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Abstract 

Lightning stroke on aircrafts induce high current levels in 

aeronautic assemblies which electrical resistance is mainly 

concentrated in the contact interfaces between the different 

parts. As a consequence, the maximum Joule effects, electric 

fields, and hence sparking probabilities take place in the 

electric contacts of the aeronautic assemblies [1]. Being able 

to predict the behaviour of electric contacts under high 

current levels is then necessary to provide a better 

understanding on sparking and out-gassing phenomena 

induced by lightning stroke on aeronautic structures. The 

present work addresses the modelling at the microscopic scale 

of such electric contacts under high current levels, through a 

simplified geometric and physical description. 2D 

axisymmetric and 3D finite volume simulations are used to 

study simplified contact geometries and examine the current 

distribution dynamics, temperature increase, and phase 

transitions. Finally, a simple pseudo-analytical model is 

proposed that enables parametric studies on more complex 

and realistic electric contacts. 

1 Introduction 

The contact resistance between two conducting surfaces is a 

consequence of the constriction of the current lines as they 

cross the spots, so-called “a-spots” in the literature, where 

roughness micro-peaks of one surface meet those of the 

mating surface, as shown on Figure 1 (partly taken from [2]).  

 
Figure 1 – Schematics of an electric contact between two surfaces 

on a microscopic scale [2]: three a-spots represented. 

 

An electric contact then consists in a distribution of many a-

spots in parallel, each one characterized by a constriction 

radius a of a few micrometres. To be able to study a realistic 

distribution of a-spots, a model for a single a-spot is then 

needed. In the first part of this study, the current distribution 

through a single a-spot is modelled via a 2D axisymmetric 

finite volume method. The electrical resistance of a single 

spot is then compared with the values obtained in the 

literature by analytical approaches. Then, the distribution of 

the current density and Joule heating in the spot is 

emphasized as well as thermal diffusion and phase transitions 

as the solid metal is heated up at temperatures higher than 

melting and boiling points. In the second part, the 

electrostatic interaction between different spots is addressed 

by means of 3D finite volume simulations. Based on these 

results, a simple pseudo-analytic model is finally derived in 

the third part of this work. It makes it possible to study the 

current distribution and contact resistance evolution of a 

cluster of many a-spots in parallel, more representative of a 

real contact.  It is able to simulate the complete vaporization 

of the smallest a-spots, and the redistribution of the current 

from the destroyed spots to the largest ones. A parametric 

study is conducted with this contact model and a strong 

emphasis is placed on the effect of the initial spot distribution 

for a given contact resistance. 

2 Single a-spot model 

The resistance of a single a-spot can be seen as the resistance 

Rc (Ω) of a constriction of radius a between two cylinders of 

radius b (see Figure 1). Rc can be approximated by the widely 

used Holm’s formula (1), where σ is the conductivity of the 

material (S m
-1

) [3]. 

𝑅c =
1

2𝜎𝑎
 

 
(1) 

This simple formula relies on the hypothesis that the 

constriction is axisymmetric with a zero thickness (l = 0 on 

Figure 1) and with perfectly spherical isopotential lines at 

infinity, which means that the radius b must fulfil b ≫ a. 

According to (1), the resistance of many such constrictions in 

parallel corresponds to the resistance of a single equivalent 

constriction with a radius equal to ∑a, the sum of all the radii 

of the constrictions. In Holm’s Theory, a distribution of many 

a-spots in an electric contact is then modelled by a single 

equivalent a-spot with radius ∑a. On Figure 2, the black 

curve shows the evolution of this constriction resistance with 

radius according to Holm’s formula in the range 20 - 200 µm 

for an Al-Al contact (σ = 10
7
 S m

-1
). Moreover, for a single 

constriction, Holm’s theory gives the norm j of the current 

density vector j (A m
-2

) in the constriction (2):  

 

 𝑗(𝑟) =
𝐼

2𝜋𝑎

1

√𝑎2 − 𝑟2
 (2) 

 

I (A) is the total current flowing in the constriction and r the 

distance from the symmetry axis. Assuming a constant 
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temperature in the constriction and isotherms parallel to the 

isopotential lines, stationary solutions of the Fourier’s law 

with Joule effect have been obtained that make it possible to 

compute the maximum temperature in the contact as a 

function of the potential difference, as for example the so-

called φ-θ relation [3]. However, equation (2) gives an 

infinite current density at the periphery of the a-spot (r = a), 

which is a direct consequence of the idealized zero thickness 

hypothesis for the constriction, and reveals the limits of 

Holm’s model. It is then not possible to compute a realistic 

unsteady current, Joule heating, and temperature distribution 

within Holm’s theory. For this purpose, 2D axisymmetric 

finite volume simulations have been performed. The 

geometry consists in a single 2D axisymmetric constriction in 

cylindrical coordinates (r , z), with a thickness l = 80 µm, and 

a radius a varying in the range 20-200 µm. Figure 3 is a 

closed view of the a-spot geometry for a radius a = 200 µm, 

and b = 2 mm. The electrostatic current conservation equation 

(3) is solved thanks to the SuperLU solver [4], where φ is the 

electric potential (V): 

 

 𝜵 ∙ 𝒋 = −𝜵 ∙ 𝜎 𝜵𝜑 = 0 (3) 

 

Dirichlet boundary conditions are imposed on the top and 

bottom boundaries in z = +/- 2 mm respectively to ensure a 

current setpoint, and a Neumann boundary is imposed at 

r = 2 mm. On Figure 2, the simulation results (orange curve 

Rs) are compared with Holm’s formula (black curve Rc). In 

both cases the resistance decreases as the radius of the spot 

increases but an important difference remains. This difference 

is mainly due to the non-zero thickness l of the simulated 

spot, which resistance Ra is the association in series of two 

different resistances (4): A constriction resistance Rc, given 

by (1), and the resistance Rcyl of a cylinder of radius a and 

thickness l, given by (5):  

𝑅𝑎 = 𝑅c + 𝑅cyl (4) 

𝑅𝑐𝑦𝑙 =
𝑙

𝜎 π 𝑎2
 (5) 

 

 
Figure 2 - Resistance of an a-spot as a function of its radius a:  

2D-axisymetric simulations (Rs) and Holm’s theory (Rc) 

 

Because Rcyl is proportional to a-2, while Rc is proportional to 

a-1
, its contribution to the total resistance Ra is dominant for 

small radii, as shown on Figure 2 (red curve). Then, a very 

good agreement is found between the numerical results and 

equation (4). Figure 3 shows the current streamlines and the 

2D current density distribution inside the spot of radius 

a = 200 µm subject to a D-wave current (I = 100 kA at 

t = 3 µs) at the very beginning of the wave (t = 0.1 µs, 

I = 13 kA). Qualitatively, a good agreement is obtained with 

Holm’s equation (2) with a current density in the constriction 

increasing with the radial position r, and a maximum with a 

sharp gradient on the rim of the spot. It appears from the 

different simulations performed in this study that this is a 

quite general geometric effect that barely depends on the 

exact geometry of the spot. Then the Joule effect −𝒋 ∙ 𝜵𝜑 

(W m
-3

) may be computed, and used as a source term in the 

energy conservation equation  (6), where e is the volume 

internal energy (J m
-3

), λ the thermal conductivity 

(W m
-1

 K
-1

), and T the temperature ( K ).  

 

 𝜕𝑡  𝑒 =  −𝒋 ∙ 𝜵𝜑 + 𝜵 ∙ 𝜆𝜵𝑇 (6) 

 𝑒 =  ∫ 𝜌𝑐v(𝑇)𝑇𝑑𝑇 +
𝑇

𝑇0

𝜌( (𝑌l + 𝑌g)𝐿f + 𝑌g𝐿v ) (7) 

The volume internal energy is given by equation (7), where T0 

is the room temperature, ρ is the density (kg m
-3

), cv the 

specific thermal capacity at constant volume (J kg
-1

 K
-1

), Yl 

(resp. Yg) the mass fraction of liquid (resp. gaseous) metal and 

Lf (resp. Lv) the fusion (resp. vaporization) latent specific heat 

(J kg
-1

). Equation (7) has been tabulated, and equations (3) 

and (6) are coupled by an explicit temporal scheme. This 

system of equations makes it possible to compute the 

evolution of the temperature as well as phase transitions. In 

order to compute the physical properties in the bi-phase 

regions, an assumption of homogeneous phase distribution is 

assumed, that results in equation (8) for the electric 

conductivity between phase 1 and phase 2 for example: 

 

 𝜎12 = 𝜌1𝑌1𝜎1 + 𝜌2𝑌2𝜎2 (8) 

 

The temperature dependent thermal capacity and thermal and 

electric conductivities of the solid metal up to the melting 

point have been obtained from references [5] and [6]. 

However, the conductivity of the metallic vapour state is 

difficult to address since in the hypothesis of isochoric 

heating the pressure may reach thousands of bars, which 

would imply a fast expansion, followed by a density decrease 

and a metal-insulator transition in the vapour, far beyond the 

scope of this study [7]. As a first step, it has been assumed 

that the metallic vapour density and conductivity decrease fast 

enough so that it does not modify significantly the current 

distribution. Then, a conductivity of 10
4
 S m

-1
, representative 

of an aluminium plasma at atmospheric pressure has been 

considered for the gaseous phase [8]. This conductivity being 

much smaller than the conductivity of the solid phase 

(~10
7
 S m

-1
), no current flows through the gaseous phase and 

the vaporization of the metal of the a-spot increases its 

electric resistance. Because of the imposed total current 

flowing through the a-spot, the resistance increase due to 

vaporization results in a very fast increase of the Joule 

heating, the temperature, and then the vaporization rate itself. 

This thermo-electrical instability first takes place where 
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current density and Joule heating are the most important, 

which means on the rim of the a-spot. As a consequence, the 

vaporization dynamics results in a decrease with time of the 

conducting radius of the spot, defined as the radius separating 

the liquid phase from the gaseous phase. This important 

phenomenon can be observed on Figure 4: the current density 

is shown for the same spot and current waveform as on Figure 

3, but at t = 0.7 µs, just after the beginning of the 

vaporization. The current density maximum is always off-

axis, but not attached to the rim of the spot and closer to the 

centre, due to the radius decrease.      

 

 
Figure 3: Current density distribution in a a-spot at the beginning of 

a D-wave current (t = 0.1 µs). a = 200 µm, r = 2 mm, l = 80 µm. 

 

 
Figure 4: Current density distribution in a 200 µm a-spot at the 

beginning of vaporization (t = 0.7 µs) for a D-wave.   

 

3 Multi-spot interaction 

The response of a single a-spot to high current levels is 

closely related to the spatial distribution of the current 

density and the Joule effect. Then the question arises if 

the distribution of current density inside a-spots can be 

significantly modified by the presence of other spots in 

its neighbourhood. If the a-spots are very distant from 

each other relatively to their size, they can be 

considered as well separated from each other, and the 

Holm’s theory is valid. On the contrary, if they are close 

enough, the current lines going through them will 

interfere. According to the Greenwood formula (9) [9], 

this interaction results in an additional term in the 

Holm’s resistance formula (1) for an electric contact 

with n spots: 

 𝑅𝑐 =
1

2𝜎 ∑ 𝑎𝑖
𝑛
𝑖=1

+
1

𝜋𝑛2
∑ ∑

1

𝑠𝑖𝑗

𝑛

𝑗,𝑗≠𝑖

𝑛

𝑖=1

 (9) 

 

 

In this formula, sij (m) is the distance between a-spots i and j 

and ai the radius of a-spot i. To study into more details this 

purely electrostatic interaction between several a-spots, 3D 

numerical simulations have been performed with 

Code_Saturne [10], the EDF’s open source CFD code, 

solving the current conservation equation (3) with a finite 

volume method. Figure 5 shows a sliced view of the current 

density and the current lines going through two a-spots in 

parallel, each spot having the same radius of 200 µm. It can 

be observed that the current lines between the two a-spots are 

influencing each other, resulting in the additional interaction 

resistance of Greenwood. 

 

 
Figure 5: Sliced view of the current density flowing in two a-spots 

in parallel 
 

Figure 6 shows the evolution of the resistance as a function of 

the separating distance. It seems clear that as soon as the 

distance between the spots is higher than about 20 times their 

radii, the resistance remains constant, meaning that the 

interaction becomes negligible. Same conclusion arises 

looking at the Joule effect distribution: when the distance 

between the spots is small, the current and the Joule effect 

distributions are modified compared to the axisymmetric 

distribution of an isolated spot, with reinforcement on the 

outer edge, and a screening effect on the inner edge. This 

result has also been observed on 4-spots simulations, and it 

could have a significant influence on the thermo-electrical 

response of the contact. However, since this effect disappears 

when the distance is about two times the radius, it seems very 

unlikely to occur in a real contact, or would concern only a 

very small number of a-spots.  

 

 
Figure 6: Total resistance of a two-spots contact and Joule power 

distribution as a function of the separating distance. 
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4 Pseudo analytic model for real contacts 

 

Realistic electric contacts may consist in a large number of 

spots. It does not seem reasonable to perform detailed 

numerical simulations on such complex geometries with 

many different spatial scales. Moreover, according to 

previous results it is probably not necessary to get a realistic 

description of contacts under high current levels. The 

distribution in number, size and location of the a-spots, 

depend mainly on the mechanical load applied to the contact, 

and on the mechanical properties of the materials [2-3]. A 

mechanical model could be used to determine a realistic a-

spot distribution, as performed for example by the author of 

[11]. This kind of method will be part of further 

developments, but this study is focused on the thermo-

electrical constraints, and the initial a-spot distribution for a 

given contact is considered as an input for the simulations in 

the following. According to previous simulation results on 

multi-spot interaction, it seems reasonable to assume that all 

the a-spots are well isolated from each other. Then, if a 

current I is flowing through an electric contact, the current in 

each a-spot is known by solving a simple system of 

resistances in parallel: The current Ii going through the a-spot 

i is given by equation (10), with 𝑅𝑖 the resistance of a-spot i, 

given by equation (4). 

 

 𝐼𝑖 =
1

𝑅𝑖

(
1

∑ 1/𝑅𝑗
𝑛
𝑗=1

)  𝐼  
 

(10) 

 

To be able to take into account the complex redistribution of 

the current from vaporized a-spots to the remaining ones, it is 

important to model the fast temperature increase and phase 

transitions in the spots due to Joule heating. As shown 

previously, heating and phase transitions start on the rim of 

the spots due to geometric current concentration effects. It is 

then reasonable to consider that as soon as an a-spot reaches 

the boiling point, all the energy dissipated by Joule effect 

generates a vaporization front going from the a-spot periphery 

to its centre. The evolution of the radius ai of the a-spot i is 

then given by the following non-linear differential equation: 

 

 2π 𝑎𝑖 𝜕𝑡  𝑎𝑖 = −
𝑅𝑖(𝑎𝑖) 𝐼𝑖

2

𝐿v

 (11) 

 

A simple pseudo analytical model has been derived that 

solves the coupled equations (4), (10) and (11) with an 

explicit scheme, and considers a uniform temperature increase 

up to the boiling point with temperature dependent material 

properties (cv, σ and λ). Figure 7 shows the evolution of the 

radius of a 200 µm a-spot subject to a D-wave current. The 

results from the pseudo-analytic model are compared to the 

2D axisymmetric simulation results obtained in part 2. The 

definition of the radius of the a-spot in the 2D simulation is 

not straightforward. Contrary to the pseudo-analytic model, 

there is a bi-phase region in the volume of the a-spot in the 

2D simulations and the vaporization front is not precisely 

located. Then, 2 radii have been defined: the first radius is the 

minimum distance from the symmetry axis where the metal is 

fully vaporized, which means that the volume fraction Vg of 

the gaseous phase is equal to 1. The second radius 

corresponds to the minimum distance from axis where a bi-

phase region with Vg = 0.5 is found (half of the liquid metal is 

vaporized). Both models predict similar dynamics: the spot 

vaporization occurs very fast, in less than 0.2 µs. This is due 

to the increase of the resistance as the spot is vaporized, that 

results in an increase of the Joule effect and the vaporization 

rate. The two models seem to predict the starting of the 

vaporization at around 0.65 µs, which means at the very 

beginning of the D-wave. This is a strong indication that 

when a lightning current is flowing through an assembly with 

many electric contacts, current redistribution phenomena may 

take place on very short timescales. The differences in the 

radius evolution between the two models may be due to the 

hypothesis of vaporization front in the analytical model, but 

also to the fact that thermal conduction in 2D simulations act 

as a dissipation process that may delays the rapid collapse of 

the spot.  

 
Figure 7 : Evolution of the radius of a 200 µm a-spot subject to a 

D-wave current: pseudo-analytic model and 2D simulations.  
 

To study the behaviour of a cluster of many spots in parallel, 

several distributions have been considered that always 

correspond to a contact resistance of 0.1 mΩ. The different 

distributions differ by the number of spots Ns, and their size: 

Two kinds of distributions have been studied for the a-spots’ 

radius: constant-radius distributions, where all the spots are 

identical and uniform distributions, where radii are evenly 

distributed between two values amin and amax, computed in 

order to obtain the desired contact resistance. Table 1 

summarizes the different distributions simulated with the 

pseudo-analytic model. 

 
Id Ns amin [µm] amax [µm] 

a 1000 0.0252 5.0497 

b 100 9.736 9.736 

c 100 0.08599 17.194 

d 10 37.083 37.083 

e 2 74.853 149.706 

f 1 196.705 196.705 

Table 1: a-spot distributions considered that correspond to a 

contact resistance of 0.1 mΩ with l=80 µm. 
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Figure 8 shows the evolution of the resistance (a) and the 

vaporized volume (b) of the 0.1 mΩ contact for the different 

a-spots distributions of Table 1, and assuming that a D-wave 

current is flowing through the contact. The complexity of the 

multi-spot interaction results in very different contact 

behaviours even if the initial contact resistance is always the 

same. It appears clearly that for all the distributions the 

vaporization takes place on very short timescales, and lead to 

a fast increase of the contact resistance. More surprisingly, 

the distributions a, b, and c exhibit almost the same dynamics, 

while d, e and f differ strongly. It seems that for a given 

contact resistance, the radius range of the distribution does 

not play a significant role, while the number of spots have a 

significant influence only in the range 1 < Ns < 10. Contacts 

with small Ns seem to be able to support higher current levels, 

but they may lead to much more energetic outgassing 

phenomena at breaking point.       

 

 
Figure 8: Evolution of the resistance (a) and volume of vaporized 

metal (b) in a 0.1 mΩ contact under a D-wave current for the 

different a-spot distributions of Table 1.   

 

5 Conclusion 

Electric contacts in aeronautic assemblies consist on a 

microscopic scale in many a-spots in parallel, where the 

current density and the Joule effect may become very 

important under lightning stroke conditions, leading to intense 

heating and metal vaporization. 2D numerical simulations on 

single a-spots under high currents have revealed that as soon 

as the vaporization of the metal takes place, the conducting 

radius of the a-spot decreases very fast due to a thermo-

electrical instability. On the other hand, 3D numerical 

simulations strongly suggest that electrostatic interactions 

between the a-spots of a given contact have a negligible 

influence, and that it can be neglected for practical 

applications. Then, a simple pseudo-analytic model has been 

derived that successfully mimic the behaviour of individual a-

spots, and makes it possible to consider realistic contacts with 

many a-spots in parallel. The evolution of the total contact 

resistance has been studied against different a-spots 

distributions for a given contact initial resistance. The number 

of a-spots Ns seems to have an influence when small (Ns <10), 

but no significant influence has been observed for higher 

values. This is a first prediction of the model that could be 

compared with experimental studies in the future. This model 

also allows us to predict the redistribution of the current in 

complex assemblies taking into account the non-linear effects 

occurring at high current levels. Moreover, it is able to 

compute macroscopic parameters, such as the electric-field, 

the energy dissipated in the contact, or the amount of metallic 

vapour produced, that could be of great interest regarding 

sparking and outgassing phenomena in aeronautic assemblies 

subject to lightning stroke.        
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