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SPHERE THEOREMS FOR RCD SPACES

We prove topological sphere theorems for RCD(n -1, n) spaces which generalize Colding's results and Petersen's result to the RCD setting. Such results allow us to get an improved sphere theorem in the case of Einstein stratified spaces.

Introduction

In [C96] Colding proved that if a closed n-dimensional Riemannian manifold (M n , g) with Ric g M n ≥ n -1 satisfies that the radius is close to π, then M n is homeomorphic to the standard n-dimensional unit sphere S n , where the radius rad(X, d) of a metric space (X, d) is defined by: rad(X, d) = inf (1)

Thanks to Cheeger-Colding's work [START_REF] Cheeger | On the structure of spaces with Ricci curvature bounded below. I[END_REF], it is known that this homeomorphism can be improved to the diffeomorphism. Our main results generalize the previous to a large class of singular spaces, the so-called RCD metric measure spaces, or RCD spaces for short, whose study is now quickly developping (see for instance [A18] by Ambrosio for a survey). Roughly speaking, a metric measure space (X, d, m) is said to be RCD(K, N ) if, in a generalized sense, the Ricci curvature is bounded below by K, the dimension is bounded above by N and the space carries some Riemannian structure (we refer to the first section for a precise definition, see Definition 1.1). One of the typical examples can be found in weighted Riemannian manifolds (M n , d g , e -f µ g ), where d g denotes the distance defined by the Riemannian metric g, µ g is the Riemannian volume measure and f is a smooth function on M n . In fact (M n , d g , e -f µ g ) is a RCD(K, N ) space if and only if n ≤ N and

Ric g M n + Hess g f - df ⊗ df N -n ≥ Kg
hold. As easily noticed from this example, in the RCD theory, there is a flexibility on the choice of reference measures even if the base metric space (X, d) is fixed. In particular, the measure m is not necessarily the Hausdorff measure associated to the distance. Other examples of RCD(K, N ) spaces are given by compact stratified spaces (X n , d g , µ g ) endowed with the distance and measure associated to an iterated edge metric g, under the suitable assumptions on g. Stratified spaces are singular manifolds with iterated conical singularities, isolated or not. When the metric g has Ricci tensor bounded from below on the regular set and angles along the codimension 2 singular set are smaller than 2π, (X n , d g , µ g ) is a RCD space, as proven in [START_REF] Bertrand | Richard Stratified spaces and synthetic Ricci curvature bounds[END_REF] by Bertrand-Ketterer-Richard and the second author. In this work, as a consequence of our main results, we will obtain a sphere theorem for Einstein stratified spaces. It is worth pointing out that examples of Einstein stratified spaces occur in various branches of geometry: for instance in mathematical physics, the singular space associated to a static triple [A17]; in Kähler geometry, Kähler-Einstein manifolds with edge singularities of cone angle smaller than 2π along a smooth divisor [START_REF] Jeffres | Kälher-Einstein metrics with edge singularities[END_REF].

We are now in a position to state the main result of the paper:

Theorem A (Topological sphere theorem for RCD spaces, I). For all n ∈ N ≥2 there exists a positive constant n > 0 such that if a compact metric space (X, d) satisfies that rad(X, d) ≥ πn and that (X, d, m) is a RCD(n -1, n) space for some Borel measure m on X with full support, then X is homeomorphic to the n-dimensional sphere.

This seems the first topological sphere theorem in the RCD theory. We emphasize again that the theorem states that although there is a flexibility on the choice of m, the topological structure is uniquely determined. Note that in the previous theorem one cannot replace the radius by the diameter of the space. Indeed, for any ε > 0 Anderson constructed in [A90] manifolds of even dimension n ≥ 4, with Ricci tensor bounded below by n -1 and diameter larger than π -, which are not homeomorphic to the sphere. Similar examples can be found in [O91] by Otsu. In order to introduce an application, let us recall a result of Petersen [START_REF] Petersen | On eigenvalue pinching in positive Ricci curvature[END_REF]; for a closed n-dimensional Riemannian manifold (M n , g) with Ric g M n ≥ n -1 the following two conditions are equivalent quantitatively:

(1) The (n + 1)-th eigenvalue of the Laplacian is close to n (2) The radius is close to π.

In particular if the one of them above holds, then M n is diffeomorphic to S n .

Note that even in the RCD-setting, the above equivalence is justified by the spectral convergence result of Gigli-Mondino-Savaré [START_REF] Gigli | Convergence of pointed non-compact metric measure spaces and stability of Ricci curvature bounds and heat flows[END_REF] and the rigidity results of Ketterer [K15b]. In particular we have the following;

Corollary B (Topological sphere theorem for RCD spaces, II). For all n ∈ N ≥2 there exists a positive constant n > 0 such that if a RCD(n -1, n) space (X, d, m) satisfies

λ n+1 ≤ n + n , (2) 
then X is homeomorphic to S n , where λ k := λ k (X, d, m) denotes the k-th eigenvalue of the (minus) Laplacian -∆ on (X, d, m).

In the second section, we give a proof for reader's convenience. In Corollary B it is known that if (X, d, m) is a Riemannian manifold, that is, (X, d, m) is isometric to (M n , d g , µ g ) for a closed Riemannian manifold (M n , g), then the assumption (2) can be replaced by a weaker one;

λ n ≤ n + n . (3) 
See [START_REF] Aubry | Pincement sur le spectre et le volume en courbure de Ricci positive[END_REF] by Aubry (see also [B07] by Bertrand and [H09] by the first author). However in the RCD setting we can not get such improvement. In fact, the n-dimensional unit hemisphere S n + with the standard Riemannian measure is a RCD(n -1, n) space with λ k = n for all 1 ≤ k ≤ n, but it is not homeomorphic to S n . Thus Corollary B is sharp in this sense.

Let us explain how to prove the main theorem. For that, we recall the original proof by Colding. First, he proved that if the radius is close to π, then the volume is almost maximal. Perelman's topological sphere theorem [START_REF] Perelman | Manifolds of positive Ricci curvature with almost maximal volume[END_REF] for almost maximal volume then allows Colding to conclude.

We follow a similar argument. However, the almost maximality of the volume does not make sense in the general setting of RCD spaces, because, as we pointed out above, there is flexibility in the choice of measures. In order to overcome this difficulty, the assumption in Theorem A allows us to get rid of such flexibility of the measure m, in the following sense: we start by proving

m = m(X) H n (X) H n , (4) 
where H n is the n-dimensional Hausdorff measure. This is justified by using a recent result of the first author [H19] which confirms a conjecture by De Philippis-Gigli (see Remark 1.9 in [START_REF] De Philippis | Non-collapsed spaces with Ricci curvature bounded below[END_REF]) in the compact setting.

Then by combining this with a compactness result for non-collapsed RCD spaces by De Philippis-Gigli [START_REF] De Philippis | Non-collapsed spaces with Ricci curvature bounded below[END_REF] and Ketterer's rigidity [K15a], we can show that our situation is reduced to the study of the following measured Gromov-Hausdorff convergent sequence of RCD(n -1, n) spaces:

(X i , d i , H n ) mGH → (S n , d S n , H n ).
Then we can follow an argument similar to Colding's proof by using the intrinsic Reifenberg theorem [START_REF] Cheeger | On the structure of spaces with Ricci curvature bounded below. I[END_REF] by Cheeger-Colding instead of using Perelman's topological sphere theorem [START_REF] Perelman | Manifolds of positive Ricci curvature with almost maximal volume[END_REF].

One step in the previous proof consists in showing that the almost maximality of the Hausdorff measure implies that the space is homeomorphic to the sphere (see Theorem 2.2 in the following). This allows us to get an improved sphere theorem in the case of Einstein stratified spaces:

Corollary C (Sphere theorem for Einstein stratified spaces). For all n ∈ N ≥2 there exists a positive constant n > 0 such that the following holds. Let (X, g) be compact n-dimensional stratified space endowed with an iterated edge metric g such that Ric g ≡ n -1 on the regular set. Assume that there is no singular stratum of codimension 2. If µ g (X)

≥ (1 -n )H n (S n ), then (X, d g ) is isometric to (S n , d S n ).
The assumption on the codimension 2 stratum cannot be dropped. Indeed, consider a compact Riemannian surface (X, g) with sectional curvature equal to one away from a finite number of isolated conical singularities of angles smaller than 2π. Then the almost maximality of its volume implies that (X, g) is homeomorphic to S 2 and that the angles at the singularities are close to 2π, but this cannot be improved to an isometry. The strategy of our proof actually consists in showing that, thanks to the almost maximality of the volume, there is no singularity of codimension strictly greater than 2. Moreover, a local almost maximality for the volume allows one to control the regularity in a neighbourhood of a point (see Corollary 3.5), even if the space is not compact.

The paper is organized as follows: in the next section we give a quick introduction about RCD spaces and recall related results we need later. In Section 2, after preparing few technical results, we prove the main results. The last section is devoted to showing Corollary C in the case of Einstein stratified spaces, for which we state the basic notions that we need.

After we finalized this article we learned that the paper [KM19] by Kapovitch-Mondino contains the same results as in Corollary B and Theorem 2.2 as an independent work. Their proofs are close to ours, but the scopes of our works differ: while they are mainly concerned with the topology and the boundary of non-collapsed RCD spaces, our work also intends to discuss consequences of RCD theorems in the more specific setting of stratified spaces.
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Preliminary

We say that a triple (X, d, m) is a metric measure space if (X, d) is a complete separable metric space and m is a Borel measure on X with full support, that is, m(B r (x)) > 0 holds for all x ∈ X and all r > 0, where B r (x) denotes the open ball centered at x of radius r.

Throughout this section we fix K ∈ R, N ∈ (1, ∞) and n ∈ N ≥2 .

1.1. General RCD space. Let us fix a metric measure space (X, d, m). The goal of this section is to give a quick introduction on RCD spaces with their fundamental properties. The Cheeger energy Ch =: L 2 (X, m) → [0, +∞] is a convex and L 2 (X, m)-lower semicontinuous functional defined as follows:

Ch(f ) := inf lim inf n→∞ 1 2 X (Lipf n ) 2 dm : f n ∈ Lip b (X, d) ∩ L 2 (X, m), f n -f L 2 → 0 ,
(5) where Lipf denotes the local Lipschitz constant and Lip b (X, d) is the space of bounded Lipschitz functions. The Sobolev space H 1,2 (X, d, m) then coincides with the domain of the Cheeger energy, that is {f ∈ L 2 (X, m) : Ch(f ) < +∞}. When endowed with the norm

f H 1,2 := f 2 L 2 (X,m) + 2Ch(f ) 1/2
this space is Banach and separable Hilbert if Ch is a quadratic form (see [START_REF] Ambrosio | Metric measure spaces with Riemannian Ricci curvature bounded from below[END_REF]).

According to the terminology introduced in [G15], we say that a metric measure space (X, d, m) is infinitesimally Hilbertian if Ch is a quadratic form. By looking at minimal relaxed slopes and by a polarization procedure, one can then define a carré du champ

Γ : H 1,2 (X, d, m) × H 1,2 (X, d, m) → L 1 (X, m)
playing in this abstract theory the role of the scalar product between gradients. In infinitesimally Hilbertian metric measure spaces, the Γ operator satisfies all natural symmetry, bilinearity, locality and chain rule properties, and provides integral representation to Ch:

2Ch(f ) = X Γ(f, f ) dm, for all f ∈ H 1,2 (X, d, m).
We can now define a densely defined operator ∆ :

D(∆) → L 2 (X, m) whose domain consists of all functions f ∈ H 1,2 (X, d, m) satisfying X hgdm = - X Γ(f, h)dm ∀h ∈ H 1,2 (X, d, m)
for some g ∈ L 2 (X, m). The unique g with this property is then denoted by ∆f (see [START_REF] Ambrosio | Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below[END_REF]).

We are now in a position to introduce the definition of RCD spaces.

Definition 1.1 (RCD spaces). For K ∈ R and N ∈ [1, ∞], (X, d, m
) is said to be a RCD(K, N ) space if the following are satisfied:

(1) Infinitesimally Hilbertian: it is inifinitesimally Hilbertian;

(2) Volume growth: there exist x ∈ X and c > 1 such that m(B r (x)) ≤ Ce Cr 2 for all r > 0;

(3) Sobolev-to-Lipschitz property :

any f ∈ H 1,2 (X, d, m) with Γ(f, f ) ≤ 1 m-a.e. in X has a 1-Lipschitz representative.
(4) Bakry-Émery inequality : for all f ∈ D(∆)

with ∆f ∈ H 1,2 (X, d, m), 1 2 X Γ(f, f )∆φdm ≥ X φ (∆f ) 2 N + Γ(f, ∆f ) + KΓ(f, f ) dm (6) for all φ ∈ D(∆) ∩ L ∞ (X, m) with φ ≥ 0 and ∆φ ∈ L ∞ (X, m).
It is worth pointing out that a RCD(K, N ) space was originally defined as a metric measure space which is infinitesimally Hilbertian and satisfies the CD(K, N ) condition in the sense of Lott-Sturm-Villani (see [AGS14b, AMS15, EKS15, G15, LV09, St06a, St06b]). Such definition has been proven to be equivalent to the formulation given by Definition 1.1 (see also [START_REF] Cavalletti | The Globalization Theorem for the Curvature Dimension Condition[END_REF] for the equivalence between RCD and RCD * ).

In order to keep our presentation short, we skip the definitions of pointed measured Gromov-Hausdorff convergence (pmGH), of measured Gromov-Hausdorff convergence (mGH), and of pointed Gromov-Hausdorff convergence (pGH). We refer to [START_REF] Cheeger | On the structure of spaces with Ricci curvature bounded below. I[END_REF][START_REF] Fukaya | Collapsing of Riemannian manifolds and eigenvalues of Laplace operator[END_REF][START_REF] Gigli | Convergence of pointed non-compact metric measure spaces and stability of Ricci curvature bounds and heat flows[END_REF][START_REF] Sturm | On the geometry of metric measure spaces, I[END_REF][START_REF] Sturm | On the geometry of metric measure spaces, II[END_REF] for the precise definitions. Note that the radius is continuous with respect to the Gromov-Hausdorff convergence.

Let us introduce a compactness result for RCD spaces with respect to the pmGH convergence, which follows from [GMS13, Cor.3.22, Thm.7.2].

Theorem 1.1 (Compactness of RCD spaces). Let (X i , d i , m i , x i )(i = 1, 2, . . .) be a sequence of pointed RCD(K, N ) spaces. If there exist v i > 0(i = 1, 2) with v 1 ≤ v 2 such that v 1 ≤ m i (B 1 (x i )) ≤ v 2 holds for all i, then there exist a subsequence (X i(j) , d i(j) , m i(j) , x i(j) ) and a pointed RCD(K, N ) space (X, d, m, x) such that (X i(j) , d i(j) , m i(j) , x i(j) ) pmGH → (X, d, m, x), that is, (X i(j) , d i(j) , m i(j) , x i(j) ) pmGH converge to (X, d, m, x).
The next definition is a key notion of the paper. Inspired by the stratification of Ricci limit spaces given by Cheeger-Colding theory, one can define a k-regular set as the set of points for which the tangent cone, in the sense of pmGH convergence, is the Euclidean space R k . More precisely we have: Definition 1.2 (Regular set). Let (X, d, m) be a RCD(K, N ) space and let k ∈ N.

Then the k-dimensional regular set R k = R k (X) is defined by the set of all points x ∈ X satisfying that (X, r -1 d, (m(B r (x))) -1 m, x) pmGH → (R k , d R k , ω -1 k L k , 0 k ) (r → 0 + ). (7) 
By the Bishop-Gromov inequality (see Theorem 1.3 (Essential dimension). Let (X, d, m) be a RCD(K, N ) space. Assume that X is not a single point. Then there exists a unique k

[LV09, St06a, St06b, Vi09]) it is easy to check that R k = ∅ for all k ∈ (N, ∞) ∩ N. Remark 1.2. It is proved that for x ∈ X and k ∈ N, if (X, r -1 d, x) pGH → (R k , d R k , 0 k ), then x ∈ R k .
:= dim d,m (X) ∈ N∩[1, N ] such that m(X \ R k ) = 0. We call it the essential dimension of (X, d, m).
We end this subsection by introducing a fundamental property on the essential dimension proved in [Kit17, Thm.1.5];

Theorem 1.4 (Lower semicontinuity of essential dimensions). The essential dimension is lower semicontinuous with respect to the pointed measured Gromov-Hausdorff convergence of RCD(K, N ) spaces.

1.2. Rigidity for positively Ricci curved RCD spaces. It is worth pointing out that in general if a RCD(K, N ) space (X, d, m) has a bounded diameter, then (X, d) must be compact and the spectrum of the (minus) Laplacian -∆ is discrete and unbounded;

0 = λ 0 < λ 1 ≤ λ 2 ≤ • • • → ∞, (8) 
where λ i denotes the i-th eigenvalue counted with multiplicities (see for instance [START_REF] Gigli | Convergence of pointed non-compact metric measure spaces and stability of Ricci curvature bounds and heat flows[END_REF] or [START_REF] Ambrosio | Tewodrose: Embedding of RCD * (K, N )-spaces in L 2 via eigenfunctions[END_REF]). Let us introduce some properties of RCD(N -1, N ) spaces with the rigidity results we will use later ([K15a, Cor.1.3, Cor.1.6], [K15b, Thm.1.4]).

Theorem 1.5 (Rigidity to the sphere). Let (X, d, m) be a RCD(N -1, N ) space.

Then the following are satisfied:

(1) The diameter diam(X, d) is at most π (in particular rad(X, d) ≤ π) and the first positive eigenvalue

λ 1 is at least N . (2) If rad(X, d) = π or λ [N ]+1 = N , where [N ] is the integer part of N , then
N must be an integer, (X, d) is isometric to (S N , d S N ) and m = aH N for some a > 0.

The next two corollaries give us reasons for only discussing the case of integer n in Theorem A and Corollary B.

Corollary 1.6. For all N ∈ [1, ∞) \ N, there exists a positive constant τ N > 0 such that any RCD(N -1, N ) space (X, d, m) satisfies λ [N ]+1 ≥ N + τ N .
Proof. The proof is done by a contradiction. If the statement is not satisfied, then there exists a sequence of

RCD(N -1, N ) spaces (X i , d i , m i ) such that lim i→∞ λ [N ]+1 (X i , d i , m i ) = N. (9) 
By Theorem 1.1 with no loss of generality we can assume that (X i , d i , m i ) mGHconverge to a RCD(N -1, N ) space (X, d, m). Then the spectral convergence result proved in [GMS13, Thm.7.8] with (9) yields

λ [N ]+1 (X, d, m) = lim i→∞ λ [N ]+1 (X i , d i , m i ) = N.
Theorem 1.5 shows that N must be an integer, which is a contradiction.

Similarly we have the following.

Corollary 1.7. For all N ∈ [1, ∞) \ N, there exists a positive constant δ N > 0 such that any RCD(N -1, N ) space (X, d, m) satisfies rad(X, d) ≤ π -δ N .

1.3. Non-collapsed RCD space. Let us introduce a special class of RCD spaces introduced in [START_REF] De Philippis | Non-collapsed spaces with Ricci curvature bounded below[END_REF], that is non-collapsed and weakly non-collapsed RCD spaces. The non-collapsing assumption means that the measure m is chosen to coincide, or to be absolutely continuous, with respect to the Hausdorff measure. More precisely we have:

Definition 1.3 (Non-collapsed RCD space). Let (X, d, m) be a RCD(K, N ) space. (1) (X, d, m) is called non-collapsed if m = H N . (2) (X, d, m) is called weakly non-collapsed if m H N .
The following fundamental results for non-collapsed RCD(K, N ) spaces are proved in [START_REF] De Philippis | Non-collapsed spaces with Ricci curvature bounded below[END_REF];

Theorem 1.8 (Fine properties of non-collapsed RCD spaces). Let (X, d, H N ) be a non-collapsed RCD(K, N ) space. Then the following are satisfied;

(1) N must be an integer;

(2) For all x ∈ X the Bishop inequality holds in the sense of

lim r→0 + H N (B r (x)) Vol K,N (r) ≤ 1, (10) 
where Vol K,N (r) denotes the volume of a ball of radius r in the N -dimensional space form whose Ricci curvature is constant equal to K. Moreover the equality in (10) holds if and only if x ∈ R N .

Let us give several remarks on the theorem above. The first property (1) is also true for weakly non-collapsed RCD(K, N ) spaces. The second property (2) can be regarded as a rigidity result. Moreover it is proven that the almost rigidity of (10) also holds, and this will play a role in the next section. See [DePhG18, Thm.1.6] for the precise statement (see also [START_REF] Ambrosio | Tewodrose: Embedding of RCD * (K, N )-spaces in L 2 via eigenfunctions[END_REF]Prop.6.6]).

The next theorem follows from a combination of [START_REF] Kitabeppu | A sufficient condition to a regular set of positive measure on RCD spaces[END_REF] and [START_REF] De Philippis | Non-collapsed spaces with Ricci curvature bounded below[END_REF]. For the reader's convenience we give a proof:

Theorem 1.9. For n ∈ N ≥2 , a RCD(K, n) space (X, d, m) is weakly non-collapsed if and only if R n = ∅.
Proof. We check only the "if" part because the "only if" part is a direct consequence of [DePhG18, Thm.1.10]. Let x ∈ R n . Then since Theorem 1.4 yields

lim inf r→0 + dim r -1 d,(m(Br(x))) -1 m (X) ≥ dim d R n ,ω -1 n L n (R n ) = n, we have dim d,m (X) = n because dim d,m (X) = dim r -1 d,(m(Br(x))) -1 m (X) for all r > 0. Then [DePhG18, Thm.1.10] yields that (X, d, m) is weakly non-collapsed.
Let us introduce one of the main results of [H19] which confirmed a conjecture raised in [START_REF] De Philippis | Non-collapsed spaces with Ricci curvature bounded below[END_REF] in the compact case ([H19, Cor.1.4]); Theorem 1.10 ("Weakly non-collapsed" implies "non-collapsed"). Let (X, d, m) be a compact weakly non-collapsed RCD(K, n) space. Then

m = m(X) H n (X) H n .
To conclude this section, we introduce a compactness result for non-collapsed RCD spaces with respect to pmGH convergence, which is proved in [DePhG18, Thm.1.2, Thm.1.3] (Compare with Theorem 1.1);

Theorem 1.11 (Compactness of non-collapsed RCD spaces). Let (X i , d i , H n , x i )(i = 1, 2, . . .) be a sequence of pointed non-collapsed RCD(K, n) spaces with lim inf i→∞ H n (B 1 (x i )) > 0.
Then there exist a subsequence (X i(j) , d i(j) , H n , x i(j) ) and a pointed non-collapsed

RCD(K, n) space (X, d, H n , x) such that (X i(j) , d i(j) , H n , x i(j) ) pmGH → (X, d, H n , x).

Proof of main results

Throughout the section we fix n ∈ N ≥2 and K ∈ R too. In the next proposition let us consider Sturm's D-distance between compact RCD(K, n) spaces, that is, " -mGH-close" means "D < " below. Note that the convergence with respect to D is equivalent to the mGH convergence for compact RCD(K, N ) spaces (see [START_REF] Sturm | On the geometry of metric measure spaces, I[END_REF][START_REF] Sturm | On the geometry of metric measure spaces, II[END_REF]).

Proposition 2.1 (Noncollapsed RCD is an open condition). Let (X, d X , m X ) be a compact weakly non-collapsed RCD(K, n) space. Then there exists a positive constant

0 = 0 (X, d X , m X ) > 0 such that if a compact RCD(K, n) space (Y, d Y , m Y ) is 0 -mGH-close to (X, d X , m X ), then m Y = m Y (Y ) H n (Y ) H n . (11) 
Proof. Let us prove the proposition by contradiction. If the statement does not hold, then there exists a mGH convergent sequence

(X i , d i , m i ) of RCD(K, n) spaces to (X, d X , m X ) such that m Xi = m i (X i ) H n (X i ) H n . ( 12 
)
However since Theorem 1.4 states

lim inf i→∞ dim di,mi (X i ) ≥ dim d X ,m X (X) = n,
we see that dim di,mi (X i ) = n for any sufficiently large i. In particular Theorem 1.9 yields that (X i , d i , m i ) is weakly non-collapsed RCD(K, n) space for such i. Then by applying Theorem 1.10 to such (X i , d i , m i ) we obtain that m i = mi(Xi) H n (Xi) H n which contradicts (12).

Let us remark that the Bishop inequality (10) implies

H n (X) ≤ H n (S n ) (13) 
for all non-collapsed RCD(n -1, n) space (X, d, H n ). Since the equality easily implies rad(X, d) = π, thus by Theorem (1.5) the equality holds if and only if the space is isometric to the round sphere S n .

Theorem 2.2 (Topological sphere theorem for RCD spaces, III). There exists a positive constant n > 0 such that if a compact non-collapsed

RCD(n -1, n) space (X, d, H n ) satisfies H n (X) ≥ (1 -n )H n (S n ), then X is homeomorphic to S n .
Remark 2.3. We point out that the previous result is known for Alexandrov spaces, see for example Proposition A.9 in the work of Yamaguchi [Y96]. It can also be easily proved by contradiction, by combining the rigidity of Bishop-Gromov inequality and the topological stability theorem [START_REF] Perelman | Alexandrov spaces with curvatures bounded from below II[END_REF] for Alexandrov spaces (see [START_REF] Kapovitch | Perelman's stability theorem[END_REF]). Moreover for n = 2, the work [START_REF] Lytchak | Ricci curvature in dimension 2[END_REF] showed that a non-collapsed RCD(K, 2) space is an Alexandrov space with curvature at least K. As a consequence, our result directly holds in dimension 2. We give here the proof in full generality.

Proof. The proof is done by contradiction. Assume that the theorem does not hold, then there exist sequences i → 0 and

(X i , d i , H n ) of RCD(n -1, n) spaces such that H n (X i ) ≥ (1 -i )H n (S n
) and X i is not homeomorphic to S n . Then we have

lim i→∞ H n (X i ) = H n (S n ). ( 14 
)
and it is not difficult to check that (14) implies that rad(X i , d i ) → π. Applying Theorem 1.5 with Theorem 1.11 yields

(X i , d i , H n ) mGH → (S n , d S n , H n ). (15) 
On the other hand the inequality

H n (X i ) H n (S n ) ≥ 1 -i , (16) 
together with the Bishop (10) and the Bishop-Gromov inequalities implies that for all x ∈ X i we have

H n (B r (x)) H n (B r (p)) ≥ 1 -i , ∀r ∈ (0, π], ∀p ∈ S n . ( 17 
)
Applying this observation with the almost rigidity on the Bishop inequality [DePhG18, Thm.1.5] (see also [AHTP18, Prop.6.6]) implies that for all ε > 0 there exists a positive integer i 0 ∈ N such that for all i ≥ i 0 and r ∈ (0, π]

d GH (B r/2 (x i ), B r/2 (0 n )) ≤ εr, (18) 
where d GH denotes the Gromov-Hausdorff distance. This means that for all i ≥ i 0 , the metric spaces {(X i , d i )} i are uniformly Reifenberg flat. Then applying the intrinsic Reifenberg theorem [ChC97, Thm.A.1.2 and Thm.A.1.3] yields that X i is homeomorphic to S n for any sufficiently large i, which is a contradiction.

We are in position to prove our main result.

Proof of Theorem A. The proof is done by a contradiction. Assume that the statement is false: then there exists a sequence

(X i , d i , m i ) of RCD(n -1, n) spaces such that rad(X i , d i ) → π, m i (X i ) =
1 and X i is not homeomorphic to S n . By Theorem 1.5 with no loss generality we can assume that

(X i , d i , m i ) mGH → (S n , d S n , m)
for some Borel probability measure m on S n . Then Proposition 2.1 shows that (X i , d i , H n ) is also a RCD(n -1, n) space for any sufficiently large i. Moreover,

(X i , d i , H n ) mGH → (S n , d S n , H n ).
Therefore for any sufficiently large i we obtain H n (X) ≥ (1n )H n (S n ) and Theorem 2.2 implies that X i is homeomorphic to S n , which is a contradiction.

We can now prove Corollary B;

Proof of Corollary B. The proof follows the same lines as Theorem A. Assume that the statement does not hold, then there exists a sequence

(X i , d i , m i ) of RCD(n - 1, n) spaces with m i (X i ) = 1, such that X i is not homeomorphic to S n and lim i→∞ λ n+1 (X i , d i , m i ) = n.
With no loss of generality we can assume that the sequence d,m). Then the spectral convergence result proved in [GMS13, Thm.7.8] shows that

(X i , d i , m i ) mGH- converges to a RCD(n -1, n) space (X,
λ n+1 (X, d, m) = lim i→∞ λ n+1 (X i , d i , m i ) = n.
Then Theorem 1.5 yields that (X, d) is isometric to (S n , d S n ). In particular since rad(X i , d i ) → rad(S n , d S n ) = π, Theorem A yields that X i is homeomorphic to S n for any sufficiently large i, which is a contradiction.

Remark 2.4. Thanks to the intrinsic Reifenberg theorem [ChC97, Thm.A.1.2 and Thm.A.1.3], it is easy to check that all topological sphere theorems stated above can be improved to "bi-Hölder homeomorphism". Moreover we can choose any α ∈ (0, 1) as a Hölder exponent. For reader's convenience let us write down the precise statement. For all n ∈ N, r > 0 and > 0, let us denote by M(n, r, ) the set of all isometry classes of compact metric spaces (X, d) with d GH (B t (x), B t (0 n )) ≤ t for all x ∈ X and all t ≤ r. Then we have:

• for all α ∈ (0, 1) there exist positive constants 0 := 0 (n, α, r) > 0 and δ 0 (n, α, r) > 0 such that if two compact metric space Z i ∈ M(n, r, 0 ) satisfies d GH (Z 1 , Z 2 ) < δ 0 , then there exists a homeomorphism Φ : Z 1 → Z 2 such that Φ and Φ -1 are α-Hölder continuous maps. Although we used the almost maximality of the volume (16) in the proof of Theorem 2.2 in order to simplify our argument, by an argument similar to the proof of [ChC97, Thm.5.11] with corresponding almost rigidity results in [START_REF] De Philippis | Non-collapsed spaces with Ricci curvature bounded below[END_REF], we see that if a non-collapsed RCD(K, n) spaces (X, d X , H n ) satisfies X = R n , then for all > 0 there exist positive constants r > 0 and δ > 0 such that if a non-collapsed

RCD(K, n) space (Y, d Y , H n ) satisfies d GH (X, Y ) ≤ δ, then (Y, d Y ) ∈ M(n, r, ).
See also [START_REF] Kapovitch | On the topology and the boundary of N -dimensional RCD(K, N ) spaces[END_REF].

Improvement to Einstein stratified spaces

The previous results can be improved to the case of certain (smoothly) stratified spaces. In order to do that, we briefly recall some notions about such spaces, by mostly referring to [M15] and [START_REF] Bertrand | Richard Stratified spaces and synthetic Ricci curvature bounds[END_REF] for the precise definitions.

A (compact) stratified space X is a (compact) topological space which admits a decomposition in strata

X = n j=0 Σ j (X)
such that for each j = 0, . . . n, Σ j (X) is a smooth manifold of dimension j, Σ n (X) is open and dense in X and Σ n-1 (X) = ∅. We denote the higher dimension stratum Σ n (X) as X reg , the regular set of X, and refer to n as the dimension of X. We define the singular set of X:

X sing = n-2 j=0 Σ j (X).
For j < (n -1), Σ j (X) is called the singular stratum of dimension j. For each point in Σ j (X) there exists a neighbourhood U x homeomorphic to the product of an Euclidean ball in R j and a truncated cone over a compact stratified space B r (0 j ) × C [0,r) (Z j ). We refer to Z j as the link of the stratum Σ j (X).

By induction on the dimension, a stratified space X can be endowed with an iterated edge metric g, which is a Riemannian metric on X reg with the appropriate asymptotics close to each singular stratum: by denoting k j an iterated edge metric on the link Z j , there exist positive constants Λ and γ such that in a neighbourhood U x of a point x ∈ Σ j (X) we have

|ϕ * x g -(h + dr 2 + r 2 k j )| ≤ Λr γ , ( 19 
)
where h is the standard Riemannian metric on R j and ϕ x is the homeomorphism between the product B r (0 j ) × C [0,r) (Z j ) and the neighbourhood U x .

In the case of the codimension 2 stratum, the link is a compact stratified space of dimension 1, thus a circle. As a consequence, for each point x ∈ Σ n-2 (X) there exists α x ∈ (0, +∞) such that the metric g is asymptotic, in the sense of (19), to:

h + dr 2 + α x 2π r 2 dθ 2 , on R n-2 × C(S 1
). We refer to α x as the angle of Σ n-2 (X) at x. The iterated edge metric g gives rise to a length structure and a distance d g on X, and to a Riemannian measure µ g which in the compact case is Ahlfors-regular and finite. Note that the measure of the singular strata is zero and, as in the case of smooth manifolds, µ g coincides with the Hausdorff measure.

Moreover, thanks to the definition of the distance and iterated edge metric, we know that each point x ∈ Σ j (X) admits a unique tangent cone C(S x ) over the tangent sphere at x. It is defined by the pGH limit as ε goes to zero:

(X, ε -1 d g , x) pGH -→ (C(S x ), d C , o),
where o is the vertex of the cone. The tangent sphere is a compact stratified space of dimension (n -1) given by the (j -1)-spherical suspension of the link

S x = 0, π 2 × S j-1 × Z j .
Since the convergence is smooth on the regular sets, the tangent sphere is endowed with a double warped product metric:

h x = dψ 2 + cos 2 (ψ)g S j-1 + sin 2 (ψ)k j . (20) 
Moreover, the smoothness of the convergence and the fact that singular sets have null measures imply that pGH-convergence can be replaced by pmGH-convergence.

Note that for x ∈ Σ 0 (X), the tangent sphere coincides with the link of Σ 0 (X). If x belongs to Σ 1 (X) then S x is a spherical suspension of the form [0, π] × Z 1 endowed with the warped product metric

h x = dψ 2 + sin 2 (ψ)k 1 .
Also observe that a point belongs to the regular set if and only if its tangent sphere is isometric to the round sphere S n-1 .

In view of the following, we need information about how the regularity of X affects the regularity of tangent spheres. This is stated in the following.

Lemma 3.1. Let (X, g) be an n-dimensional compact stratified space endowed with an iterated edge metric g. If Σ n-2 (X) = ∅, then for any x ∈ X the tangent sphere S x does not carry a singular stratum of codimension 2.

Proof. Assume x ∈ Σ j (X) for j ∈ {0, . . . n -3} and consider Z j the link of Σ j (X). Denote by d j = n -j -1 its dimension and by ϕ x the homeomorphism between a neighbourhood of x and the product B r (0 j ) × C [0,r) (Z j ). We first observe that Z j does not carry any singular stratum of codimension 2. Assume by contradiction that there exists z ∈ Σ dj -2 (Z j ): then z has a neighbourhood homeomorphic to B s (0 dj -2 ) × C [0,s) (S 1 ). Denote by p the point of coordinates (v, s, z) in B r (0 j ) × C [0,r) (Z j ) and x = ϕ x (p) ∈ X. Then x has a neighbourhood homeomorphic to B ρ (0 n-2 ) × C(S 1 ). As a consequence, x belongs to Σ n-2 (X), which contradicts the assumption Σ n-2 (X) = ∅.

We next show that Z j not having any singular stratum of codimension 2, the same holds for the tangent sphere S x . If j = 0, S x coincides with Z j and thus have the same singular set. If j = 1, S x is the warped product ([0, π] × Z 1 , dψ 2 + sin 2 (ψ)k 1 ). Its singular set S sing x is composed of the subsets (0, π)×Z sing 1 and {0, π}× Z 1 . As for (0, π) × Z sing 1 , it only generates singularities of the same codimension as the ones of Z sing 1 , that is at least 3. The singularities at {0} × Z 1 and {π} × Z 1 carry a neighbourhood homeomorphic to C(Z 1 ) and as a consequence have codimension 0 in S x . Therefore Σ n-2 (S x ) = ∅. Similarly, for j ∈ {2, . . . , n -3}, the singular set of S x is given by :

• the product (0, π/2) × Z sing j which has codimension at least 3 because we already know Σ dj -2 (Z j ) = ∅; • {0}×S j-1 ×Z j : any point in this product has a neighbourhood homeomorphic to B(0 j ) × Z j , then for the same reason singularities have codimension at least 3; • {π/2} × S j-1 × Z j : any point belonging to this set has a neighbourhood homeomorphic to S j-1 × C(Z j ). This gives singularities of codimension n -j in S x and since j ≤ n -3, the codimension is at least 3.

We have shown that for any x ∈ X we have Σ n-2 (S x ) = ∅, as we wished.

Thanks to [START_REF] Bertrand | Richard Stratified spaces and synthetic Ricci curvature bounds[END_REF] we know the following:

Theorem. A compact stratified space (X, d g , µ g ) of dimension n endowed with an iterated edge metric g is a RCD(K, N ) space for K ∈ R, N ≥ 1, if and only if n ≤ N , Ric g ≥ K on X reg and the angles along the singular stratum of codimension 2 are smaller than or equal to 2π.

Since µ g is the Hausdorff measure, a RCD(K, n) compact stratified space of dimension n is also a non-collapsed RCD space.

An easy consequence of the definition of the iterated edge metric is the following:

Lemma 3.2. Let (X, d g , µ g ) be a RCD(K, n) compact stratified space of dimension n endowed with an iterated edge metric g. Then for every x ∈ X, the tangent sphere (S x , d hx , µ hx ) at x is a non-collapsed RCD(n -2, n -1) space. Moreover, if for K ≥ 0 ||Ric g || ≤ K holds on the regular set, we also have Ric hx = (n -2) on S reg x .

Proof. Because of the definition of the tangent cone, we know that if Ric g ≥ K on X reg , then (C(S x ), ds 2 + s 2 h x ) has non-negative Ricci tensor on its regular part. As a consequence, for each tangent sphere Ric hx ≥ (n -2) on S reg x (see Lemma 2.1 in [M18]). Analogously, if ||Ric g || ≤ K on X reg the tangent cone is Ricci flat and Ric hx = (n -2) on S reg

x . For every x, S x cannot carry a stratum of codimension 2 with angles larger than 2π. The argument is the same as in Lemma 3.1. If for every x ∈ Σ n-2 (X) the angle α x is smaller than or equal to 2π, then the same holds for every link Z j of dimension d j : the angles along Σ dj -2 (Z j ) belongs to (0, 2π]. Now, if x ∈ Σ j (X), singularities of codimension 2 of S x are determined by the singularities of codimension 2 in Z j : as a consequence, if p ∈ Σ n-3 (S x ), then α p ∈ (0, 2π].

Then for any x ∈ X the tangent sphere at x satisfies the assumptions of the previous theorem and (S x , d hx , µ hx ) is a RCD(n -1, n -2) space.

We are now in position to prove the following: Theorem 3.3 (Sphere theorem for Einstein stratified spaces). For all n ∈ N ≥2 there exists a positive constant n > 0 such that the following holds. Let (X, g) be compact n-dimensional stratified space endowed with an iterated edge metric g satisfying Ric g ≡ n -1 on the regular set. Assume that Σ

n-2 (X) = ∅. If µ g (X) ≥ (1 -n )H n (S n ), then (X, d g ) is isometric to (S n , d S n ).
Proof. Let us first check the theorem in the case of (X, g) not having a singular set, that is (X, g) is a smooth manifold. The proof is done by a contradiction. If the assertion does not hold, then there exists a sequence of n-dimensional closed Riemannian manifolds (M n i , g i ) such that Ric gi

M n i ≡ n -1, that µ gi (M n i ) → H n (S n ) and that (M n i , g i ) is not isometric to (S n , g S n ).
Then applying the smooth convergence result [ChC97, Thm.7.3] yields that (M n i , g i ) converge smoothly to (S n , g S n ). In particular (M n i , g i ) is simply connected and has positive curvature operator for suficiently large i. Then by a theorem of [T74] (M n i , g i ) has constant sectional curvature. Thus (M n i , g i ) is isometric to (S n , g S n ), which is a contradiction. For all n ∈ N ≥2 take a positive constant n > 0 such that the smooth version of Theorem 3.3 holds. Next let us fix a compact n-dimensional stratified space (X, g) satisfying Ric g ≡ n -1 on the regular set and Σ n-2 (X) = ∅. Our goal is to prove that

if µ g (X) ≥ (1 -ˆ n )H n (S n ), then (X, d g ) is isometric to (S n , d S n ), where ˆ n := min{ i , 1 ≤ i ≤ n} and 1 := 0.
The proof is done by induction. For n = 2, our assumption Σ n-2 (X) = ∅ yields that (X, g) has no singular set, thus (X, g) is a smooth Riemannian manifold. By definition of 2 we get the desired statement.

As for n ≥ 3, let x ∈ X and consider the tangent cone (C(S x ), ds 2 +s 2 h x , o) at x. By an argument similar to (17), we see that for all points x ∈ X and r ∈ (0, π] we have µ g (B r (x)) = H n (B r (x)) ≥ (1 -ˆ n )ω n r n . By rescaling the metric by a factor r -2 and by letting r go to zero, (X, r -2 g, H n , x) pmGH-converges to the tangent cone (C(S x ), ds 2 +s 2 h x , H n , o). As a consequence, we have

H n (B 1 (o)) ≥ (1-ˆ n )ω n . Since µ hx (S x ) = nH n (B 1 (o)), we obtain µ hx (S x ) ≥ (1 -ˆ n )H n-1 (S n-1 ) ≥ (1 -ˆ n-1 )H n-1 (S n-1 ).
On the other hand, by Lemma 3.2, we also know that (S x , h x ) is a compact stratified space of dimension (n -1) with Ric hx ≡ (n -2) on its regular set. Moreover, since Σ n-2 (X) = ∅, Lemma 3.1 ensures that S x does not have any singular stratum of codimension 2. Then by the assumption on the induction, (S x , d hx ) is isometric to the round sphere (S n-1 , d S n-1 ). As a consequence we have proven that for any x ∈ X, x is a regular point. This proves that X sing = ∅, thus (X, g) is a smooth Riemannian manifold. By definition of n , (X, d g ) is isometric to (S n , d S n ).

Remark 3.4. In the theorem above the assumption Σ n-2 (X) = ∅ is essential. Consider for all a ∈ (0, 1), the (n -2)-spherical suspension of S 1 (a) := (S 1 , a 2 dθ 2 ) defined by: X = 0, π 2 × S n-2 × S 1 (a), endowed with the double warped product metric g as in (20). (X, g) is a compact n-dimensional stratified space with the iterated edge metric g and Ric g ≡ (n -1) on X reg and a non-empty, codimension 2 singular stratum given by {π/2} × S n-2 × S 1 (a). If the angle α = 2πa along Σ n-2 (X) is close to 2π, then the volume of X is close to the one of S n , but (X, g) cannot be isometric to (S n , d S n ) because of its singular stratum of codimension 2.

We now consider stratified spaces that are not necessarily compact. Note that even in this case tangent spheres are compact stratified space defined as above, and Lemmas 3.1 and 3.2 still hold. In presence of a codimension 2 stratum and a two-side Ricci bound, the previous theorem allows us to obtain the following: Corollary 3.5. For all n ∈ N ≥2 there exists a positive constant n > 0 such that the following holds. Let (X, g) be an n-dimensional stratified space endowed with an iterated edge metric g such that Ric g is two-side bounded on the regular set of X. If a point x ∈ X satisfies lim r→0 + µ g (B r (x))

ω n r n ≥ 1n , then either x belongs to X reg , or x ∈ Σ n-2 (X) and α x ≥ 2π(1n ).

Proof. Fix n as in Theorem 3.3 and assume that

lim r→0 + µ g (B r (x)) ω n r n ≥ 1 -n . (21) 
If x belongs to Σ n-2 (X), thanks to the definition of the tangent sphere and its metric we know that lim r→0 + µ g (B r (x))

ω n r n = α x 2π .
Therefore if (21) holds, we obtain α x ≥ 2π(1n ). Consider a point x ∈ X \ Σ n-2 (X). Observe that the tangent sphere (S x , h x ) at x is a compact stratified space of dimension (n -1), and with the same argument as in Lemma 3.2, the metric h x satisfies Ric hx ≡ (n -2). Moreover, since x does not belong to Σ n-2 (X), Lemma 3.1 can be easily adapted to show that S x does not carry any singular stratum of codimension 2. By the same argument as in the previous theorem, letting r go to zero in (B r (x), r -2 g, x) leads to the volume estimate H n (B 1 (o)) ≥ (1n )ω n and as above we obtain: µ hx (S x ) ≥ (1n )H n-1 (S n-1 ).

As a consequence, Theorem 3.3 applied to S x shows that the tangent sphere at x is isometric to S n-1 and x belongs to the regular set.

Remark 3.6. In Corollary 3.5 the assumption on two side bounds on the Ricci curvature on the regular set is essential because for any n ∈ N ≥3 , taking r ∈ (0, 1) which is sufficiently close to 1, let us consider a compact n-dimensional stratified space X := [0, π] × S n-1 with the warped product metric g = dϕ 2 + sin 2 (ϕ)r 2 g S n-1 . Then it satisfies

• for all x ∈ X, lim t→0 + µg(Bt(x)) ωnt n is close to 1; • Ric g ≥ n -1 on the regular set;

• there is no upper bound on Ric g .

In this case, all singular points of X belongs to Σ 0 (X).

  The proof is same as the one of [ChC97, Prop.1.35]. Thus the kdimensional regular set is a purely metric notion in this sense. The following theorem is proved in [BS18, Thm.0.1] (after [MN19, Cor.1.2]). It generalizes a result of [CN12, Thm.1.18] to RCD spaces and allows one to define a unique essential dimension for a RCD space.