
HAL Id: hal-02176414
https://hal.science/hal-02176414v1

Submitted on 8 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Image Processing Library in Modern C++: Getting
Simplicity and Efficiency with Generic Programming

Michaël Roynard, Edwin Carlinet, Thierry Géraud

To cite this version:
Michaël Roynard, Edwin Carlinet, Thierry Géraud. An Image Processing Library in Modern C++:
Getting Simplicity and Efficiency with Generic Programming. Reproducible Research in Pattern
Recognition—2nd International Workshop, RRPR 2018, Beijing, China, August 2018, Revised Se-
lected Papers, pp.121-137, 2019. �hal-02176414�

https://hal.science/hal-02176414v1
https://hal.archives-ouvertes.fr

An Image Processing Library in Modern C++:
Getting Simplicity and Efficiency with Generic

Programming

Michaël Roynard, Edwin Carlinet, and Thierry Géraud

EPITA Research and Development Laboratory
firstname.lastname@lrde.epita.fr

Abstract. As there are as many clients as many usages of an Image
Processing library, each one may expect different services from it. Some
clients may look for efficient and production-quality algorithms, some
may look for a large tool set, while others may look for extensibility and
genericity to inter-operate with their own code base. . . but in most cases,
they want a simple-to-use and stable product. For a C++ Image Pro-
cessing library designer, it is difficult to conciliate genericity, efficiency
and simplicity at the same time. Modern C++ (post 2011) brings new
features for library developers that will help designing a software solu-
tion combining those three points. In this paper, we develop a method
using these facilities to abstract the library components and augment the
genericity of the algorithms. Furthermore, this method is not specific to
image processing; it can be applied to any C++ scientific library.

Keywords: Image processing · Modern C++ · Generic programming ·
Efficiency · Simplicity · Concepts

1 Introduction

As many other numerical fields of computer science, Computer Vision and Image
Processing (IP) have to face the constantly varying form of the input data. The
data are becoming bigger and comes from a wider range of input devices: the
current issue is generally not about acquiring data, but rather about handling
and processing it (in a short time if possible. . .). In image processing, the two-
dimensional RGB model has become too restrictive to handle the whole variety of
kinds of image that comes with the variety of images fields. A non-exhaustive list
of them includes: remote sensing (satellites may produce hyperspectral images
with some thousands of bands), medical imaging, (scans may provide 3D and
3D+t volumes with several modalities), virtual reality (RGB-D cameras used
for motion capture provide 2D/3D images with an extra 16-bits depth channel),
computational photography (some high-dynamic-range sensors produce 32-bits
images to preserve details in all ranges of the luminance). . .

These examples already highlight the need for versatility, but some more
domain-oriented applications attempt to broaden further the definition of im-
ages. For example, in digital geometry, one would define images over non-regular

Fig. 1: Watershed algorithm applied to three images having different types.

domains as graphs, meshes or hexagonal grids. The increase of image type should
not require to write several implementation of the algorithm. A single version
should be able to work on several image types. The fig. 1 illustrates this idea
with the same watershed implementation applied on an image 2D, a graph as
well as a mesh.

Tools able to handle many data representations are said to be generic. In the
particular case of a library providing a set of routines, genericity means that the
routines can be applied to a variety of inputs (as opposed to specific routines
that support inputs of unique predefined type). As an example, consider the
morphological dilation that takes two inputs: an image and a flat structuring
element (SE). Then, the set of some possible inputs is depicted in fig. 2. Note
that in this example, the image is already a type product between the underlying
structure kind and the value kind. Let s be the number of structures, v the
number of types of values, and k the number of structuring elements. With no
generalization, one would have to write s× v × k dilation routines.

Many IP libraries have emerged, developed in many programming languages.
They all faced this problem and tried to bring solutions, some of which are
reviewed in section 2. Among these solutions, we see that generic programming
is good starting point [15] to design a generic library but still has many problem.
In particular, we focus on the case of Milena [22, 16], a generic pre-modern
C++ IP libray and its shortcomings that led to the design of Pylena [5]. The
work presented in this paper contrasts with the previous works on obtaining
genericity for mathematical morphology operators [8, 21] and digital topology
operators [23].

In section 3, we present this new generic design, that emerged with the evo-
lution of the Modern C++ and allowed solving some Milena’s shortcomings.
Not only does this new design re-conciliate simplicity and performance, but it
also promotes extensibility as it enables easily creating custom image types as
those shown in section 3.5.

SE

Ball

Diamond

. . .

Square

... Image

16-bits
gray 2D

24-bits
RGB 2D

double
gray 3D

(a)

SE

Ball

Diamond

Square

Structure

2D-buffer 3D-buffer graph

Values

16-bits int

double

8-bits RGB

Possible uses of the dila-
tion with a square SE.

(b)

Fig. 2: The space of possible implementation of the dilation(image, se) routine.
The image axis shown in (a) is in-fact multidimensional and should be considered
2D as in (b).

2 Bringing genericity in IP libraries: solutions and
problems

Generic programming aims at providing more flexibility to programs. It is itself a
very generic term that means different things to different people. It may refer to
parametric polymorphism (which is the common sense in C++), but it may also
refer to data abstraction and reflection /meta-programming [17]. The accordance
on a strict definition of generic programming is not our objective, but we can
observe a manifestation of the generic programming : a parametrization of the
routines to augment flexibility.

To tackle the problem of a generic dilation from the introduction, several
programming techniques have been reviewed by Levillain et al. [24], Géraud [13].
We discuss these techniques w.r.t. some criteria: usability (simplicity from the
end-user), maintainability (simplicity from the library developer stand-point),
run-time availability (running routines on images whose kind is unknown until
run-time), efficiency (speed and binary size tradeoff).

Ad-hoc polymorphism and exhaustivity The straightforward brute-force
solution is the one that enumerates every combination of parameters. This means
one implementation for each couple (‘image‘ kind, ‘structuring element‘ kind)
and involves much code duplication. Both run-time or compile-time selection of
the implementation are possible depending on the parametrization. If the kind
of parameters are known at compile time (through their type), routine overload
selection is automatically done by the compiler. On the contrary, if the kind
of parameters are knwown at run-time (or if the language does not support
overloading, the user has to select the right implementation by hand (a manual
dispatch) as illustrated below:
// Static parametrization
auto dilate(image2d<uint8>, square) -> image2d<uint8>;

...
auto dilate(image_graph<rgb8>, ball) -> image_graph<rgb8>;

// Dynamic parametrization
auto dilate(any_image img, any_se se)
{

switch ((img.structure_kind, img.value_kind, se.se_kind))
{
case (BUFFER2D, UINT8, SQUARE): return dilate((image2d<uint8>)img, (square) se);
...
case (GRAPH, RGB8, BALL): return dilate((image_graph<rgb8>)img, (rgb8) se);
}

}

Such a strategy is simple and efficient as the best implementation is written
for each case. However it cannot scale, as any addition of a new kind (either a
SE, a structure or a value type) would require duplicating many routines and
lead to maintenance issues that is why no IP library has chosen such a strategy.

Generalization A second approach is to generalize to the greatest common
type (a type to rule them all) instead of augmenting their number. For example,
one can consider that all value types are double since uint8, int16, . . . can
roughly be represented by double as in MegaWave [10]. Even, if a library
supports different value kinds for images, it is also common to use an adapter
that performs a value conversion before calling a specific routine with the most
general type. OpenCV [4] uses such an approach where one has to adapt his
value types from one routine to another, which makes it painful to extend due
to the wide variety of types and algorithms that this library has to offer. Dynamic
data analysis framework as Matlab, Octave, Numpy/SciPy have many routines
implemented for a single value type and convert their input if it does not fit the
required type. The major drawback to this approach is a performance penalty
due to conversions and processing on larger type.

Structures can also be generalized to a certain extent. In the image processing
library CImg, all images are 3-dimensional with an arbitrary number of chan-
nels. It leads to an interface where users can write ima(x,y,z,channel) even if
the image has a single dimension. There are three drawbacks to this approach:
the number of dimensions is bounded (cannot handle 3D+t for example), the
interface allows the image to be used incorrectly (weak type-safety), every al-
gorithm has to be written following a 4D pattern even if the image is only 2D.
Moreover, generalization of structures is not trivial when they are really different
(e.g. finding the common type between a 3D-buffer encoded image and an image
over a graph).

Inclusion & Parametric polymorphism A common conception of generic
programming relates the definitions of abstractions and template methods.

A first programming paradigm that enables such a distinction is object ori-
ented programming (OOP). In this paradigm, template methods, as defined by
[11], are general routines agnostic to the implementation details and specific
properties of a given type. A template method defines the skeleton of an algo-
rithm with customization points (calls can be redefined to our own handlers) or

we can plug our own types. Hence, template methods are polymorphic. They rely
on the abality to abstract the behavior of objects we handle. The abstraction
thus declares an interface: a set of services (generally abstract methods) which
are common to all the kinds. The concrete types have then to define abstract
methods with implementation details.

On the other hand, generic programming, in the sense of Musser and Stepanov
[25] provides another way of creating abstraction and template methods. In this
paradigm, the abstraction is replaced by a concept that defines the set of op-
erations a type must provide. OOP template methods are commonly refered as
template functions and implement the algorithm in terms of the concepts.

While similar in terms of idea, the two paradigms should not be confused. On
one hand, OOP relies on the inclusion polymorphism. A single routine (imple-
mentation) exists and supports any sub-type that inherits from the abstract type
(which is the way of defining an interface in C++). Also, the kind of entities
is not known until run-time, types are dynamic and so is the selection of the
right method. This has to be compared to generic programming that relies on
the parametric polymorphism, which is static. The kinds of entities have to be
known at compile time and a version of the template function is created for each
input types. In fig. 3, we illustrate these differences through the implementation
of the simple routine copy (dilate would require a more advanced abstraction
of an image that will be detailed in section 3). Basically, copy just has to traverse
an input image and stores the values in an output image. The way of abstracting
the traversal is done with iterators.

Run-time polymorphism offers a greater flexibility in dynamic environment,
where the types of the image to handle are not known until the execution of the
program. For example, scipy.ndimage, a python image processsing library for in-
teractive environments, uses a C-stylished version of the iterator abstraction [28]
and value abstraction given above (C-style stands for an hand-made switch dis-
patch instead of virtual methods). GEGL [1], used in GIMP, is also written in C
ans uses C-style run-time polymorphism to achieve abstraction over colors and
data buffers (e.g. to model graphs).

Nevertheless, this flexibility comes at the cost of degraded performances due
to the dynamic dispatches. On the other hand, static polymorphism provides bet-
ter performances because concrete types are known at compile time and there is
no need to resolve methods at run-time. As there is never no free lunch, perfor-
mance comes at the cost of less run-time flexibility. Moreover, since parametric
polymorphism is implemented through templates in C++, many instanciations
of the same code occur for different input types and may lead to code bloat and
large executables.

Parametric polymorphism in C++ image processing libraries Paramet-
ric polymorphism is common in many C++ IP libraries to a certain extent. Many
of them, (e.g. CImg [34], Video++ [12], ITK [19]) provide value type genericity
(e.g. image2d<T>) while a few provide a full structural genericity (DGTal [7],
GrAL [2], Milena [24], VIGRA [20], Boost.GIL [3]). To reach such a level a

�abstract class�
AnyNDImage

+ get_iterator() const : any_iterator
+ get_pixel(p : any_point) : std::any
+ set_pixel(p : any_point, v : std::any)

image2d-uint8

get_iterator() const : any_iterator
get_pixel(p : any_point) : std::any
set_pixel(p : any_point, v : std::any)

void copy(const AnyNDImage& in, AnyNDImage& out)
{

for (any_point p : in.get_iterator())
out.set_pixel(p, in.get_pixel(p));

}

(a) Dynamic, object-oriented polymor-
phism

�concept�
Image

typedef iterator
typedef value_type
typedef point_type

get_iterator() const : iterator
get_pixel (p : point_type) : value_type
set_pixel (p : point_type, v : value_type)

image2d

using iterator = iterator2d<T>
using value_type = T
using point_type = point2d

get_iterator() const : iterator2d<T>
get_pixel (p : point2d) : T
set_pixel (p : point2d, v : T)

T

template <class InImage, class OutImage>
void copy(const InImage& in, OutImage& out)
{

for (auto p : in.get_iterator())
out.set_pixel(p, in.get_pixel(p));

}

(b) Static, parametric polymorphism

Fig. 3: Comparison of the implementations of a polymorphic routine with the
object-oriented programming and generic programming paradigms

genericity, these libraries have been written in a complex C++ which remains
visible from the user standpoint. Erich Gamma [11] notice that dynamic, highly
parameterized software is harder to understand than more static software. In
particular, errors in highly templated code is hard to read and to debug because
they show up very deep in the compiler error trace.

Also, they have not been written with the modern user-friendly features that
the new C++ offers. Worst, in the case of Milena, some design choices made
in pre-C++ 11, makes the library not compatible with the current standard and
prevents usage of these new features.

Additionally, there exists other, non-library approach, such as designing a
whole new DSL (Domain Specific Language) to reach a specific goal. For in-
stance, Halide [29] chose this approach to fully focus on the underlying generated
code to optimize it for vectorization, parallelism and data locality. Unfortunately
this implies trade-offs on genericity and interoperability as we are not dealing
with native C++ anymore.

3 C++ Generic Programming and Concepts

C++ is a multi-paradigm language that enables the developer to write code that
can be object oriented, procedural, functional and generic. However, there were
limitations that were mostly due to the backward compatibility constraint as
well as the zero-cost abstraction principle. In particular the generic programming
paradigm is provided by the template metaprogramming machinery which can
be rather obscure and error-prone. Furthermore, when the code is incorrect,
due to the nature of templates (and the way they are specified) it is extremely
difficult for a compiler to provide a clear and useful error message. To solve this
issue, a new facility named concepts was brought to the language. It enables the
developer to constraint types: we say that the type models the concept(s). For
instance, to compare two images, a function compare would restrict its input
image types to the ones whose value type provides the comparison operator ==.

In spite of the history behind the concept checking facilities being very tur-
bulent [30, 32, 33], it will finally appear in the next standard [35] (C++20).

3.1 From algorithms to concepts

The C++ Standard Template Library (STL) is a collection of algorithms and
data structures that allow the developer to code with generic facilities. For
instance, there is a standard way to reduce a collection of elements: std::
accumulate that is agnostic to the underlying collection type. The collection
just needs to provide a facility so that it can work. This facility is called itera-
tor. All STL algorithms behave this way: the type is a template parameter so it
can be anything. What is important is how this type behaves. Some collection
requires you to define a hash functions (std::map), some requires you to set
an order on your elements (std::set) etc. This emphasis the power of gener-
icity. The most important point to remember here (and explained very early in
1988 [25]) is the answer to: “What is a generic algorithm? ”. The answer is: “An
algorithm is generic when it is expressed in the most abstract way possible”.

Later, in his book [31], Stepanov explained the design decision behind those
algorithms as well as an important notion born in the early 2000s: the concepts.
The most important point about concepts is that it constraints the behavior.
Henceforth: “It is not the types that define the concepts: it is the algorithms”.

The Image Processing and Computer Vision fields are facing this issue be-
cause there are a lot of algorithms, a lot of different kind of images and a lot of
different kind of requirements/properties for those algorithms to work. In fact,
when analyzing the algorithms, you can always extract those requirements in
the form of one or several concepts.

3.2 Rewriting an algorithm to extract a concept

Gamma correction Let us take the gamma correction algorithm as an exam-
ple. The naive way to write this algorithm can be:

1 template <class Image>
2 void gamma_correction(Image& ima, double gamma)
3 {
4 const auto gamma_corr = 1 / gamma;
5
6 for (int x = 0; x < ima.width(); ++x)
7 for (int y = 0; y < ima.height(); ++y)
8 {
9 ima(x, y).r = std::pow((255 * ima(x, y).r) / 255, gamma_corr);

10 ima(x, y).g = std::pow((255 * ima(x, y).g) / 255, gamma_corr);
11 ima(x, y).b = std::pow((255 * ima(x, y).b) / 255, gamma_corr);
12 }
13 }

This algorithm here does the job but it also makse a lot of hypothesis. Firstly,
we suppose that we can write in the image via the = operator (l.9-11): it may not
be true if the image is sourced from a generator function. Secondly, we suppose
that we have a 2D image via the double loop (l.6-7). Finally, we suppose we
are operating on 8bits range (0-255) RGB via ’.r’, ’.g’, ’.b’ (l.9-11). Those
hypothesis are unjustified. Intrinsically, all we want to say is “For each value of
ima, apply a gamma correction on it.”. Let us proceed to make this algorithm
the most generic possible by lifting those unjustified constraints one by one.

Lifting RGB constraint: First, we get rid of the 8bits color range (0-255) RGB
format requirement. The loops become:

using value_t = typename Image::value_type;

const auto gamma_corr = 1 / gamma;
const auto max_val = std::numeric_limits<value_t>::max();

for(int x = 0; x < ima.width(); ++x)
for(int y = 0; y < ima.height(); ++y)

ima(x, y) = std::pow((max_val * ima(x, y)) / max_val, gamma_corr);

By lifting this constraint, we now require the type Image to define a nested type
Image::value_type (returned by ima(x, y)) on which std::numeric_limits
and std::pow are defined. This way the compiler will be able to check the types
at compile-time and emit warning and/or errors in case it detects incompat-
ibilities. We are also able to detect it beforehand using a static_assert for
instance.

Lifting bi-dimensional constraint: Here we need to introduce a new abstraction
layer, the pixel. A pixel is a couple (point, value). The double loop then becomes:

for (auto&& pix : ima.pixels())
pix.value() = std::pow((max_val * pix.value()) / max_val, gamma_corr);

This led to us requiring that the type Image requires to provide a method
Image::pixels() that returns something we can iterate on with a range-for
loop: this something is a Range of Pixel. This Range is required to behave like
an iterable: it is an abstraction that provides a way to browse all the elements
one by one. The Pixel is required to provide a method Pixel::value() that re-
turns a Value which is Regular (see section 3.3). Here, we use auto&& instead of
auto& to allow the existence of proxy iterator (think of vector<bool>). Indeed,
we may be iterating over a lazy-computed view 3.5.

Lifting writability constraint: Finally, the most subtle one is the requirement
about the writability of the image. This requirement can be expressed directly
via the new C++20 syntax for concepts. All we need to do is changing the
template declaration by:

template <WritableImage Image>

In practice the C++ keyword const is not enough to express the constness or
the mutability of an image. Indeed, we can have an image whose pixel values are
returned by computing cos(x+ y) (for a 2D point). Such an image type can be
instantiated as non-const in C++ but the values will not be mutable: this type
will not model the WritableImage concept.

Final version
template <WritableImage Image>
void gamma_correction(Image& ima, double gamma)
{

using value_t = typename Image::value_type;

const auto gamma_corr = 1 / gamma;
const auto max_val = numeric_limits<value_t>::max();

for (auto&& pix : ima.pixels())
pix.value() = std::pow((max_val * pix.value()) / max_val, gamma_corr);

}

When re-writing a lot of algorithms this way: lifting constraints by requiring
behavior instead, we are able to deduce what our concepts needs to be. The real
question for a concept is: “what behavior should be required? ”

Dilation algorithm To show the versatility of this approach, we will now at-
tempt to deduces the requirements necessary to write a classical dilate algorithm.
First let us start with a naive implementation:

1 template <class InputImage, class OutputImage>
2 void dilate(const InputImage& input_ima, OutputImage& output_ima)
3 {
4 assert(input_ima.height() == output_ima.height()
5 && input_ima.width() == output_ima.width());
6
7 for (int x = 2; x < input_ima.width() - 2; ++x)
8 for (int y = 2; y < input_ima.height() - 2; ++y)
9 {

10 output_ima(x, y) = input_ima(x, y)
11 for (int i = x - 2; i <= x + 2; ++i)
12 for (int j = y - 2; j <= y + 2; ++j)
13 output_ima(x, y) = std::max(output_ima(x, y), input_ima(i, j));
14 }
15 }

Here we are falling into the same pitfall as for the gamma correction example:
there are a lot of unjustified hypothesis. We suppose that we have a 2D image
(l.7-8), that we can write in the output_image (l.10, 13). We also require that
the input image does not handle borders, (cf. loop index arithmetic l.7-8, 11-
12). Additionally, the structuring element is restricted to a 5× 5 window (l.11-
12) whereas we may need to dilate via, for instance, a 11 × 15 window, or a

sphere. Finally, the algorithm does not exploit any potential properties such
as the decomposability (l.11-12) to improve its efficiency. Those hypothesis are,
once again, unjustified. Intrinsically, all we want to say is “For each value of
input_ima, take the maximum of the X ×X window around and then write it
in output_ima”.

To lift those constraints, we need a way to know which kind of structuring
element matches a specific algorithm. Thus, we will pass it as a parameter.
Additionally, we are going to lift the first two constraints the same way we did
for gamma correction:

template <Image InputImage, WritableImage OutputImage, StructuringElement SE>
void dilate(const InputImage& input_ima, OutputImage& output_ima, const SE& se)
{

assert(input_ima.size() == output_ima.size());

for(auto&& [ipix, opix] : zip(input_ima.pixels(), output_ima.pixels())
{

opix.value() = ipix.value();
for (const auto& nx : se(ipix))

opix.value() = std::max(nx.value(), opix.value());
}

}

We now do not require anything except that the structuring element returns the
neighbors of a pixel. The returned value must be an iterable. In addition, this
code uses the zip utility which allows us to iterate over two ranges at the same
time. Finally, this way of writing the algorithm allows us to delegate the issue
about the border handling to the neighborhood machinery. Henceforth, we will
not address this specific point deeper in this paper.

3.3 Concept definition

The more algorithms we analyze to extract their requirements, the clearer the
concepts become. They are slowly appearing. Let us now attempt to formalize
them. The formalization of the concept Image from the information and require-
ments we have now is shown in table 1 for the required type definitions and valid
expressions.

The concept Image does not provide a facility to write inside it. To do so, we
have refined a second concept named WritableImage that provides the necessary
facilities to write inside it. We say “WritableImage refines Image”.

The sub-concept ForwardRange can be seen as a requirement on the under-
lying type. We need to be able to browse all the pixels in a forward way. Its
concept will not be detailed here as it is very similar to concept of the same
name [27, 26] (soon in the STL). Also, in practice, the concepts described here
are incomplete. We would need to analyze several other algorithms to deduce all
the requirements so that our concepts are the most complete possible. One thing
important to note here is that to define a simple Image concept, there are al-
ready a large amount of prerequisites: Regular, Pixel and ForwardRange. Those
concepts are basic but are also tightly linked to the concept in the STL [6]. We
refer to the STL concepts as fundamental concepts. Fundamentals concepts are

Let Ima be a type that models the concept Image. Let WIma be a type that models the concept
WritableImage. Then WIma inherits all types defined for Image. Let SE be a type that models
the concept StructuringElement . Let DSE be a type that models the concept Decomposable.
Then DSE inherits all types defined for StructuringElement. Let Pix be a type that models
the concept Pixel. Then we can define:

Definition Description Requirement

Image
Ima::const_pixel_range type of the range to iterate over

all the constant pixels
models the concept

ForwardRange
Ima::pixel_type type of a pixel models the concept Pixel
Ima::value_type type of a value models the concept Regular

Writable
Image WIma::pixel_range type of the range to iterate over

all the non-constant pixels
models the concept

ForwardRange
Let cima be an instance of const Ima. Let wima be an instance of WIma. Then all the
valid expressions defined for Image are valid for WIma. Let cse be an instance of const
SE. Let cdse be an instance of const DSE. Then all the valid expressions defined for
StructuringElement are valid for const DSE Let cpix be an instance of const Pix. Then we
have the following valid expressions:

Expression Return Type Description

Image cima.pixels() Ima::const_pixel_range returns a range of constant pixels
to iterate over it

Writable
Image wima.pixels() WIma::pixel_range returns a range of pixels

to iterate over it
Structuring

Element cse(cpix) WIma::pixel_range returns a range of the neighboring
pixels to iterate over it

Decomposable cdse.decompose() implementation defined returns a range of structuring
elements to iterate over it

Table 1: Formalization of concepts.

the basic building blocks on which we work to build our own concepts. We show
the C++20 code implementing those concepts in the code below.

template <class Ima>
concept Image = requires {

typename Ima::value_type;
typename Ima::pixel_type;
typename Ima::const_pixel_range;

} && Regular<Ima::value_type>
&& ForwardRange<Ima::const_pixel_range>
&& requires(const Ima& cima) {

{ cima.pixels() }
-> Ima::const_pixel_range;

};

template <class I>
using pixel_t = typename I::pixel_type;
template <class SE, class Ima>
concept StructuringElement = Image<Ima>

&& requires(const SE& cse,
const pixel_t<Ima> cpix){

{ se(cpix) } -> Ima::const_pixel_range;
};

template <class WIma>
concept WritableImage = requires Image<WIma>

&& requires {
typename WIma::pixel_range;

} && ForwardRange<WIma::pixel_range>
&& ForwardRange<WIma::pixel_range,

WIma::pixel_type>
&& requires(WIma& wima) {

{ wima.pixels() } -> WIma::pixel_range;
};

template <class DSE, class Ima>
concept Decomposable =

StructuringElement<DSE, Ima>
&& requires(const DSE& cdse) {

{ cdse.decompose() }
-> /*impl. defined*/ ;

};

3.4 Specialization vs. Properties

Another advantage of concepts are that they allow a best match machinery over
requirement(s) met by a type. We call this mechanic the property specialization.
It allows to select the correct overload (best match machinery) when the given
template parameter satisfies the requirement(s) expressed via the concept(s).
Historically we used the template specialization mechanism to achieve the same
thing (via inheritance of specialized types and other tricks) but it came with lot of

template <class Image, class Value,
std::enable_if_t<

is_writable_image_v<Image>
&& is_value_v<Value>
&& !is_image_v<Image>>* = nullptr>

Image operator+(Image ima, Value v)
{

for (auto&& pix : ima.pixels())
pix.value() += v;

return ima;
}

template <class ImLhs, class ImRhs,
std::enable_if_t<

is_writable_image_v<ImLhs>
&& !is_value_v<ImRhs>
&& is_image_v<ImRhs>>* = nullptr>

ImLhs operator+(ImLhs lhs, const ImRhs& rhs)
{

for (auto&& [p_lhs, p_rhs] : zip(lhs, rhs))
p_lhs.value() += p_rhs.value();

return lhs;
}

template <WritableImage Ima, Value V>
Ima operator+(Ima ima, V v)
{

for (auto&& pix : ima.pixels())
pix.value() += v;

return ima;
}

template <WritableImage ImLhs, Image Rhs>
ImLhs operator+(ImLhs lhs, const Rhs& rhs)
{

for (auto&& [p_lhs, p_rhs] : zip(lhs, rhs))
p_lhs.value() += p_rhs.value();

return lhs;
}

Fig. 4: C++17 SFINAE trick vs. C++20 Concepts.

disadvantages. Those are the cost of the abstraction and indirection, the difficulty
to extend as well as to inject new type or behavior for a new user, being tied to
a type and finally, each new type needs its own new implementation. Switching
to a property-based approach with an automatic best match machinery is much
more efficient and user-friendly.

This machinery could be emulated pre-C++20 via cryptic template metapro-
gramming tricks (i.e. type-traits, SFINAE and enable_if). However, C++20
brings a way to remove the need of these need, making it widely accessible. The
code in fig. 4 shows this difference in action.
The result about which code is clearer, easier to read and less error-prone should
be obvious. The first advantage is that the compiler do the type-checking pass
early when instantiating the template instead of waiting until the overload res-
olution pass (the improper functions candidate are removed from overload res-
olution thanks to SFINAE). This directly enhances the error messages emitted
by the compiler. Instead of having a long error trace one needs to scroll down to
find the error within, the compiler will now emits the error first at the top with
the incorrect behavior requirement that does not match the concept for a given
instantiated type.

Also, in the C++17 code, with heavy metaprograming trick, informations
about function prototypes such as return type, parametric types and input types
are fuzzy and not very clear. It needs carefully designed and written user doc-
umentation to be usable by a tier. Furthermore, this documentation is often
difficult to generate and documentation generators do not help because they
have a very limited understanding of templated code. However, we can see in
the C++20 code that, with concepts, we just have two different overloads with a
single piece of information changing: the 2nd input parameter. The information
is clear and can be easily understood by documentation generators.

https://en.cppreference.com/w/cpp/header/type_traits
https://en.cppreference.com/w/cpp/language/sfinae
https://en.cppreference.com/w/cpp/types/enable_if

In addition, as concepts are working with a best-match machinery, we can
notice that it is not the case with the SFINAE tricks version. Each time you
add a new variant, every possibilities, incompatibilities and ambiguities between
all the overloads have to be manually lifted. Not doing so will lead to multiple
overloads ambiguities (or none selected at all). Also, the compiler will issue a
non-friendly error message difficult to address.

In Image Processing we are able to make use of this machinery, in particular
with a property on structuring elements: the decomposability. For reminder a
multi-dimensional structuring element is decomposable if it can be rewritten as
many simpler structuring elements.

Indeed when the structuring element window is tiny, it makes little sense
to exploit this property for efficiency. If instead of browsing the image once
while selecting 4 neighbors for each pixel, then we browse the image twice while
selecting 2 neighbors for each pixel, the difference is not relevant. However, the
more the structuring element window grows, the more neighboring pixels are
selected for each pixel. With a multi-dimensional structuring element the growth
is quadratic whereas it is linear if the structuring element is decomposed.

Henceforth, bringing the property best-match machinery with concepts as well
as this decomposable property lead us to this dilate algorithm version:

template <Image I, WritableImage O, StructuringElement SE> requires Decomposable<SE>
void dilate(const I& input, O& output, const SE& large_se)
{

auto tmp = copy(input);
for (auto&& small_se : large_se.decompose())
{

for (auto&& [ipix, opix] : zip(tmp.pixels(), output.pixels())
{

opix.val() = ipix.val();
for (auto&& nbx : small_se(ipix))

opix.val() = std::max(opix.val(), nbx.val());
}
std::swap(tmp, output);

}
std::swap(tmp, output);

}

It is much more efficient as it reduces the complexity dramatically when the
structuring element has a large selection window.

3.5 Practical genericity for efficiency: the Views

Let us introduce another key point enabled by genericity and concepts: the
Views. A View is defined by a non-owning lightweight image, inspired by the de-
sign introduced in Ranges for the Standard Library [9] proposal for non-owning
collections. A similar design is also called Morphers in Milena [21, 13]. Views
feature the following properties: cheap to copy, non-owner (does not own any
data buffer), lazy evaluation (accessing the value of a pixel may require computa-
tions) and composition. When chained, the compiler builds a tree of expressions
(or expression template as used in many scientific computing libraries such as
Eigen [18]), thus it knows at compile-time the type of the composition and en-
sures a 0-overhead at evaluation.

There are four fundamental kind of views, inspired by functional program-
ming paradigm: transform(input, f) applies the transformation f on each
pixel of the image input, filter(input, pred) keeps the pixels of input that
satisfy the predicate pred, subimage(input, domain) keeps the pixels of input
that are in the domain domain, zip(input1, input2, ..., inputn) allows to
pack several pixel of several image to iterate on them all at the same time.

Lazy-evaluation combined with the view chaining allows the user to write
clear and very efficient code whose evaluation is delayed till very last moment
as shown in the code below (see [14] for additional examples). Neither memory
allocation nor computation are performed; the image i has just recorded all the
operations required to compute its values.

image2d<rgb8> ima1 = /* ... */ ;
image2d<uint8_t> ima2 = /* ... */ ;

// Projection: project the red channel value
auto f = view::transform(ima, [](auto v) {

return v.r;
});

// Lazy-evaluation of the element-wise
// minimum
auto g = view::transform(view::zip(f, ima2),

[](auto value) {
return std::min(std::get<0>(value),

std::get<1>(value));
});

// Lazy-Filtering: keep pixels whose value
// is below < 128
auto h = view::filter(g, [] (auto value) {

return value < 128;
}));

// Lazy-evaluation of a gamma correction
using value_t = typename Image::value_type;
constexpr float gamma = 2.2f;
constexpr auto max_val =

std::numeric_limits<value_t>::max();
auto i = view::transform(h,

[gamma_corr = 1 / gamma] (auto value) {
return std::pow(value / max_val,

gamma_corr) * max_val;
});

4 Conclusion and Perspectives

Through a simple example, we have shown a step-by-step methodology to make
an algorithm generic with zero overhead 1. To reach such a level of genericity and
be able to write versatile algorithms, we had to abstract and define the most
simple and fundamental elements of the libray (e.g. image, pixel, structuring
element). We have shown that some tools of the Modern C++, such as concepts,
greatly facilitate the definition and the usage of such abstractions. These tools
enable the library designer to focus on the abstraction of the library components
and on the user-visible development. The complex template meta-programming
layer that used to be a large part of C++ generic programming is no more
inevitable. In this context, it is worth pointing out the approach is not limited
Image Processing libraries but works for any library that wants to be modernized
to augment its productivity.

As one may have noticed, the solution presented in this paper is mostly
dedicated to C++ developer and C++ end-user. Unlike dynamic environments
(such as Python), C++ is not the most appropriate language when one has to
prototype or experiment an IP solution. As a future work, we will study the
conciliation of the static genericity from C++ (where types have to be known
at compile time) with a dynamic language (with a run-time polymorphism) to
allows the interactive usage of a C++ generic library.
1 The zero-cost abstraction of our approach is not argued here but will be discussed
in an incoming paper with a comparison with the state of the art libraries

Bibliography

[1] Generic Graphic Library
[2] Berti, G.: GrAL–the grid algorithms library. Future Generation Computer Sys-

tems 22(1-2), 110–122 (2006)
[3] Bourdev, L., Jin, H.: Boost Generic Image Library. Adobe stlab (2006), available

at https://stlab.adobe.com/gil/index.html
[4] Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000)
[5] Carlinet, E., et al.: Pylena: a modern C++ image processing generic library.

EPITA Research and Developement Laboratory (2018), available at https://
gitlab.lrde.epita.fr/olena/pylene

[6] Carter, C., Niebler, E.: Standard library concepts (June 2018), https://wg21.link/
p0898r3

[7] Coeurjolly, D., Lachaud, J.O.: DGtal: Digital geometry tools and algorithms li-
brary. http://dgtal.org

[8] Darbon, J., Géraud, T., Duret-Lutz, A.: Generic implementation of morphological
image operators. In: Proc. of the 6th International Symposium of Mathematical
Morphology (ISMM). pp. 175–184. Sydney, Australia (2002)

[9] Eric Niebler, Sean Parent, A.S.: Ranges for the standard library: Revision 1 (oct
2014), https://ericniebler.github.io/std/wg21/D4128.html

[10] Froment, J.: MegaWave. In: IPOL 2012 Meeting on Image Processing Libraries
(2012)

[11] Gamma, E.: Design patterns: elements of reusable object-oriented software. Pear-
son Education India (1995)

[12] Garrigues, M., Manzanera, A.: Video++, a modern image and video processing
C++ framework. In: Conference on Design and Architectures for Signal and Image
Processing (DASIP). pp. 1–6. IEEE (2014)

[13] Géraud, T.: Outil logiciel pour le traitement d’images: Bibliothèque, paradigmes,
types et algorithmes. Habilitation thesis, Université Paris-Est (2012), in French

[14] Géraud, T., Carlinet, E.: A modern C++ library for generic and efficient image
processing. Journée du Groupe de Travail de Géométrie Discrète et Morphologie
Mathématique, Lyon, France (June 2018), https://www.lrde.epita.fr/~theo/talks/
geraud.2018.gtgdmm_talk.pdf

[15] Géraud, T., Fabre, Y., Duret-Lutz, A., Papadopoulos-Orfanos, D., Mangin, J.F.:
Obtaining genericity for image processing and pattern recognition algorithms. In:
Proc. of the 15th International Conference on Pattern Recognition (ICPR). vol. 4,
pp. 816–819. Barcelona, Spain (2000)

[16] Géraud, T., Levillain, R., Lazzara, G.: The Milena image processing library. IPOL
meeting, ENS Cachan, France (June 2012), https://www.lrde.epita.fr/~theo/
talks/geraud.2012.ipol_talk.pdf

[17] Gibbons, J.: Datatype-generic programming. Datatype-Generic Programming:
International Spring School, SSDGP 2006, Nottingham, UK, April 24-27, 2006,
Revised Lectures 4719, 1 (2007)

[18] Guennebaud, G., Jacob, B., et al.: Eigen v3. http://eigen.tuxfamily.org (2010),
available at http://eigen.tuxfamily.org

[19] Ibanez, L., Schroeder, W., Ng, L., Cates, J.: The ITK software guide (2005)
[20] Köthe, U.: Generic programming for computer vision: the VIGRA computer vision

library. Cognitive Systems Group, University of Hamburg, Germany (2003)

https://stlab.adobe.com/gil/index.html
https://gitlab.lrde.epita.fr/olena/pylene
https://gitlab.lrde.epita.fr/olena/pylene
https://wg21.link/p0898r3
https://wg21.link/p0898r3
http://dgtal.org
https://ericniebler.github.io/std/wg21/D4128.html
https://www.lrde.epita.fr/~theo/talks/geraud.2018.gtgdmm_talk.pdf
https://www.lrde.epita.fr/~theo/talks/geraud.2018.gtgdmm_talk.pdf
https://www.lrde.epita.fr/~theo/talks/geraud.2012.ipol_talk.pdf
https://www.lrde.epita.fr/~theo/talks/geraud.2012.ipol_talk.pdf
http://eigen.tuxfamily.org

[21] Levillain, R., Géraud, T., Najman, L.: Milena: Write generic morphological al-
gorithms once, run on many kinds of images. In: Wilkinson, M.H.F., Roerdink,
J.B.T.M. (eds.) Proc. of the 9th International Symposium on Mathematical Mor-
phology (ISMM). LNCS, vol. 5720, pp. 295–306. Springer Berlin / Heidelberg,
Groningen, The Netherlands (2009)

[22] Levillain, R., Géraud, T., Najman, L.: Why and how to design a generic and effi-
cient image processing framework: The case of the Milena library. In: Proceedings
of the IEEE International Conference on Image Processing (ICIP). pp. 1941–1944.
Hong Kong (September 2010)

[23] Levillain, R., Géraud, T., Najman, L.: Writing reusable digital topology algo-
rithms in a generic image processing framework. In: Köthe, U., Montanvert, A.,
Soille, P. (eds.) Applications of Discrete Geometry and Mathematical Morphol-
ogy (WADGMM) – First International Workshop. LNCS, vol. 7346, pp. 140–153.
Springer, Istanbul, Turkey (2012)

[24] Levillain, R., Géraud, T., Najman, L., Carlinet, E.: Practical genericity: Writing
image processing algorithms both reusable and efficient. In: Proc. of the 19th
Iberoamerican Congress on Pattern Recognition (CIARP). LNCS, vol. 8827, pp.
70–79. Puerto Vallarta, Mexico (2014)

[25] Musser, D.R., Stepanov, A.A.: Generic programming. In: Intl. Symp. on Symbolic
and Algebraic Computation. pp. 13–25. Springer (1988)

[26] Niebler, E., Carter, C.: Deep integration of the ranges TS (may 2018), https:
//wg21.link/p1037r0

[27] Niebler, E., Carter, C.: Merging the ranges TS (may 2018), https://wg21.link/
p0896r1

[28] Oliphant, T.E.: Multidimensional iterators in NumPy. In: Oram, A., Wilson, G.
(eds.) Beautiful code, chap. 19. O’reilly Sebastopol, CA (2007)

[29] Ragan-kelley, J., Barnes, C., Adams, A., Durand, F., Amarasinghe, S., et al.:
Halide: A language and compiler for optimizing parallelism, locality, and recom-
putation in image processing pipelines. PLDI 2013 (2013)

[30] Seymour, B.: LWG papers to re-merge into C++0x after removing concepts (jul
2009), https://wg21.link/n2929

[31] Stepanov, A., McJones, P.: Elements of Programming. Addison-Wesley Profes-
sional (June 2009)

[32] Stroustrup, B., Reis, G.D.: Concepts – Design choices for template argument
checking (oct 2003), https://wg21.link/n1522

[33] Sutton, A.: Working draft, C++ extensions for concepts (June 2017), https://
wg21.link/n4674

[34] Tschumperlé, D.: The CImg library. IPOL 2012 Meeting on Image Processing
Libraries (2012)

[35] Voutilainen, V.: Merge the concepts TS working draft into the C++20 working
draft (June 2017), https://wg21.link/p0724r0

https://wg21.link/p1037r0
https://wg21.link/p1037r0
https://wg21.link/p0896r1
https://wg21.link/p0896r1
https://wg21.link/n2929
https://wg21.link/n1522
https://wg21.link/n4674
https://wg21.link/n4674
https://wg21.link/p0724r0

	An Image Processing Library in Modern C++: Getting Simplicity and Efficiency with Generic Programming

