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Abstract.  

Around the world, cultural and societal differences have a non-negligible 

impact on the way cities are built and especially on building’s physical shapes. 

In a transnational context, detailed expert knowledge is not always available, 

hence the need of identifying typologies of buildings. This paper presents the 

application of a Bayesian clustering protocol to buildings from two 

metropolitan areas located in countries with marked cultural and societal 

differences: Osaka-Kobe in Japan and Marseille-Provence in France. Six 

indicators related to building characteristics are calculated and used to perform 

the clustering: Footprint surface, Elongation, Convexity, Number of Adjoining 

Neighbors, Height and Specialization. Cluster results are then extracted, 

detailed and analyzed. The building families obtained through clustering show 

these two coastal metropolitan areas are made up of apparently similar 

“ingredients” (very similar typologies are found at the relatively coarse level 

of detail of our study), but with different weights. Small low-rise and massive 

high-rise as well as low-rise buildings are more common in Osaka-Kobe. Mid-

sized and mid-rise buildings are more important in Marseille-Provence, where 

a distinctive class of adjoining mid-sized buildings is a common mark of 

traditional European cities. These preliminary results are a good entry point to 

lead to a better understanding of the link between building families, urban 

development periods and urban functions. 

Keywords:  Building · Classification · Clustering · Geoprocessing - Multiple 

Fabric Assessment 
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1. Introduction 

In transnational contexts, urban spaces seem more and more similar from one country to 

another. In addition, urban sub-spaces can be more or less integrated into the world economy 

(Harvey, 2005), the latter acting as enhancer or inhibitor of urban dynamism. Since urban 

environments and globalization promote and maximise interactions, construction models can 

indeed be easily internationally transposed in this modern era of rapid changes. Yet, despites 

the existences of strong structural invariants that make what a global city essentially is; such 



as elevated central business districts, peripheral industrial areas, central square locations, etc. 

the existence of local specificities both in urban morphologies and cities functioning can be 

striking. It appears that despites the increasing functional similarities of worldwide 

metropolitan cities (e.g. Sassen, 2005), urban planning appears to adopt more and more 

bottom-up perspectives (Batty 2005), a dynamic highlighting an increasing local 

apprehension of urban systems. Regardless of the recent urban planning trends, some spaces 

seem to be and to have always been hardly comparable between one another. Mention can be 

made of endless North-American single-family homes suburbs, walled medina quarters in 

North African cities, squared former colonial quarters in central Africa, poor suburbs made 

of large rent-controlled buildings (HLM) in France and Eastern Europe, etc. The fact that 

history, cultural and societal differences have a non-negligible impact on the way we build 

cities and on building’s characteristics is nothing new, especially in architecture and urban 

design studies. Yet, these disciplines are mostly focused at the scale of a given project: 

building, streets or neighborhoods, thus lacking of a deeper comprehension of the complexity 

of the urban forms within wider urban spaces.  

This paper contributes to the wider research objective of identify typical urban 

fabrics in different metropolitan contexts, worldwide. Urban fabrics (Conzen 1969, Caniggia 

and Maffei 2008) are to be understood as typical arrangements of the components of the 

physical form of a city at a relatively fine grain of analysis (a street, an urban block, an urban 

fragment). A new geocomputational method, Multiple Fabric Assessment (MFA) has been 

proposed and first tested on the French Riviera Metropolitan area (Araldi and Fusco 2017). 

Geostatistical analysis of building types is an important phase of the MFA protocol, together 

with similar analyses of street network characteristics and building/street relations. In the 

French Riviera case study, building types are solely based on building footprint surface 

classes, linked to expert knowledge of the more or less strict correspondence of surface 

classes with building types in the study area. 

In a transnational context this expert knowledge is not always available, hence the 

need of identifying typologies of buildings. This can for example be done through automatic 

segmentation of large datasets describing buildings in official standardized geographic 

databases. Building footprint surface should be seen as one of several descriptors of building 

types. The aim of this paper is precisely to offer a methodological solution to this problem 

and to test it on two real-world case studies, the coastal metropolitan areas of Osaka-Kobe 

(Japan) and Marseille-Provence (France). 

The proposed method is using an extremely simplified morphological description 

of buildings and is producing a coarse classification of building types.  At a later stage of the 

research, results are going to be used input of subsequent geostatistical treatment and 

combination with descriptors of street network and building/street relationships in order to 

identify typologies of urban fabrics. By using the same Bayesian clustering approach as 

Araldi and Fusco (2017), we will eventually show how a relatively a-spatial clustering of 

building types could be needed in order to implement the spatial clustering of urban fabrics 

of the MFA protocol. 

However, the results of the building clustering at a metropolitan scale and in a 

transnational approach can have interests on their own. If some families are unique to 

predefined geographic contexts (specific case studies), then cultural and societal 

characteristics should be used to explain them. Identifying endemic building families can 

then be considered as a first step enabling questioning in a later stage the appearance of more 

globalized building types and their spatial distribution within the metropolitan space. 

Ultimately, this research should lead to a better understanding of the link between building 

families, urban development periods and urban functions. 



The paper is organized as follows. First, the literature related to building and urban 

forms classifications in general is reviewed, with a peculiar focus on the use of data mining 

techniques such as multivariate classifications, automated segmentations, etc. A close 

attention is given to researches coming from urban geography, architecture and planning. 

Section 3 is the methodological section and presents the two case studies, the data sources 

and the indicator constitutions. Another sub-section presents the Bayesian segmentation 

protocol applied in this research. Section 4 introduces and details the building typologies 

identified in the two case studies. A final section concludes the paper through discussion and 

future work.  

2. Theoretical Form of Buildings and Urban Classifications 

There is an impressive amount of academic work related to classifications of urban spaces 

and buildings using manual or automated techniques. Most of these researches come from, 

in order of frequency; architecture, urban geography and planning, archaeology and 

ethnology. As regards to theoretical forms, architecture is without surprises the leading 

discipline. Historically, sheltering against weather was the main element affecting the built 

forms with for example large roofs to provide larger shadows in warm locations, airtight 

structures in cold spaces, etc. Above this universally accepted fact, finding a favorably 

received theory about an archetype of building appears to be an impossible challenge. For 

instance, no consensus emerges perhaps due to the excessive wide range of schools, opinions 

and preferences that come into play when a matter such as building design is related to 

individual perception. Moreover, mechanization, technological innovations and new 

paradigms such as green construction are constantly multiplying and expanding the design 

possibilities; in return affecting everyday life (Giedion 1948). Local climates have for 

example less and less impacts upon building designs. Yet, design theory for building type 

has always been and remains a trendy topic in architecture. However, theories in literature 

seems organized into sub-categories such as families of building characteristics, design style 

in ethno-linguistic areas and historical periods, or directly on some sub-families of given 

building types (industrial, residential, schools, etc.).  

The work of Cambridge Centre for Land Use and Built Form Studies published 

during the 60s and 70s on the factors influencing archetypal forms shall nonetheless not been 

overlooked since it inspired generation of architects and designers. In these researches, urban 

design was always correlated with town organization in order to, for example, access 

environmental performance (Martin and March 1972; etc.). Brown and Steadman (1991a; 

1991b) analyzed the morphology of British housing using dimensional, functional and 

topological characteristics. Steadman et al., (2000) further extended these lines of works by 

extracting “primary forms” through a decomposition process of the city blocks, followed by 

a classification applied using the outputs of surveys performed on these primary forms. A 

recent book in two volumes sums up Steadman (2014) researches on both history of building 

types and on building forms cataloging. In order to reduce the scope of literatures only 

relevant to the objectives of this research, the following section will mostly focus on 

inductive automatic classifications. Indeed, researches using manual classifications such as 

supervised decision tree, are ruled out due to the lack of inductive thinking. Second, since 

this research is looking forward to the acquisition of a first classification, researches already 

possessing a benchmark about built forms and/or trying to further classify or hierarchize an 

existing benchmark are also excluded. 

In urban geography, mention can be made of Haggag and Ayad (2002) that adopted 

an ecosystem approach to classify what they named ‘urban structural units’ in Alexandria, of 

the urban typo-morphology of city blocks using k-means segmentation and block and street 

physical characteristics as inputs (Gil et al. 2012), of “Spacematrix”; a method focusing on 

the identification of urban environment by using a set of four density indices (Berghauser-

Pont and Haupt, 2010), etc. As are the aforementioned researches, urban geography work 



related to typo-morphologies are usually performed at a larger scale than the building unit, 

with researches that mostly make use of city-blocks, pre-defined areas of aggregations, 

administrative perimeters, etc. In addition, a non-negligible part of these researches, although 

data-driven, are diverging from the standpoint of this research which was defined as a focus 

on physical features and characteristics of buildings. Indeed, numerous researches also make 

use of spatial, network or socio-demographic related data such as the identification of street 

patterns morphotypes in Oporto’s (Serra et al. 2013), the classification of Indian districts 

according to their urbanity degree (Fusco and Perez 2015), the clustering of census block 

groups to detect area under gentrification in New York (Royal and Wortmann 2015), etc. 

Finally, and although slightly different from our research objectives, mention shall 

nonetheless be made of a few studies using automatic classification and building as scale of 

analysis. Hanna (2007) developed for example a method generating archetypal building 

layouts using different dimension-reduction and machine learning methods (PCA followed 

by SVM, neural networks, etc.) trained on real-world data of building layouts described 

through the eigenvectors and eigenvalues of space syntax axial graphs. Reffat (2008) 

investigated the physical specificities of the Saudi Arabia architecture using different 

clustering methods on a set of nine indicator families including external (façade, building 

form, etc.) and internal (structure, circulation, etc.) characteristics. Sokmenoglu et al., (2011) 

also used different data mining techniques on a set of inputs related to micro-scale building 

features (floors, room, etc.).  

Unlike Stedman’s, these works rely on machine learning and/or on more classical 

clustering algorithms. Identifying building types becomes thus (at least partially) a computer-

based automated process. Nevertheless, like Steadman’s works, they need detailed 

information on the building interior layout, roof coverage, façade, etc. often linked to cultural 

specificities of the case studies. They could thus not be applied to large-scale transnational 

analyses, covering the whole building stock of large metropolitan areas in different cultural 

contexts.  

3. Methodology 

3.1  Case Studies 

To reach the objectives of this research, two emblematic coastal metropolitan areas located 

in countries with strong cultural and societal differences have been selected; Osaka-Kobe in 

Japan and Marseille-Provence in France. These areas are fast-evolving spaces characterized 

by a strong heterogeneity at the intra-urban level. Marseille-Provence and Osaka-Kobe 

selected areas of analysis (Fig.1: highlighted spaces) are respectively made of 4,300 km² for 

3 million inhabitants (2013) and 2,500 km² for around 10 million inhabitants (2011). 

  



Figure 1. Marseille-Provence and Osaka-Kobe Case Studies 

 

The dichotomy mentioned in the first section between similar global cities and 

hardly comparable local spaces appears to be especially relevant for these two case studies. 

Indeed, everything seems to oppose these two spaces, from construction to socio-

demographic and economic models. Here are a few examples; (1) Japanese cities in general 

are referred to as entities evolving within a post-growth economy and demography, while 

European cities are characterized by slow economic and demographic growth but not yet as 

in a “post-growth” stage. (2) The Japanese middle class is strong and well implemented all 

over the Osaka-Kobe metropolitan area while Marseille-Provence is considered as having the 

highest levels of inequality in France (OECD 2013). (3) Most of the time, buildings, city 

blocks and streets are renovated or rehabilitated in France while in Japan, whole city blocks 

and buildings are demolished to make way to new urban projects. (4) Within the Osaka-Kobe 

metropolitan area, strong density brings a space with three times the population and the 

building number of Marseille-Provence living on half of the surface. Moreover, no large 

natural spaces or green “holes” are found within the central space of Osaka-Kobe while 

Marseille-Provence are mostly composed of natural spaces and hills separating the main 

urban centers of the metropolitan area (Marseille, Toulon and Aix-en-Provence, see Figure 

1). But, in the other hand, both metropolitan areas (1) sustained strong migrations waves 

during the 20th century; North Africans, Comorians, Armenians, etc. in the case of Marseille-

Provence; internal migrations related to rural exodus for Osaka-Kobe, (2) have a 

demographic growth that is nowadays slow and driven by the suburban areas and (3) are 

historically organized around a collection of multiple centers that grown together from 

multiple cores. 

3.2  Data: Sources and Description 

For both case studies, data about building coverage (GIS layers) have been made available 

through academic partnerships (see. Acknowledgments section) that led to the acquisition of 

the 2013/14 private Zmap-TOWN II for Osaka-Kobe (ZENRIN Residential Maps) and of the 

2011 French BD TOPO® (French National Geographic Institute: IGN) for Marseille-

Provence. In term of digitization, both layers are strictly similar and of high quality (small 

units of few m² are recorded in both cases).  Both datasets possess several attribute data. Yet, 

as discussed below, only two attribute variables are used in this research, height and 

specialization. Once the GIS masks (Figure 1) are applied to filter the inputs selection, Osaka-

Kobe and Marseille-Provence datasets are ultimately and respectively made of 3,457,515 and 

915,964 input features.  

3.3  Indicator Calculation 

The following 6 indicators related to building features and characteristics have been 

calculated/gathered in both cases: building footprint surface, elongation, compactness, 



number of adjoining neighbors, height and specialization. The first three are continuous 

variables; number of neighbors and height (expressed in number of building floors) are 

numeric discrete variables. Specialization is a qualitative variable. 

Table 1. List of Selected/Calculated Indicators  

Indicator Name Formula Abbrv. Unit Notes 

Footprint 

Surface 

Ground-floor surface of the 

target building 

 

S 

 

m2 
- 

Elongation 
Ratio between the building 

perimeter and the one of the 
circle of equivalent surface 

E Ratio - 

Convexity 
Ratio between the building 

footprint surface and the area 
of the minimal convex hull 

C Ratio - 

Number of 

Adjoining 

Neighbors 

Count of the adjoining 

buildings with respect to the 

target building 

 

Nb 
Count - 

Height 
Eave height of buildings 

(France) or number of floors 

(Japan) 
H 

Meter / 

Floors 

French eave heights have 

been transformed in 

number of floors 

Specialization - SPE Binary 

Slightly different 

according to case study. 

cf. text below 

 

Together, they represent a kind of minimal description of building morphologies as 

made possible by official region-wide geographic databases, informing on a simplified 3D 

description of the building, and ignoring any details of style, façade, roof coverage and, above 

all, internal layout. 

First, Footprint Surface (S) is the descriptor used in the first MFA analysis of urban 

fabrics (Araldi and Fusco 2017) and is of paramount importance in typo-morphological 

analysis. Second, “Elongation” (E) has been calculated to detect both blocks of residential 

flats (modern side-lit strips in Steadman 2000) but also some office premises and public 

buildings possessing peculiar structures. It should be noted that a low value of Elongation 

provides a measure of how the building departs from the most compact equivalent shape, the 

circle. Third, Convexity (C) provides information about the construction density (in terms of 

floor coverage) by comparing the building envelop to the building real constructed surface. 

A high value indicates tangled or holed structures while a low value indicated dense and 

compact buildings. By focusing on two different but complementary aspects, Elongation and 

Convexity describe together the compacity of the building footprint. “Number of Adjoining 

Neighbors” (Nb) informs on the typical relations of buildings to their neighbors, which play 

an essential role in building typology thus allowing distinguishing free-standing detached 

buildings, semi-detached buildings, row-houses, multiply-adjoining buildings, etc. Height 

(H) is the main descriptor of the vertical dimension of the building. Expressed in number of 

floors it becomes a discrete variable allowing the differentiation between low-rise, mid-rise 

and high-rise buildings. Eave height expressed in meters within the BD TOPO® has been 

transformed in number of equivalent floors while for the ZENRIN map, the number of floors 

is directly provided. Finally, literature on typo-morphological analysis (Caniggia and Maffei 

2008) highlights how specialized buildings (industrial, commercial, public, etc.) have often 

different types than ordinary residential or mixed buildings. It is not our purpose to analyze 

the functions within each building, but just to differentiate the ordinary or specialized 

character of a building. This precise distinction is straightforward in the BD-TOPO for 

Marseille-Provence, while for Osaka-Kobe the distinction is made between what is purely 

residential and all the other categories (industrial, public, commercial, mixed, etc.), which is 

less appropriate from the point of view of our research. 



The clustering algorithm used within our research framework (see further) is 

particularly apt at mixing numeric and qualitative variables. Discretization of continuous 

(and sometimes even of discrete variables) is nevertheless necessary and allows the 

introduction of specific knowledge on the case studies, derived both from the observation of 

the statistical distribution of the variables, and from basic expert knowledge (Table 2). 

Table 2. Discretization of the six indicators in Osaka-Kobe and Marseille-Provence.  

Indicator 

Name 

Classes in 

Osaka-Kobe 

Classes in 

Marseille-

Provence 

Notes 

Footprint 

Surface 

0-50 m2 (14.34%) 

50-150 m2 (34.77%) 

150-300 m2 (14.10%) 
300-600 m2 (10.19%) 

600-2400 m2 (16.15%) 

> 2400 m2 (10.44%) 

0-30 m2 (3.46%) 

30-80 m2 (12.42%) 

80-150 m2 (31.78%) 
150-300 m2 (27.77%) 

300-1000 m2 (16.51%) 

>1000 m2 (8.06%) 

Different discretization due 

to the presence of unattached 

small garages in Marseille-
Provence and to a higher 

presence of large surface area 

buildings in Osaka-Kobe 

Elongation 

< 1.15 (16.65%) 

1.15-1.2 (22.57%) 

1.2-1.3 (29.03%) 
1.3-1.5 (18.79%) 

> 1.5 (12.96%) 

< 1.15 (12.13%) 

1.15-1.2 (14.44%) 

1.2-1.3 (24.36%) 
1.3-1.5 (27.81%) 

> 1.5 (21.26%) 

Buildings tend to be more 

elongated in Marseille-
Provence 

Convexity 

< 0.8 (7.24%) 

0.8-0.9 (12.28%) 
0.9-0.96 (20.74%) 

0.96-0.999 (20.33%) 

> 0.999 (39.40%) 

< 0.8 (19.34%) 

0.8-0.9 (25.52%) 
0.9-0.96 (19.27%) 

0.96-0.999 (15.68%) 

> 0.999 (20.19%) 

Buildings tend to be more 

convex in Osaka-Kobe 

Number of 

Adjoining 

Neighbors 

0 (55.73%) 

1 (23.22%) 

2 (13.33%) 
3 (4.11%) 

> 3 (3.61%) 

0 (61.51%) 

1 (19.91%) 

2 (10.46%) 
3 (4.35%) 

> 3 (3.78%) 

More buildings with no 

neighbors in Marseille-

Provence, more semi-
detached units in Osaka-

Kobe 

Height 

1 floor (60.39%) 

2-3 floors (12.26%) 

4 floors (11.74%) 

5-9 floors (12.07%) 

> 9 floors (3.54%) 

1 floor (22.97%%) 

2 floors (39.88%) 

3 floors (25.90%) 

4-6 floors (7.49%) 

> 6 floors (3.76%) 

More 2-3 floors buildings in 

Marseille-Provence (possibly 
2 floors buildings accounted 

for as 1 floor in Osaka-

Kobe). More high-rise 
buildings in Osaka 

Specialization 
Residential (55.19%) 

Specialized/Mixed (44.81%) 

Ordinary (77.36%) 

Specialized (22.64%) 

Categories do not strictly 

correspond (See above text) 

 

3.4  Segmentation Protocol: Bayesian Classifier 

There are a lot of methods able to cluster instances into groups, from the most traditional 

ones such as hierarchical clustering, k-means, etc. to more sophisticated ones such as 

Bayesian network, neural network, etc. From our experience, Bayesian Networks have a non-

negligible advantage since they can identify subsets of records presenting a precise pattern 

on a limited number of features whereas other methods usually look for homogeneous 

behavior of records on all features (Fusco and Perez, 2018). Bayesian clustering has also been 

applied successfully in several researches related to urban form (Shoultz et al., 2007; Perez 

and Fusco, 2014; Fusco 2016) and more precisely within the MFA protocol for the 

identification of urban fabrics (Araldi and Fusco 2017). 

Another advantage of the Bayesian Networks is that all probabilities are defined on 

a finite probability space. Thus, it is possible to calculate the joint probability to sum all the 

parameters of the model i.e. all the marginal probability distributions (for the independent 

variables) and all the conditional probability distributions (for the dependent variables). On 

a set of variables 𝑥1, 𝑥2, … , 𝑥n the joint probability distribution is given by: 

𝑃(𝑥1, 𝑥2, … , 𝑥n) = ∏ 𝑃(𝑥𝑖 ∣ ∏𝑋𝑖
)                                     (1.0)

𝑛

𝑖=1

 



The most famous and used protocol for Bayesian clustering is an inductive 

algorithm proposed by Duda and Hart (1973) and called Naive Bayes or Bayesian Classifier. 

A network is built in a supervised manner between all the indicators and a newly 

implemented non-observable node that will play the role of a class variable. An oriented arc 

is thus found between the class variable and each individual indicator. In such networks, each 

indicator becomes independent of the value of every other indicator, hence the name “naïve”. 

Within the class variable, a probabilistic summary is stored for each class which is made by 

both the conditional probability tables of each indicator given the class and the probability of 

the class (Langley et al., 1992). These properties are computed through the naive Bayes 

Equation (2.0), directly derived from the joint probability distribution Equation (1.0): 

𝑃(𝐶 ∣ 𝑥1, 𝑥2, … , 𝑥𝑛) = 𝛽𝑃(𝐶) ∏ 𝑃( 𝑥𝑖 ∣∣ 𝐶 )                                (2.0)

𝑛

𝑖=1

 

In the above Equation (Ruz and Pham, 2009), C is the class variable and the only 

vector for which the values are unknown. The conditional probability tables linking the class 

variable to each indicator are determined through an Expectation-Maximization algorithm 

(Dempster et al. 1977). These probabilistic parameters are recursively used to attribute each 

given record to a most probable cluster. Two different schemes can guide the EM algorithm. 

The easiest one consists in predetermining the number of clusters required, as in k-means 

clustering. The EM algorithm is here guided by likelihood maximization of the clustering 

model, given the data. By repeating the clustering algorithm for different number of clusters 

we can obtain a series of optimal solutions. A more computational intensive scheme consists 

in a random walk among all possible solutions considering different number of clusters. The 

EM algorithm will here be guided by a Minimal Description Length score (Rissanen 2007) 

combining clustering likelihood and a penalization factor for the number of clusters of the 

model (in order to avoid overfitting) and will result in a unique optimal solution. 

Both methods are relatively robust to initialization since training instances order 

have little effect on the clustering results (Langley et al., 1992) but the random walk scheme 

needs a longer search sequence. The Naïve Bayesian classifier has been criticized for being 

blind to the values of the other indicators but it has also proven to be as competitive as more 

sophisticated models (e.g. Russell and Norvig, 2003; Langley et al., 1992). 

4. Results 

The search for the best clustering followed both a random walk for the optimal cluster number 

and a deeper search within this class of solutions. These protocols have been applied for both 

case studies. The best solution was found at 8 classes for Marseille-Provence. For Osaka-

Kobe, the size of the dataset suggested to limit the automatic search to the best possible 

solutions to 7, 8 and 9 clusters, respectively. In both cases, the records were weighted 

according to the footprint surface. Furthermore, a minimal number of inputs per cluster has 

been imposed so as each cluster should possess at least 4% of the dataset total footprint 

surface. By so doing, the kind of solution sought for was intentionally a limited set of broad 

families of building types, rather than a more accurate differentiation (for which more precise 

descriptors were missing). Within this paper we limited ourselves to briefly present 

preliminary clustering results for the two case studies, leaving a more detailed interpretation 

in terms of Bayesian probabilities for a later stage of the research. 

The best solution found for Marseille-Provence metropolitan area is made of 8 

clusters of building types (Table 3). The contingency table fit of this clustering solution is 

relatively high (60.03%) thanks to the extremely informative role of the Surface indicator 

(60.04% of mutual information with the Class variable), as well as to the important 

contribution of variables Specialization (24.93%) and Height (14.44%).  



The first three classes, accounting for roughly a third of the total building footprint 

surface in the study area, correspond to clusters of residential individual houses (large sized 

villas of complex shape, large compact houses, small houses and row-houses), with a few 

small compact buildings assimilated to large houses. A specific cluster of adjoining mid-rise 

compact buildings is to be found both in the traditional city-centers and in areas of more 

modern developments. Mid-rise isolated buildings make up 19.21% of the total built-up 

surface, slightly more than the cluster of high-rise buildings. The latter characterize many 

modern neighborhoods of social housing, but can also be found as mid- to high-rise adjoining 

buildings within more central areas. 

Two final clusters group the specialized buildings. Mid-sized, low- to mid-rise 

buildings can have very different shapes, as they correspond to mid-sized stores, churches, 

workshops, small schools, etc. whose footprints are usually less than 1000 m2. Complex 

relatively compact low- to mid-rise specialized buildings group big factories, shopping malls, 

stadiums, warehouses, conference centers, etc. and, although few in number, account for 

almost 16% of the total built-up surface. 

The best solution found for the Osaka-Kobe metropolitan area is made of 7 clusters 

of building types (Table 4), with a contingency table fit of 56,77% and a particularly 

important role of variables Surface (56.23% of mutual information), Number of Adjoining 

Neighbors (20.56%) and Specialization (15.33%). There is a striking correspondence 

between the cluster content of building types in the two case studies, with the notable 

exception of the lack of a cluster of adjoining mid-rise mid-sized buildings in Osaka-Kobe. 

This doesn’t mean that such buildings are completely absent in the Japanese metropolitan 

area, maybe there are too few of such to be recognized as an independent cluster with the 4% 

applied threshold. This building typology is at the heart of traditional European urbanization 

and is even produced in some modern areas of development. 

Many small differences characterize the cluster contents in Marseille-Provence and 

Osaka-Kobe. For example, detached houses can be found in both case studies, but the 

separation between buildings can be extremely small (even less than 1 m in Osaka-Kobe), 

whereas it is of several meters in Marseille-Provence, both laterally and in the backyards. 

The most remarkable contrast is nevertheless the different weight of the corresponding 

building types in the two case studies. The presence of large villas/Japanese houses and town-

houses is more important in Osaka-Kobe (20% and 19% vs. 14% and 11.4% in Marseille-

Provence, respectively), confirming the importance of individual low-rise housing typical of 

Japanese urbanization. Medium-sized and mid-rise buildings are a more common feature in 

Marseille-Provence (19.2% vs 11.6%). High-rise buildings seem to be more common in the 

French case study (16% vs 11.6%); nevertheless high-rise starts at 7 floors in Marseille-

Provence but at 10 in Osaka-Kobe (Table 2). It is also worth mentioning the extremely 

important presence of mid- to large-sized low-rise buildings in Osaka-Kobe (20.4% vs. 6.4%) 

and the fact that the class of the biggest buildings is defined using almost exclusively 

buildings of more than 2400 m2 of footprint surface (a size of buildings which is not 

specifically accounted for in Marseille-Provence) highlighting an important presence of 

modern complexes in Osaka-Kobe.  Globally, high-rise and massive specialized or mixed 

buildings characterize Osaka-Kobe much more than Marseille-Provence. 



Table 3. Clustering results for buildings in Marseille-Provence (France).  

Cluster of 

building types 

Prevalence within 

total building 

footprint surface 

Examples 

Large sized villas  

of complex shape 
13.91% 

  

Detached large 

houses and small 

buildings of 

compact shape 

8.53% 

 
Detached, semi-

detached or small 

compact town- and 

row- houses, 

garages 

11.41% 

 
Adjoining mid-rise, 

mid-size buildings 

(traditional or 

modern)  

of relatively 

compact shape 

8.63% 

 

Medium-sized,  

mid-rise isolated 

buildings  

of different shapes 

19.21% 

 
High-rise buildings, 

mainly isolated 

(sometimes 

adjoining)  

of different shapes 

16.08% 

 

Mid-sized, low- to 

mid-rise specialized 

buildings  

of different shapes 

6.40% 

 

Complex compact 

low- to mid-rise 

specialized buildings 

15.83% 

 
 

  



Table 4. Clustering results for Osaka-Kobe (Japan).  

Cluster of 

building types 

Prevalence within total 

building footprint surface 
Examples 

Detached residence 

and other low-rise 

buildings 

 of articulated shape 

20.12% 

 
 

Detached small 

compact houses 
9.91% 

 

 
 

Small and very 

small town- 

 and row-houses 

 and adjoining  

little buildings 

18.81% 

 

 
Mainly isolated  

mid-sized low to 

mid-rise residential 

buildings  

of different shapes 

9.64% 

  

Mainly isolated 

high-rise buildings 

of articulated shape 

11.63% 

 
Mid- to large-sized 

low-rise 

specialized/mixed 

buildings  

of different shapes 

(isolated or 

adjoining) 

20.4% 

 

Specialized/Mixed 

low-to mid-rise 

 huge buildings  

of different shapes 

9.09% 

 

 
 



5. Discussion and Future Work 

The inferential bottom-up building typology carried out in this work remains a coarse one, 

whose goal was to identify broadly defined families of buildings in order to subsequently 

study their spatial distribution and contribute identifying urban fabrics and morphological 

regions (Conzen 1969). In today’s urbanized world, defining a city by its physical boundaries 

has become a very difficult task. Building families and the existence of cluster in specific 

areas only can provide useful insight to understanding the link between city functionalities 

and boundaries. 

Detailed information on building internal layout, façades, functions and roof 

coverages are needed to arrive to more precise building typologies. Our approach is 

nevertheless appropriate for the automated processing of large building datasets having basic 

building description and covering large metropolitan areas. Bayesian clustering has the 

advantage of clustering buildings on the basis of a few shared characteristics, without forcing 

the similarity on all the morphological indicators. The transnational comparison between 

Marseille-Provence and Osaka-Kobe shows these two coastal metropolitan areas are made 

up of apparently similar “ingredients” (very similar typologies are found at the relatively 

coarse level of detail of our study), but with different weights. Small low-rise and massive 

high-rise as well as low-rise buildings are more common in Osaka-Kobe. Mid-sized and mid-

rise buildings are more important in Marseille-Provence, where a distinctive class of 

adjoining mid-sized buildings is a common mark of traditional European cities. 

The next step within our research will be to integrate the prevalence of these coarse 

building typologies within the MFA protocol, to identify typologies of urban fabrics based 

on building types, street network characteristics and building-street relations. 

Future perspectives are also the analysis of building typologies on the same case 

studies over several decades, to study the evolution of types over time in connection to global 

trends in building practice and urban planning. Performing the clustering on other case 

studies with different specificities (vertical cities, slums, etc.) in different geographical 

context should also enrich the transnational comparison. 
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