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Introduction

General Relativity (GR) describes the gravitational force as mediated by a single rank-2 tensor field. Although there is good reason to couple matter fields to gravity in this way, there is no good reason to think that the field equation of gravity should not contain other fields. The simplest way to go beyond GR and modify gravity is then to add an extra scalar field: such scalar-tensor theories are well established and studied theories of Modified Gravity (MG). From a phenomenological point of view, they link the cosmic acceleration to a deviation from GR on large scales. They can therefore be seen as candidates to explain the accelerated rate of expansion without the need to consider dark energy as a physical component. Furthermore, they arise naturally as the dimensionally reduced effective theories of higher dimensional theories, such as string theory; hence, testing them can allow us to shed light on the low-energy limit of quantum gravity theories.

All theoretical attempts at consistently modifying GR (to explain dark energy, dark matter and/or the quantum nature of gravity) affect gravitational dynamics either at small scale or very large scales, or both. In particular, if one of them is correct, we should detect a violation of the Newtonian gravitational Inverse Square Law (ISL). Hence, in the weak field limit, measurements of the dynamics of gravitationally bound objects (e.g. the behavior of a torsion balance in the Earth gravity field, the trajectory of an interplanetary probe, or the receding of galaxies) should show a deviation from what is expected from Newton's equations. In this contribution, we focus on the weak-field regime and call "non-Newtonian" gravity any theory of gravity beyond GR.

Deviations from the ISL are usually parametrized with a Yukawa potential. The gravitational potential created by a point-mass of mass M at a distance r is then given by

U prq ¡ GM r ¡ 1 αe ¡r{λ © , ( 1 
)
where G is the gravitational constant, α is the (dimensionless) strength of the Yukawa potential relative to Newtonian gravity, and λ is its range. Most experimental constraints on a Yukawa interaction are performed in the Earth's gravity field, either in labs on the ground, or in orbit, e.g. by monitoring the motion of satellites or of the Moon 1 . However, (too) many published tests assume that the Earth is a point mass (thereby ignoring the Earth's shape altogether) or, at best, use and/or correct the lowest shape information (assuming the Earth is a smooth extended oblate homogeneous object). In the latter case, the Earth models used are often obtained under a Newtonian gravity assumption (e.g., inverting the gravity field model provided by space geodesy experiments), which can bring a lack of consistency when aiming to constrain Newtonian gravity.

In this contribution, we show how constraining non-Newtonian gravity in the Earth's gravity field is a two-way problem involving geodesy and fundamental physics: inverting the (measured -e.g. with space experiments as GOCE 23 or GRACE 4 ) gravity field to estimate the Earth's mass distribution vs predicting the gravity field from the Earth's mass distribution to eventually extract a non-Newtonian contribution from gravity experiments.

Multipolar decomposition of the Earth's gravity field

We showed in Bergé et al ( 2018) 5 (hereafter B18) that even in the presence of a Yukawa interaction, the Earth's gravitational potential at a point P such that OP ru r in conventional spherical coordinates (where O is the center of the Earth), can be decomposed in spherical harmonics with a form similar to the usual (Newtonian) one,

U pr, θ, ϕq ¡ GM C r V ¸ 0 m¡ ¢ R C r y m prqY m pu r q, (2) 
where M C and R C are the mass and equatorial radius of the Earth.

Although the introduction of a Yukawa interaction does not modify the general multipolar expansion of the Earth gravitational potential, it introduces a new contribution to the multipolar coefficients y m , that split as

y m prq y N m y Y m prq (3)
where the superscripts N and Y stand for the Newton and Yukawa contributions, such that

y m prq 1 p2 1qM C » s 2 ¢ s R C ρ m psq 1 αA l ¡ s λ © B l ¡ r λ ©% ds, (4) 
where ρ m psq are the coefficients of the multipolar decomposition of the Earth density ρpsu r 1 q ° m ρ m psqY m pu r 1 q, and where the functions A and B are defined as A pxq x ¡p 1{2q I 1{2 pxq

(5)

B pxq p2 1qx 1{2 K 1{2 pxq, (6) 
and where I 1{2 and K n 1{2 are modified spherical Bessel functions of the first and second kinds a . As expected, the kernel is m-independent so that the m-dependence arises only from the one of the density. Note that in Eq. ( 4) the integral is 1-dimensional. Indeed s is defined by the Earth surface R C pu r 1 q so is directionally dependent. Since we have performed a multipolar expansion, we need to take this boundary conditions into account in the function ρ so that

ρpsu r 1 q ρ C psu r 1 q t1 ¡ Θrs ¡ R C pu r 1 qsu (7)
where Θ is the Heaviside function The shape of the Earth is thus contained in the multipoles ρ m .

a Note that they were incorrectly called modified spherical Bessel functions of the second and third kinds in B18

3 Interpretation of geodesy experiments in non-Newtonian theories of gravity

Gravity field inversion

In this subsection, we assume that a non-zero Yukawa interaction exists, that could be detectable in the near future (i.e., with parameters (α,λ) just below the current exclusion limits).

Eq. ( 4) clearly shows that the coefficients y m of the multipolar decomposition are nonuniversal (contrary to the Newtonian gravity case), but depend on the distance to the center of the Earth through the contribution of the Yukawa contribution. Therefore, measurements of the gravity field performed at different altitudes will provide different values for the y m coefficients. Although the wisdom in the Newtonian gravity realm is to consider inconsistencies between measurements at different altitudes as hinting to systematic effects, a Yukawa interaction makes those inconsistencies perfectly physically well-justified. Therefore, care should be taken when combining measurements of the gravity field performed at different altitude. In particular, we showed in B18 that measurements performed at low enough altitude (less than 100 km) are possibly sensitive to a Yukawa interaction as still allowed by experiments; on the opposite, since the Yukawa contribution vanishes relatively fast with distance, current space geodesy experiments like GOCE and GRACE are immune to a Yukawa interaction.

We conclude this discussion by emphasizing that one should be careful when inverting a gravity field model to estimate the mass distribution of the Earth, as it was potentially obtained from the inconsistent combination of multipolar coefficients estimated at different altitudes (and therefore more or less affected by a non-Newtonian gravitational interaction). In any case, inverting a gravity model using a Newtonian model will fail to provide unbiased estimates of the Earth mass distribution if a non-negligible Yukawa interaction is present.

Constraining non-Newtonian gravity from measurements at different altitudes

The r-dependence of the multipolar coefficients of the gravity potential can be used to constrain a Yukawa interaction. When dealt with in a non-Newtonian frame, differences in y m measured at different altitudes can be directly seen as the effect of the Yukawa interaction. Estimators of the strength α of the Yukawa interaction (given its range λ) can be readily defined from the difference in the measured coefficients. For instance, one can compare the flattening J 2 of the Earth as estimated with GOCE-only data with that estimated with GRACE-only data. Any other y m coefficient (or combination of coefficients) can also provide a similar estimator.

When constraining a Yukawa interaction in this way, we must use a model of the mass distribution of the Earth, which should originate from data independent of any measured gravity field (so that it is not correlated with the measurement of the gravity field used to constrain the Yukawa interaction). The errors of this model (linked to our imperfect knowledge of the shape of the Earth) will affect the estimation of the Yukawa interaction strength α. We showed in B18 that the error on α is dominated by the current measurement uncertainties; they should be decreased by at least two orders of magnitude before our imperfect model of the Earth dominates the error budget and significantly affects a constraint of a Yukawa interaction based on the comparison of the Earth's J 2 at two different altitudes.

We can naively exploit the tension between the GOCE-only 3 (J 2 1.0826265326404513 ¢ 10 ¡3 ¨1.2127946116555258 ¢ 10 ¡11 ) and GRACE-only 6 (J 2 1.0826354309122197 ¢ 10 ¡3

3.5263625612834223 ¢ 10 ¡12 ) estimates of J 2 to constrain Yukawa's α, and get a significant detection, albeit in a (α, λ) region excluded for many years. This apparent detection is most certainly due to either underestimated errors in the Earth gravity models, or to time-dependent systematics. It would then be advantageous to fly two (or more) satellites at different altitudes at the same time, since time-dependent systematics would be absent. Even better, since the effect of a Yukawa interaction is stronger the lower we fly, the experiments would reach a better sensitivity if performed on-board of stratospheric balloons (one above the other) or planes (although the vibrational environment may prevent any significant constraint).

Conclusion

We discussed the correlation between the Earth's shape and non-Newtonian gravity, which appears as a distance-dependence of the coefficients of the multipolar decomposition of the gravity field (those coefficients are constant in Newtonian gravity). A non-Newtonian contribution to the gravity field implies a bias and extra systematic errors when inverting the measured gravity to reconstruct the Earth's shape; although these effects are still a few orders of magnitude below measurement errors in space, they may already be significant on the ground. We showed that it is possible to test for a Yukawa deviation by comparing the y m coefficients at different altitudes; ideally, measurements should be taken simultaneously. Finally, although our imperfect knowledge of the Earth's mass distribution affects the constraints on a Yukawa interaction parameters, the related error are still largely subdominant compared to measurement errors.
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