y 4

=== I N?A /\ﬂ/\ I S S ,

=== MIC IS = C ’.z

“=—= L \ I W
‘::' SC'ENCE & |MPACT :‘4 dh'g M orphogenesis: Simulations & Analysis ENS DE LYON INVENTEURS DU MONDE NUHERIQUE

Quantifying cell polarities in confocal images using 3D wall meshes

A computational geometry approach to the estimation of cell-interface and tissue-level polarities
in 3D stacks of co-imaged fluorescent transmembrane carriers and cell-wall markers
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Polarized auxin transport is a key process for the patterning of multicellular plant tissues

Embryo development . . . Organogenesis at the SAM Convergent PIN1
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How to quantify PIN1 polarities in the SAM at cellular level? Extraction of cell wall triangular meshes from 3D segmented image

Live-imaging of SAMs expressing fluorescent PIN1 proteins using confocal microsco A ,
Jing X 9 . X J PY 1 Labelled 3D confocal image stacks (0.2x0.2x0.6um voxels)

* Resolution cannot separate cell membranes ©.2um) “ .
. * 3D seeded watershed segmentation (Fernandez et al., 2010)

« Crescent caused by gradient often used as a clue

« Hard to know which cell the signal belongs to Compute a mesh for each anticlinal L1 cell interface

Co-image a cell wall marker for spatial reference * Marching cubes on every L1 cell (contact with background label)

« For each pair of neighbor cells, keep only common vertices
* Use the triangle subset of the left cell in the label pair
*  Apply quadric decimation and isotropic remeshing on wall mesh

Regular surface meshes within the image grid

¢t Estimate normal at each vertex of every wall mesh

* Oriented left to right according to cell label pair

Set of 3D cylinders used to sample Are there significantly different PIN1 levels between sides of a cell wall?
image signal orthogonally

At each vertex, 1D projection of image signals on a locally normal axis

elll wall mesh with « For each vertex v of the wall mesh (except on contour), cylinder centered on P, (x,y,2) /,f
vertex normals - Signed abscissa d, of the orthogonal projection of voxel on the normal vector @ )
« Distance r, of the voxel center to its projection up to cylinder radius r, < rc=1pm /
«  Keep only voxels on the 1D axis up to half-cylinder height : |d,| < dc=1.5pm "\ X
. , « Wall abscissa dy estimated using a Gaussian approximation of membrane signal "
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Estimate wall-level PIN1 polarity in 3D using the whole set of wall mesh vertex cylinders
« Compute the average intensity on each side of the wall using close voxels : |d, - dg| < d2x=0.6pm 1/ 05
« Statistical test on the two PIN1 intensity distributions to decide if they have different means : PA»B =

wall polarity vector : PIN1aA,B5 =papB |PIN1A,B — PIN1A<B| WA,B

Single polarlty vector per cell : weighted average (area) of wall vectors
«  Wall PIN1 polarity vectors are the same for cells (A » B) or (B » A)
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Estimate a tissue-level continuous vector-tield of local PIN1 polarity

« Distance-weighted average of cell polarity vectors in any point of the space
*  When computed on 2D projected L1 plane, allows to derive PIN1 convergence maps

Root apex Correct PIN2 polarity Consistent SAM PIN1 Comparison to super-resolution RQSUltS & CO“CIUSiOﬂS
= ’ in root epidermal cells | polarity at 0 1 and 0. 2pm techniques : AiryScan shietal, 2017
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\ R * Mean wall polarity distance: 0.23 e ‘ RN : A new tool for tissue scale polarity analysis
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(Grunewald et al,, 2007) ot Mean cell PIN1 vector angle: 16° ¢, | oca| differences affect cell vectors
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