, the cookies, the IP addresses, etc.). They do not

affect the variability but maintain the consistency of
the data generation function.

4.1 Evaluation with Benign Traffic

Before starting the test with mixed traffic, we need
to have a reference point for the benign traffic and
malicious traffic. We start with the benign traffic. We
perform the evaluation without the external attacker
OpenVAS. The goal is to obtain a reference point for
the quantity of simulated data generated solely by the
simulation and see if these benign data raise any alert
on the IDS. We test different numbers of hosts and
different waiting periods. We do each experiment for
a set of parameters (number of hosts, waiting period
X) 20 times.

Figure 6: Network traffic of the evaluation with benign traf-
fic.

Figure 6 shows the average number of bytes re-
ceived (blue with a left arrow) and sent (red with a
right arrow) every 30 seconds by the simulation from
the webmail server during the experiment. The solid
lines are the experiments where the scenario has a
waiting period of 10 seconds between each series of
simulated actions while the dotted lines are the exper-
iments where the waiting period is 30 seconds. The
simulated hosts request a variety of data for each page
from the service webmail (HTML pages, fonts, links,
logos, etc.) which results in the simulation receiving
a lot more data than it sends. Figure 6 shows that
a more intensive scenario results in significantly in-
creased amount of exchanged data.

This figure also shows that our current implemen-
tation prototype has difficulties handling more than
150 hosts. The amount of generated data is propor-
tional to the number of hosts simulated on the first



part of the graph up to 150 hosts. Beyond that point
the simulation encounters difficulties. The cause of
such difficulties is still unidentified and is the target of
improvement of our current prototype. It can be due
to limitations of the network support (Mininet) or lim-
itations on the service webmail that may not be able
to handle so many simultaneous connection requests
for a set of only five credentials. However, previous
experiments tend to point a limitation on the handling
number of connections (around 6000) during the ex-
periment, which would be a limitation of our network
support.

Despite that technical difficulty, we observe inter-
esting results from this evaluation of the generation
of benign data. Coincidentally, this evaluation of the
generation of benign data also ends up being an eval-
uation of the external service of our simulation. The
graph in Figure 6 represents four days and 20 hours
of continuous activity between the simulation and the
webmail server. It evaluates the capacity of the web-
mail server to process a consequent workload.

The experiments also reveal that our benign traffic
is raising an alert on Suricata. Indeed, we deliberately
chose not to use encryption in the simulated traffic
to limit the issues in our evaluation. Thus it raises a
Suricata alert when our simulated hosts connect to the
service with credentials in clear text. It generates one
alert each time the ”connect to the webmail” elemen-
tary action is simulated.

Table 1: Number of ”clear password” alerts from Suricata

X = 10s X = 30s
Nbr hosts avg stdev avg stdev
50 2433 82 1044 33
100 4864 64 2065 50
150 5611 197 3077 65
200 5078 192 3287 452
250 3091 139 1227 285

Table 1 shows the average number and standard
deviation of alerts generated by Suricata during the
generation of benign traffic. We calculate the aver-
age and standard deviation out of the twenty experi-
ments made for each set of parameters. These num-
bers are also representative of the number of sessions
created with the webmail server during the experi-
ment. The standard deviation of the number of alerts
is relatively high when one or several experiments en-
countered difficulties, especially when the simulation
reaches 150 hosts or more.

4.2 Evaluation with Malicious Traffic

After evaluating the benign data, we now focus on the
malicious data. In the topology of Figure 4, we only
launch the simulated network without starting the ac-
tivity of the hosts. We then launch a scan of the ser-
vice with the vulnerability scanner OpenVAS. We ob-
serve the alerts raised by Suricata in Table 2.

Table 2: Number of alerts from Suricata (malicious only)

Alert ID Live analysis Offline analysis
2006380 1 1
2012887 6 6
2016184 2 2
2019232 780 780
2019239 260 260
2022028 1040 1040
2220007 2 2
2221002 1 1
2221015 2 2
2221016 1 1
2230010 34 34
2230015 34 34
2230010 34 34
2220018 1 1
2221007 57 57
2221013 1 1
2221014 1 1
2221018 1 1
2221028 6 6

Table 2 shows the number of alerts raised by Suri-
cata, classified by alert ID. The alert ID 2012887 cor-
responds to the alert that warns about the transmission
of a password in clear text, similar to the benign traffic
analysis.

From Table 2, we can infer that the traffic solely
generated by OpenVAS does not create enough stress
on Suricata to generate a difference between the of-
fline and live analysis.

4.3 Evaluation with Mixed Traffic

Lastly, we evaluate Suricata with mixed traffic gen-
erated by our simulation and OpenVAS at the same
time. We start the generation of benign traffic first
then, after two minutes, we start the vulnerability
scan. We generate different levels of traffic inten-
sity (number of hosts + X), and we compare the alerts
raised during the live and offline analysis of Suricata.
We expect the resulting alerts to be equal to the num-
ber of alerts found for the same intensity of benign
traffic plus the alerts raised with the malicious traffic.



To be consistent, we order OpenVAS to do the same
vulnerability scan.

Figure 7: Network traffic of the evaluation with mixed and
benign traffic

Figure 7 presents the average number of bytes re-
ceived (blue with a left arrow) and sent (red with
a right arrow) every 30 seconds by the simulation
from the webmail server during the experiments with
mixed and benign traffic. For reference, we display
the results of the benign traffic in Figure 6 along with
the results of the mixed traffic. In this figure, the lines
without dots represent the data exchanged during the
mixed traffic and the lines with dots (single or dou-
ble) are the data exchanged during the benign traffic
generation. A solid line corresponds to mixed traffic
with X = 10s, a dotted line to mixed traffic with X
= 30s, a dotted line with single dots to benign traffic
with X = 10s and finally a dotted line with double dots
to benign traffic with X = 30s. As in Figure 6, less in-
tense scenarios (X = 30s) exchange a lower number
of bytes than more intense scenario (X = 10s). More-
over, apart from the mixed experiment launched with
limit parameters (150 hosts, X = 10s), the behavior
of the mixed experiment is close to the benign traffic
experiment, as we expected.

Table 3 represents the average number of alerts
raised by Suricata by alert ID for the most intense sce-
nario (X = 10s). For each number of hosts, we show
the average number of alerts raised live and offline by
Suricata. For the most part, the results are pretty simi-
lar to the profile of alerts showed in Table 2 except for
alert 2012887 that was raised both during the benign
traffic and the mixed traffic. The range of variation of
this specific alert matches the results obtained for the
evaluation with benign traffic in Table 1.

However, Table 3 also shows that differences ap-

pear between the offline and live analysis. Those dif-
ferences are proof that Suricata operates slightly dif-
ferently between a live analysis and an offline analysis
due to the stress inflicted on the IDS during the sim-
ulation. With larger stress (more intensive scenario,
more hosts and different configurations of Suricata)
we can expose even more alerts that the IDS detects
in offline analysis but misses in the live analysis.

Table 4 shows the preliminary results of on-going
experiments with a higher intensity scenario (X = 5s),
a more in-depth vulnerability scanning and more rules
activated on Suricata. The analysis of benign traffic
shows none of those alerts. In these experiments, a
few interesting results appear. Alert 2200069 shows
that there are attacks that Suricata does not detect dur-
ing a live analysis. Alert 2200074 produces more
alerts in mixed traffic than in an attack without be-
nign traffic. On the contrary, we detect fewer alerts
2230010 and 2230015 than expected with the addition
of benign traffic. The analysis of those experiments is
still on-going, but an improvement of the current lim-
itations of the prototype could allow a deeper under-
standing of the behavior of the IDS.

5 CONCLUSION

In this paper, we defined a methodology for the eval-
uation of services and security products. We defined
a set of properties that the evaluation of each target
must respect. Most evaluation tools can only cover
some of those properties, and the challenge of the
evaluator is to successfully compose and orchestrate
the large variety of tools to cover all properties.

Using our recently proposed method to generate
evaluation data, we showed how we could design an
experiment using our network simulation that respects
all the properties of the evaluation of services and se-
curity products. However, our methodology requires
some preparation efforts from the evaluator. The eval-
uator needs to provide model data and scenarios and
must choose an appropriate data generating function.
He must also make topology choice (the use of exter-
nal components, selection and composition of ground
truth, actors interacting with the target, etc.) accord-
ing to his goals and his evaluation target. However,
this method is still at its initial stage. The prepara-
tion effort of the evaluator can be greatly reduce with
the development of further data generating functions,
tools to identify time-sensitive inputs, and the accu-
mulation of model data. Those improvements were
discussed in the previous paper.

To illustrate the proposed evaluation methodol-
ogy, we presented the experimental results of an eval-



Table 3: Number of alerts from Suricata (mixed, X = 10s).

50 Hosts 100 Hosts 150 Hosts 200 Hosts 250 Hosts
Alert ID live off. live off. live off. live off. live off.
2006380 2 2 2 2 2 2 2 2 2 2
2012887 2460 2465 4813 4821 5526 5541 5069 5075 3044 3046
2016184 2 2 2 2 2 2 2 2 2 2
2019232 780 780 780 780 780 780 780 780 780 780
2019239 260 260 260 260 260 260 260 260 260 260
2022028 1040 1040 1040 1040 1040 1040 1040 1040 1040 1040
2220007 2 2 2 2 2 2 2 2 2 2
2220018 1 0 1 0 1 0 1 0 1 0
2221002 2 1 2 1 2 1 2 1 2 1
2221007 57 56 57 56 57 56 57 56 57 56
2221013 1 1 1 1 1 1 1 1 1 1
2221014 1 1 1 1 1 1 1 1 1 1
2221015 2 2 2 2 2 2 2 2 2 2
2221016 1 1 1 1 1 1 1 1 1 1
2221018 2 0 2 0 2 0 2 0 1 0
2221028 6 5 6 5 6 5 6 5 6 5
2230010 33 33 32 32 33 33 32 32 33 32

Table 4: Number of interesting alerts from Suricata (X = 5s)

Mixed
OpenVAS 50 Hosts 100 Hosts 150 Hosts

Alert ID live off. live off. live off. live off.
2200069 7395 7617 7611 7252
2200074 20 60 79 71
2230010 44 44 32 31 33 33 33 33

uation of a network-based IDS. We evaluate this IDS
with our network simulation using only benign traffic,
only malicious traffic, and mixed traffic. After inci-
dentally evaluating the workload processing capacity
of the external service of our topology, we observed
that the separate evaluation of benign traffic and ma-
licious traffic gave slightly different results than with
mixed traffic. In particular, we observe a difference
in behavior between a live and offline analysis most
likely due to the stress of consequent benign traffic.

However, we also notice that our current proto-
type has limitations and does not support more intense
evaluations of the security product. A more advanced
prototype of the simulation could also provide more
development of the model and the scope of possible
evaluations. It would also be interesting to extend the
experimental results to similar security products and
products of different types.

REFERENCES

Axelsson, S. (2000). The base-rate fallacy and the difficulty
of intrusion detection. ACM Transactions on Informa-
tion and System Security (TISSEC), 3(3):186–205.

Bajan, P.-M., Kiennert, C., and Debar, H. (2018). A new
approach of network simulation for data generation in
evaluating security products. In Internet Monitoring
and Protection, 2018. ICIMP 2018. Thirteenth Inter-
national Conference on. IARIA.

Cowan, C., Arnold, S., Beattie, S., Wright, C., and Viega,
J. (2003). Defcon capture the flag: Defending vulner-
able code from intense attack. In DARPA Information
Survivability Conference and Exposition, 2003. Pro-
ceedings, volume 1, pages 120–129. IEEE.

Cunningham, R. K., Lippmann, R. P., Fried, D. J.,
Garfinkel, S. L., Graf, I., Kendall, K. R., Webster,
S. E., Wyschogrod, D., and Zissman, M. A. (1999).
Evaluating intrusion detection systems without attack-
ing your friends: The 1998 darpa intrusion detection
evaluation. Technical report, Massachusetts Inst. of
Tech. Lexington Lincoln Lab.

Fontugne, R., Borgnat, P., Abry, P., and Fukuda, K. (2010).
Mawilab: combining diverse anomaly detectors for
automated anomaly labeling and performance bench-
marking. In Proceedings of the 6th International
COnference, page 8. ACM.



Garcia-Alfaro, J., Cuppens, F., Cuppens-Boulahia, N., and
Preda, S. (2011). Mirage: a management tool for the
analysis and deployment of network security policies.
In Data Privacy Management and Autonomous Spon-
taneous Security, pages 203–215. Springer.

Gogolla, M. and Hilken, F. (2016). Model validation and
verification options in a contemporary uml and ocl
analysis tool. Modellierung 2016.

Mell, P., Hu, V., Lippmann, R., Haines, J., and Zissman, M.
(2003). An overview of issues in testing intrusion de-
tection systems. Technical report, NIST Interagency.

Migault, D., Girard, C., and Laurent, M. (2010). A perfor-
mance view on dnssec migration. In Network and Ser-
vice Management (CNSM), 2010 International Con-
ference on, pages 469–474. IEEE.

Nahum, E. M., Tracey, J., and Wright, C. P. (2007). Evalu-
ating sip server performance. In ACM SIGMETRICS
Performance Evaluation Review, volume 35, pages
349–350. ACM.

Phan, T. V., Bao, N. K., and Park, M. (2017). Distributed-
som: A novel performance bottleneck handler for
large-sized software-defined networks under flooding
attacks. Journal of Network and Computer Applica-
tions, 91:14–25.

Smith, J. E. and Nair, R. (2005). The architecture of virtual
machines. Computer, 38(5):32–38.


