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Abstract. In this paper, we propose a fast automatic method that seg-
ments left atrial cavity from 3D GE-MRIs without any manual assis-
tance, using a fully convolutional network (FCN) and transfer learning.
This FCN is the base network of VGG-16, pre-trained on ImageNet for
natural image classification, and fine tuned with the training dataset
of the MICCAI 2018 Atrial Segmentation Challenge. It relies on the
”pseudo-3D” method published at ICIP 2017, which allows for segment-
ing objects from 2D color images which contain 3D information of MRI
volumes. For each nth slice of the volume to segment, we consider three
images, corresponding to the (n − 1)th, nth, and (n + 1)th slices of the
original volume. These three gray-level 2D images are assembled to form
a 2D RGB color image (one image per channel). This image is the input
of the FCN to obtain a 2D segmentation of the nth slice. We process
all slices, then stack the results to form the 3D output segmentation.
With such a technique, the segmentation of the left atrial cavity on a 3D
volume takes only a few seconds. We obtain a Dice score of 0.92 both on
the training set in our experiments before the challenge, and on the test
set of the challenge.

Keywords: 3D heart MRI · atrial segmentation · fully convolutional
network.

1 Introduction

Motivation. Atrial fibrillation (AF) is the most common heart rhythm disease,
corresponding with the activation of an electrical substrate within the atrial
myocardium. AF is already an endemic disease, and its prevalence is soaring, due
to both an increasing incidence of the arrhythmia and an age-related increase
in its prevalence [3, 10, 18]. Indeed, 1–2% of the population suffer from AF at
present, and the number of affected individuals is expected to double or triple
within the next two to three decades both in Europe and in the USA [5].

Due to the limited effects of anti-arrhythmic drugs, AF can only be cured
by percutaneous radiofrequency catheter ablation (CA) targeting triggers and



critical areas responsible for AF perpetuation in left atrium (LA). Identification
and quantification of AF electrical substrate prior to AF ablation remains an
unsolved issue as the number of targets remains unpredictable using clinical
criterias. AF CA is still a challenging intervention requiring a perioperative 3D
mapping to identify AF substrate to select the best ablation strategy [5].

Exploration of LA substrate has suggested that AF may be a self-perpetuating
disease with a voltage or electrogram (EGM) amplitude reduction which is an
indicator of the severity of tissue corresponding with collagen deposition in the
myocardial interstitial space. Non-invasive assessment of myocardial fibrosis has
proved useful as a diagnostic, prognostic, and therapeutic tool to understand
and reverse AF [3, 18]. Visualization and quantification of gadolinium in late
gadolinium-enhanced cardiac magnetic resonance (LGE-CMR) sequences esti-
mate the extracellular matrix volume and have been used as a LA fibrosis sur-
rogate, and over the last years, several groups tested the ability of LGE-CMR
to detect pre-existing fibrosis [1, 10].

Although these reports suggested that the extent of fibrosis may predict re-
currences after ablation procedures, the lack of 3D automated LA reconstruction,
the lack of reference values for normality has prompted the publication of sev-
eral image acquisition and post-processing protocols and thresholds to identify
fibrosis, eventually limiting the external validation and reproducibility of this
technique [9, 11, 13]. Last, let us note that, because of these technical limits,
the assessment of LA fibrosis has not yet been widely adopted in the clinical
practice [2].

Context. The method presented in this paper has been developed in the context
of the MICCAI 2018 Atrial Segmentation Challenge4. The aim was to provide
a fully automated pipeline for the segmentation of the LA cavity from 3D GE-
MRIs without any manual assistance.

Despite the relevance of LA segmentation on GE-MRIs, this task remains
manual, tedious and user-dependant. This segmentation is challenging due to
the low contrast between atrial tissue and background. The development of an
algorithm that can perform fully automatic atrial segmentation for the LA cav-
ity, reconstruct and visualize the atrial structure for clinical usage would be an
important improvement for patients and practitioners.

We received 100 volumes with associated masks to develop our method. A
set of 25 new volumes, released 2 weeks before the end of the challenge, has
been used to evaluate our method by comparing our segmentation results with
the manual segmented masks (these masks will not be released). This challenge
will establish a fair comparison to state-of-the-art methods, while providing the
community with a large dataset of 3D GE-MRI heart images.

Main related work. As machine learning really improved the results of some
segmentation tasks, the use of such strategy seems meaningful in the context
of medical image segmentation. In a work published in the IEEE Intl. Conf.

4 http://atriaseg2018.cardiacatlas.org/

http://atriaseg2018.cardiacatlas.org/
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Fig. 1. Illustration of the main idea used in [15]: a segmentation of a 3D medical image
is performed on a set of 2D color images. For the nth slice, a 2D color image (middle)
is formed from the triplet of slices n− 1, n, n + 1 (left) of the original volume, and the
segmentation (right) is performed on this 2D color image. Actually, such a 2D image
contains 3D information thanks to the 3 color channels (R, G, B); so, this approach is
called “pseudo-3D”.

on Image Processing (ICIP) in 2017 [15], 3D brain MR volumes are segmented
using fully convolutional network (FCN) and transfer learning. The network used
for transfer learning is VGG (Visual Geometry Group) [14], pre-trained on the
ImageNet dataset. It takes as input a 2D color image, formed from 3 consecutive
slices of the 3D volume (see Fig. 1). Thus, we have a 2D image containing 3D
information; this approach is called “pseudo-3D”. This method only relies on
a single modality, and obtains good results for brain segmentation. For the left
atrial segmentation challenge, we use the same approach, leveraging the power of
a fully convolutional network pre-trained on a large dataset and later fine-tuned
on the training set provided for the challenge.

2 Description of the Proposed Method

An overview of the proposed method is given in Fig. 2. The method is fully auto-
matic, and takes 2D color images as input. The method is very computationally
efficient, as it processes each complete scan volume in less than 2 seconds.

2.1 Pre-Processing

The study of the histograms of the training volumes shows a high variability
among the different volumes, as depicted in Figure 3(a). A clue to improve the
network results is to normalize the input volumes according to their histograms.
To that aim, for each volume, we compute the histogram of the central sub-
volume (1/4 of the pixels in all three dimensions, so containing 43 times less
voxels than the whole volume; see Figure 4(c)). Let m be the maximum gray-
level having a non-null histogram value. We requantize all voxel values using a
linear function so that the gray-level range [0,m] is mapped to [0, 255]. For our
application, the question amounts to how to prepare appropriate inputs, RGB
input images, given that a heart MR image is a 3D volume. To that aim, we
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Fig. 2. Architecture of the proposed network. We fine tune it and combine linearly fine
to coarse feature maps of the pre-trained VGG network [14]. Note that each input 2D
color image is built from the slice n and its neighbouring slices n− 1 and n + 1.

propose to stack successive 2D slices. Precisely, to form an input artificial color
image for the pre-trained network to segment the nth slice, we use the slice n of
the volume, its predecessor, the (n − 1)th slice, and its successor, the (n + 1)th

slice, as respectively the green, red and blue channels (note that the order is
not relevant). This process is depicted in Fig. 2 (left). Each 2D color image thus
forms a representation of a part (a small volume) of the MR volume.

2.2 Deep FCN for Left Atrial Segmentation

Fully convolutional network (FCN) and transfer learning has proved their ef-
ficiency for natural image segmentation [7]. The paper [15] proposed to rely
on a FCN and transfer learning to segment 3D brain MR images, although
those images are very different from natural images. As it was a success, we
adapted it to LA segmentation. We rely on the 16-layer VGG network [14],
which was pre-trained on millions of natural images of ImageNet for image clas-
sification [6]. For our application, we keep only the 4 stages of convolutional
parts called “base network”, and we discard the fully connected layers at the end
of VGG network. This base network is mainly composed of convolutional layers:
zi = wi × x + bi, Rectified Linear Unit (ReLU) layers for non-linear activation
function: f(zi) = max(0, zi), and max-pooling layers between two successive
stages, where x is the input of each convolutional layer, wi is the convolution
parameter, and bi is the bias term. The three max-pooling layers divide the base
network into four stages of fine to coarse feature maps. Inspired by the work
in [7, 8], we add specialized convolutional layers (with a 3 × 3 kernel size) with
K (e.g. K = 16) feature maps after the convolutional layers at the end of each
stage. All the specialized layers are then rescaled to the original image size, and
concatenated together. We add a last convolutional layer with kernel size 1 × 1
at the end. This last layer combine linearly the fine to coarse feature maps in



(a) Whole volume histograms

(b) Partial volume histograms

Fig. 3. (a): The histograms of the original volumes have various shapes; (b): to nor-
malize the gray-level scale of each volume, we consider the histogram of their central
sub-volume (in orange; see also Fig. 4(c)), which has the same dynamic than the one
of the left atrial region given by the ground-truth (in green).

the concatenated specialized layers, and provide the final segmentation result.
The proposed network architecture is schematized in Fig. 2.

The architecture described above is very similar with the one used in [8]
for retinal image analysis, where the retinal images are already 2D color images.
Using such a 2D representation avoids the expensive computational and memory
requirements of fully 3D FCN.

For the training phase, we use the multinomial logistic loss function for a one-
of-many classification task, passing real-valued predictions through a softmax to
get a probability distribution over classes. We rely on the ADAM optimization
procedure [4] (AMSGrad variant [12]) to minimize the loss of the network. The
relevant parameters of the methods are the following: the learning rate is set to
0.002 (we did not use learning rate decay), the beta 1 and beta 2 are repectively
set to 0.9 and 0.999, and we use a fuzz factor (epsilon) of 0.001. Each batch
is composed of 12 centered images (for each channel we subtract 127 to values
to ensure that input values are within the [−127, 127] range). We trained the
network for 10 epochs.

At test time, after having pre-processed the 3D volume (requantization), we
prepare the set of 2D color images. Then we subtract 127 for each channel, and
pass every image through the network.

We run the train and test phases on an NVIDIA GPU card. The training
phase lasts about 50min, while the testing lasts less than 2 seconds, 1.78 second
in average. These reasonable computational times allow a re-training if new scans
are available, and allow clinical use. To this running time, 1 second is added for
pre- and post-processing.
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Fig. 4. The yellow box in (a) depicts the sub-volume used for the gray-level normal-
ization stage, and the red box depicts the boundary of the cropped input image. Three
successive cropped slices (b-d) are used to build a 2D color image (e).

2.3 Post-processing

The output of the network for one slice during the inference phase is a 2D seg-
mented slice. After treating all the slices of the volume, all the segmented slices
are stacked to recover a 3D volume with the same shape as the initial volume,
and containing only the segmented lesions. We clean up the segmentation keep-
ing only the largest component. We regularized the 3D segmentation result using
a 5x5 median filter in the sagittal axis. This step smoothes the segmentation and
erases potential inconsistencies.

3 Experiments and Results

3.1 Experiments and results for the training phase

To experiment, we only relied on the 100 training scans provided by the chal-
lenge.

Our model has been trained on 80 scans, chosen randomly, using the param-
eters described in the previous section. Then we have tested our model on the
20 remaining scans. This procedure have been repeated 5 times to cross-validate
the results.

Our preliminary results on the training dataset without any normalization
showed a dice score of 0.86 after 10 epochs. We performed two 5-fold. With the
help of normalization, the dice score reaches 0.9± 0.02 (under cross-validation),
after 10 epochs, and with an average of 0.92. Note that these results were ob-
tained without any training data augmentation.

The evolution of the dice score according to the number of epochs (Fig. 5)
shows that the network converges quickly and, actually, 4 epochs are enough to
reach a dice score of 0.90.

Some qualitative results can be found in Fig. 6.

3.2 Results of the challenge

Our method reaches a top rank during the challenge, with a Dice score of 0.923.
The best score was 0.932 and the second best 0.926.
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Fig. 5. Evolution of the dice score with the number of epochs.

Fig. 6. Examples of segmentation results. First row: superposition between our result
and GT (wrongly labeled pixels are in green); second row: an MRI slice (left) and our
segmentation superimposed over it (right).

4 Conclusion

In this article, we proposed a method to accurately segment the left atrial cavity
in few seconds based on transfer learning from VGG-16, a pre-trained network
used to classify natural images. This method takes the advantage of keeping 3D
information of the MRI volume and the speed of processing only 2D images,
thanks to the pseudo-3D concept. An entire 3D volume is processed in less than
3 seconds. We were ranked 3rd during the challenge.

This method can also deal with multi-modality, and can be applied to other
segmentation problems, such as in [17], where a similar method is proposed to
segment white matter hyperintensities, but pseudo-3D has been replaced by an
association of multimodality and mathematical morphology pre-processing to
improve the detection of small lesions. We might also try to modify our inputs



thanks to some highly non-linear filtering to help the network segment the LA,
more specifically using some mathematical morphology operators [16].

The strength of this method is its modularity and its simplicity. It is easy
to implement, fast, and does not need a huge amount of annotated data for
training (in our work on brain segmentation [15], only 2 or 4 images were used
for training).
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