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ABSTRACT:   

Earth  observation of complex scenes, such as coastal fringes, is based on a plethora of optical sensors constrained by trade-offs  

between  spatial,  spectral,  temporal  and  radiometric  resolution.  The  spaceborne  hyperspectral  EO-1  Hyperion  sensor  

(decommissioned in 2017) was able to acquire imagery with 10 nm spectral (220 bands) at 30 m spatial resolutions over 1424.5 km2  

scenes. Conversely, the widespread unmanned airborne vehicle (UAV) hyperspatial DJI Mavic Pro camera can collect only natural- 

coloured imagery of 100 nm spectral (3 bands) but at 0.1 m spatial resolution over ~10 km2 scenes (with a single battery and calm  

meteo-marine conditions). The spaceborne WorldView-3 (WV3), featured by 60 nm spectral (16 bands) at 0.3 m spatial resolution  

(when pansharpened) over 1489.6 km2 scenes, has the capacity to bridge both sensors. This study aims at testing the spectral and  

spatial performances of the WV3 to discriminate 10 complex coastal classes, ranging from ocean, reefs and terrestrial vegetation in  

Moorea Island (French Polynesia). Our findings show that geometrically- and radiometrically-corrected 0.3-m 16-band WV3 bands  

competed with (30-m) 167-band  Hyperion performance for classifying 10 coastal classes with 2-neuron artificial neural network  

modelling, while being able to segment objects seized by 0.1-m (3-band) UAV. Unifying superspectral and hyperspatial specificities,  

the WV3 also leverages hypertemporal resolution, that is to say 1-day temporal resolution, rivalling UAV’s one.  

 

1.  INTRODUCTION   

1.1  Space-Spectrum-Time prism   

Coastal  fringes  host  complex  social-ecological  systems  facing  

global changes (sea-level rise and cyclone/storm intensification)  

and local pressures (unprecedented urbanization and ecosystem  

services degradation), thus requiring specific imagery sensors to  

be  used.  Ad  hoc  sensors  are  expected  to  capture  

coastal  processes  at  the  scale  at  which  they  act,  that  is  to  say  

over  regional extents (> 1000 km2) but with high spatial 

resolution (1  m). Furthermore, sensors need to monitor a 

sufficient number of  wavebands (> 10 bands) in order to 

disentangle spectrally-close  coastal  features,  both  within  

marine  and  terrestrial  realms  (Collin  et  al.,  2013).  In  

addition,  the  revisit  or  tasking  time  should be short enough to 

match the temporal frame in which  coastal  mechanisms  occur,  

from  days  to  months.  However,  a  sensor  delivering  daily-to-

monthly,  hyperspectral  images  over  regional  extents  at  

hyperspatial  resolution  does  not  exist,  because of the 

hardware-based limitations. Judicious trade-offs  between  

temporal,  spectral  and  spatial  resolutions  have  to  be  considered.    

1.2  Airborne and spaceborne hyperspectral platforms   

Even  if  handborne  hyperspectral  sensors  provide  very  

satisfactory results to retrieve inherent optical properties of the   
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waters  (Keller  et  al.,  2018),  the  spatial  coverage  of  coastal  

regional  extents cannot be reached in a cost-effective manner,  

hindering monthly iterative acquisition.    

Leveraging  higher  footprints,  airborne  hyperspectral  sensors  

revealed great performance to classify coastal areas (Zhou et al.,  

2005),  discriminate  seagrasses  (Peneva  et  al.,  2008),  or  

macroalgae  (Dierssen et  al., 2015). The integration of LiDAR  

data was also strongly validated for species distribution (Jones  et 

al., 2010), agricultural and urban features (Tuia et al., 2016).  

Hyperspectral sensors mounted on unmanned airborne vehicle  

(UAV)  recently  showed  suitable  results  for  monitoring  trees  

(Honkavaara  et  al.,  2017).  Covering  regional  extents  at  high  

spatial resolution, those surveys are good candidates for coastal  

issues, but the time-consuming mission planning and the costly  

aircraft   pricing   (Collin   et   al.,   2014)   make  the  temporal  

resolution too coarse to capture coastal processes.   

Benefiting  from  a  greater   agility,  concomitant  with  

affordability, thus temporal resolution, spaceborne sensors have  

demonstrated  their   efficiency  in  estimating  water  quality  

(Brando and Dekker, 2003; Van Mol and Ruddick, 2004; Lucke  

et  al.,  2011),  mapping  coastal  wetlands  (Pengra  et  al.,  2007),  

coral  reefs  (Kutser  et  al.,  2006),  soil  parameters (Anne et  al.,  

2014),  and  land  cover/land  use  when  fused  with  Sentinel-2  

(Weinmann   et   al.,  2018).  Conciliating  high  spectral  

and  temporal resolution with regional extents, the downside of 

those  
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sensors  (CHRIS,  19  bands  at  17  m  or  63  bands  at  34  m;  

Hyperion, 220 bands at 30 m; HJ-1, 128 bands at 30 m; HICO  

installed in the international space station, 128 bands at 90 m)  lies  

in  their  spatial  resolution,  mismatching  coastal  processes.  Even  

PRISMA  (220  bands),  launched  this  year,  or  EnMAP  (228  

bands,  Müller  et  al., 2010), will  provide  coastal  images,  

relatively too coarse (30 m).    

1.3  Spaceborne superspectral and hyperspatial sensor   

In  parallel  with  the newly launched Venμs micro-satellite (12  

bands at 5 m), the WorldView-3 (WV3) sensor can capture, at  the 

daily rate, 1 panchromatic band at 0.31 m (hyperspatial), 8  

multispectral (5 visible, VIS, and 3 near-infrared, NIR) bands at  

1.24  m,  surpassing  its  predecessor,  WorldView-2,  provided  

with 0.46 and 1.84 m, respectively (Collin and Planes, 2011). In  

addition, WV3 has the capabilities for collecting 8 short-wave  

infrared  (SWIR)  at  3.7  m.  The  increase  in  spatial  resolution  

improved  the  bathymetry  extraction  (Collin  et  al.,  2017),  and  

the  addition  of  spectral  bands  meliorated  the  classification  of  

minerals (Kruse and Perry, 2013) and salt marshes (Collin et al.,  

2018a). WV3 VIS, NIR and SWIR showed the potential to be  

Gram-Schmidt pansharpened (Belfiore et al., 2016), resulting in  

16 spectral bands at 0.3 m.    

We hypothesize that the superspectral (16 bands), hyperspatial  

(0.3  m)  WV3  can  both  compete  with  satellite  hyperspectral  

performance  and  UAV  spatial  segmentation,  for  

detecting  complex coastal features. Classification of Moorea 

generic coral  reefscape  (Figure  1)  will  be  examined  to  confront  

WV3  and  Hyperion (30 m with 220 bands) spectral data, using 

artificial  neural  network  (ANN)  modelling.  A  spatial  analysis  

will  be  tackled to compare WV3 and UAV (0.1 m with 3 bands) 

fine- scale patterns.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Natural-coloured WorldView-3 imagery of Moorea  

Island (French Polynesia)   

 
2.  MATERIALS AND METHODS   

2.1  Study site   

The  study  area  is  located  on  Moorea  Island  (17°32′S,  

149°50′W)  in  South  Pacific  French  Polynesia  (Figure  

1).  Tahiti’s sister island, 1.6-million-year-old Moorea tops at 1 

207  m and extends over 187 km2, composed of 134-km2 

terrestrial  and  53-km2  lagoon  realms  (Collin  et  al.,  2018b).  

Rich  of  its   

 

 

ecological  land  and  marine  diversity,  as  well  as  exposed  to  

growing  urbanization,  Moorea  embodies  a  scientific  hub  

addressing global changes in the Anthropocene era, through a  

nexus of French and USA researchers (Davies et al., 2015). The  

area of interest stretches over 3.5 km2, and encompasses typical  

features  of  tropical  reefscapes,  such  as  outer,  barrier  

and  fringing coral reefs, lagoon with channel, and forests.     

2.2  Air truth using Unmanned Aerial Vehicle   

The  variety  of  studied  habitats  has  been  examined  using  a  

consumer-grade UAV, DJI Mavic Pro, provided with 3 natural- 

coloured  bands  (red-green-blue,  RGB),  and  0.1  m  pixel  size.  

Fixed at 35 m altitude, the automatic flight covered a 0.08-km2  

transect (Figure 2).    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Natural-coloured (A) Hyperion (30 m × 30 m) and (B)  

WorldView-3 (0.3 m × 0.3 m) imageries of the study site in   
Moorea Island (French Polynesia), over which is draped the   

unmanned aerial vehicle natural-coloured Mavic Pro imagery  

(0.1 m × 0.1 m). Green and red points represent geolocations of  

the classes investigated, provided with and deprived of UAV  

 

 

 



 

A  series  of  86  geolocated  and  overlapped  photographs  were  

processed  using  a  photogrammetric  approach,  resulting  in  a  

RGB orthomosaic. Given the centimetre scale, this by-product  

was  fine  enough  to  be  considered  as  air-truth  (Collin  et  al.  

2018a)  and  discriminate  7  classes:  deep  outer  reef,  shallow  

outer  reef,  barrier  reef,  pavement  with  reef,  shallow  lagoon,  

deep lagoon and fringing reef (green disks in Figure 2). Deep  

ocean, wet forest and dry forest were selected directly based on  

the satellite imageries (red disks in Figure 2).     

2.3  Spaceborne hyperspectral Hyperion   

Launched in 2000, Hyperion imager, borne on Earth Observing- 

1,  was  the  first  civilian  spaceborne  sensor,  offering  

220  calibrated  bands.  Characterized  by  a  low  temporal  

resolution  (200 days), Hyperion acquired imagery fitted a 30 m 

pixel size,  what could be deemed as moderate spatial resolution 

(Table 1).  Hyperion imagery was collected on May 5, 2003 at 19 

h 52 min  14 s UTC. The study area (Figure 2A), composed of 

65 × 66  pixels,  was  orthorectified  using  ground  control  

points  and  bilinear  resampling  (datum  WGS84,  UTM  6  

South).  The  radiometric  correction  included 

 three  steps:  the  factor  calibration  

of  the  digital  number  to  the  top-of-atmosphere  (TOA) 

radiance, the TOA radiance to the down-of-atmosphere  (DOA)  

radiance  considering  atmosphere  absorption,  and  the  DOA  

radiance  to  the  DOA  reflectance,  accounting  for  solar  

irradiance.  Out  of  220  initial  bands,  167  bands  were  further  

investigated taking into account both water vapour transmission  

windows and overlap regions of both spectrometers.   

 

 

 

 

 

 

 

Table 1. Hyperion and WorldView-3 specificities    

 
2.4  Spaceborne superspectral / hyperspatial WorldView-3  

The WV3 instrument was orbited in 2014 and is still the finest  

civilian VIS, NIR and SWIR sensor. The spatial enhancement  

of 5 VIS, 3 NIR and 8 SWIR wavebands thanks to the 0.3 m  

panchromatic resolution makes the WV3 very attractive to the  

scientific community tasked with submeter-, day-scale processes  

(Table 1). WV3 imagery, obtained on July 12, 2018 at 20 h 35  

min 39 s UTC, was subset to the study area in the form of 6243  × 

6379 pixels (Figure 2B). Like Hyperion, WV3 imagery was  

processed  to  be  geometrically  corrected,  then  radiometrically  

standardized to DOA reflectance.   

2.5  Spectral-based classification   

The  first  assumption  of  this  work  pointed  out  upfront  that  

superspectral  WV3  could  classify  as  satisfactorily  as  

hyperspectral Hyperion. This hypothesis has been tested across  

10  coral  reefscape  classes,  chosen  for  their  structural,  thus  

spectral, complexity but also their representativeness of tropical  

coasts.  A  great  challenge  to  be  overcome  lay  in  the  highly  

contrasted  spatial  resolutions  of  30-m  Hyperion  and  0.3-m  

WV3, but also 0.1-m UAV data.    

 

 

2.5.1  Classes  investigated:  Based  on  UAV  air  truth  and  

natural-coloured  inspection,  10  spectrally-homogeneous  areas  

were  selected  over  Hyperion  imagery  (1  pixel  per  

class),  corresponding  to  10 000  pixels  per  class  over  WV3  

imagery  (Table  2).  Benefiting  from  the  correction  up  to  

the  DOA  reflectance  level,  natural-coloured  patterns  between  

Hyperion  and  WV3  were  conspicuously  recognizable  

across  the  10  classes, irrespective of their marine or terrestrial 

nature (see ad  hoc columns in Table 2).   

 

Table 2. Hyperion, WorldView-3 and unmanned aerial vehicle   
Mavic Pro images of the 10 classes investigated    

 
2.5.2   Artificial  neural  network  modelling:  The  ANN,  a  

machine  learner,  builds  non-linear  models,  h,  by  minimizing  

least  squares  using  a  one-layer  perceptron   feed-forward  

technique,  approximating  the  i  (here,  i=2)  training  responses  

with a constant, k, and Hyperion/WV3 combinations of spectral  

predictors,  X,   through  weighted  functions,  wi,  adjusting  

neurons, ni, that are based on the hyperbolic tangent activation  

function (Heermann and Khazenie, 1992):    
    

    

where   h = artificial neural network model   

 X = spectral predictors   
  k = constant   
  wi = weighted functions   
  ni = adjusting neurons  

 

 

 

Specificities   Sensor   
Spectral range (nm)  Spectral 

resolution (nm)  Number of bands  

Spatial resolution MS (m)  

Spatial resolution PAN (m)  

Swath width (km)   
Time revisit (days)   

Hyperion  

400-2500  10  

220  30  N/A  

7.5   
200   

WorldView-3  

400-2365   
60   
16   
1.24   
0.31   
13.1   

1   

Class   Sensor   

Deep Ocean   

Deep Outer Reef   

Shallow Outer Reef   

Barrier Reef   

Pavement with Reef   

Shallow Channel   

Deep Channel   

Fringing Reef   

Wet Forest   

Dry Forest   

Hyperion   WV-3   UAV   

h(X ) k w n (X )         (1)   
i i i  



 

Beyond  overall  accuracies  derived  from  confusion matrices,  a  

generalization  of  the  R2  was  adopted  to  compare  

fitting  performances (1000-fold validation, keeping the best 

model) of  Hyperion/WV3  spectral  combinations  to  

categorize  the  10  classes  of  interest.  The  statistic  uses  

the  2/n  root  of  the  likelihood. It ranges from the value 0, for 

a model as good as a  constant model, to the value 1 for a perfect 

model.   

2.6  Spatial-based segmentation   

In  addition  to  its  superspectral  specificities,  WV3  has  the  

potential  to provide information at  0.3 m, leading the civilian  

spaceborne  optical  imagery.  The  second  assumption  of  this  

research  relied  on  WV3  hyperspatial  capacity  to  discriminate  

complex  spatial  patterns  as  suitable  as  centimetre-scale  UAV.  

This  conjecture  has  been  evaluated  by  segmenting  both  

imageries using the edge algorithm (objects with sharp edges),  

and the full lambda schedule for merging small objects within  

larger, textured ones. The selected texture kernel size has been  

fixed at 3 pixels.    

3.  RESULTS AND DISCUSSION   

Our results, firstly, focused on the bridge between spaceborne  

hyperspectral  Hyperion  and  superspectral  WV3,  and  secondly   
dealt with the linkage between hyperspatial WV3 and UAV.   

3.1  Hyperion and WV3 spectral classification  

Prior  to  show  ANN  results  of  the  classification,  DOA  

reflectances of the 8 marine and 2 land classes were plotted  for  

Hyperion and WV3 (Figures 3 and 4).     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Hyperion spectral signatures of the 10 classes (A: 8  

marine, B: 2 terrestrial). 167 bands out of 220 were operable   

 

Figure 4. WorldView-3 spectral signatures of the 10 classes (A:  

8 marine, B: 2 terrestrial). 16 bands were operable   

 
Overall, Hyperion DOA reflectance was higher than WV3 one,  

and  classes  seemed  more  contrasted  for  Hyperion  NIR  and  

SWIR.  Common  spectral  patterns  were  constant  in  the  VIS  

spectrum: highest reflectance for shallow channel, followed by  

deep  channel,  pavement  with  reef,  barrier  reef,  shallow  outer  

reef, deep outer reef. However, Fringing reef, deep ocean and  

dry  forest  appeared  brighter,  relatively  to  other  classes,  for  

Hyperion  compared  to  WV3.  Discrepancies  between  

both  sensors might be explained by the spatial Hyperion 

information,  based  on  a  single  30-m  pixel  (Table  2),  over-

reflecting  water  classes  within  absorbing  NIR  and  SWIR,  

due  to  sun  glint  integration in the coarse pixel.   

Results of the ANN modelling, classifying the 10 classes based  

on  combinations  of  Hyperion  and  WV3  spectral  wavebands,  

were significant (Figure 5). RGB (3 bands), RGBNIR (4 bands),  

RGB-Coastal-yellow  (5  bands)  and  RGBNIRs  (8  bands)  

classifications showed greater performances for Hyperion than  

WV3  (0.06  difference  in  R2).  The  combination,  including  16  

WV3  bands,  and  corresponding  16  Hyperion  bands,  was  still  

better  for  Hyperion,  but  with  a  reduction  in  deviation  (0.04  

difference  in  R2),  due  to  the  rise  trend  of  WV3  and  a  slight  

decrease of Hyperion. The latter sensor’s score further declined  

when  all  167  bands  were  integrated  into  ANN  

modelling,  making the 16-band WV3 combination a better 

predictor than  Hyperion. Hyperion counter-performance might 

be justified by  the spectro-statistical noise conveyed by too 

many bands, thus  the need for dimensionality reduction (Keller et 

al., 2016).    

 

 

 
 



 

on UAV, and barely detected on WV3. The segmentation could  

be enhanced using the intensity algorithm, leveraging 16 WV3  

information,  compared  to  3  UAV  one.  Beyond  the  physical  

limitations  of  pixel  size,  WV3  pansharpening   procedure,  

producing  halo-like  artefacts,  might  be  improved  using  

a  dedicated hypersharpening technique (Kwan et al., 2017).   

4.  CONCLUSIONS   

Complex  scenes,  such  as  coastal  tropical  systems,  

require  sensors  provided  with  high  spectral,  spatial  and  

temporal  resolution.  We  propose  here  to  bridge  

hyperspectral  30-m  spaceborne instruments, such as Hyperion, 

and hyperspatial 3- band UAV, such as DJI Mavic Pro. The 0.3-m 

WV3 sensor has  

Figure 5. Hyperion and WorldView-3 comparison of the   
classification performances using one-layered artificial neural  

networks for the 10 classes investigated   

 

3.2  WV3 and UAV spatial segmentation   

Comparisons  of  segmentation  applied  to  WV3  and  

UAV  subsets were informative (Figure 6).    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Comparison of a fringing reef subset of natural-  
coloured (A) WorldView-3 (0.3 m pixel size) and (B) UAV (0.1  

m pixel size), as well as segmented (C) WorldView-3 and (D)   
UAV imageries   

Despite  a  3-fold  factor  separating  WV3  and  UAV  

spatial  resolution,  the  segmentation 

 processing,  relying  on  edge  

algorithm  and  full  lambda  schedule  fusion,  produced  similar  

outcomes  in  a  qualitative  perspective:  pavement/sand  patches  

over WV3 imagery were as successfully delineated as UAV one  

within the fringing reef matrix. The main difference resided in  the 

refined delimitation of small pavement/sand patches, visible   

 

demonstrated  that  its  16-band  combination  rivalled  167-band  

Hyperion  for  classifying  10  classes  using  ANN  modelling,  

while competing with 0.1-m UAV for segmenting fringing coral  

reefs. Conciliating spectral and spatial requirements needed for  

coasts,  the  WV3  benefits  from  an  hypertemporal  resolution,   
namely a daily revisit, as good as UAV’s one.   
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