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3 Abstract 

4 Sewage sludge is a phosphorus (P) source alternative to P fertiliser derived from rock 

5 phosphate, but its impact on soil processes driving P cycling in agroecosystems requires further 

6 study. In order to optimise the use of sludge for sustainable P fertilisation, we need to elucidate 

7 the drivers of P dynamics. The present study aims at determining how different sludges (heated 

8 sludge, HS and composted sludge, CS) affect soil P pools and dynamics. A field experiment 

9 was established and soil was amended either with sludge or with inorganic P (triple 

10 superphosphate, TSP). Soil samples were collected five times during a vegetation period, and 

11 analysed for Hedley P fractions, microbial P and phosphatase activity. Phosphorus dynamics in 

12 soil was strongly influenced by P concentrations in sludge. About one year after application, 

13 sludge with the highest P concentration (HS) was as effective as TSP to improve soil P 

14 availability. The P source of TSP was immediately available for plant uptake, but the high 
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15 phosphatase activity of the HS treatment evidenced that soil microorganisms released 

16 phosphatases which can hydrolyse HS-derived organic P compounds. In addition, the high 

17 content of microbial P in the HS treatment suggests that soil microorganisms assimilate P into 

18 their own biomass. By contrast, sludge with the lowest P concentration (CS) enriched primarily 

19 the weakly-soluble soil P fractions, resulting in lower P availability compared with that in the 

20 TSP treatment. Our findings suggest that both high P concentration and slow, but continuous 

21 microbial breakdown of organic P substrates derived from HS allow using this resource as an 

22 important source for plant mineral nutrition. This study stresses the need to both characterise P 

23 concentrations and P forms in sludge, prior to their application in the field.
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36 1. Introduction

37 Phosphorus (P) is a limiting nutrient for the productivity of many agroecosystems and 

38 indispensable to feed an ever-increasing human population (Filippelli, 2008; Withers et al., 

39 2015). Currently, most of the P used in chemical fertilisers is derived from phosphate rocks that 

40 are finite and located in only a few places on Earth (Edixhoven et al., 2013; Reijnders, 2014). 

41 Developing sustainable fertilisation practices based on the use of renewable resources such as 

42 P-rich waste is thus essential to ensure long-term food security (Dawson and Hilton, 2011; 

43 Houben et al., 2017). Among P-rich wastes, sewage sludge appears an excellent candidate 

44 because it represents the largest component of recycled P, and due to the world’s population 

45 growth, this reserve is expected to increase (Lwin et al., 2017). Its use in agriculture will likely 

46 increase, requiring continued vigilance in assessing the impacts of the presence of potential 

47 pollutants such as metals, organic contaminants (e.g., pharmaceuticals and personal care 

48 products), emerging contaminants, viruses and other pathogens (Clarke and Smith, 2011). Since 

49 1986, Council Directive No. 86/278/EEC has governed the use of sewage sludge in the 

50 European Union by prescribing testing of sludge and soil for a number of potential pollutants. 

51 This Directive has been implemented into the national legislation of member states, most often 

52 with stricter limits than that prescribed in the Directive (Kirchmann et al., 2017).

53 Because sewage sludge has a much lower P concentration than mineral P fertilisers, large 

54 amounts of sludge need to be transported to and applied on farms which may result in higher 

55 costs compared with mineral P fertilisers (Mackay et al., 2017a). Moreover, in contrast to 

56 conventional P fertilisers in which P is predominantly in a soluble form readily available to 

57 plants, sewage sludge contains a range of P forms with varying availability to plants (Kahiluoto 

58 et al., 2015). Phosphorus is present as a mixture of inorganic P forms including calcium (Ca) 

59 phosphates and amorphous aluminium (Al)- or iron (Fe)-bound P, while organic P generally 

60 represents a small fraction (Xie et al., 2011a). We already have solid evidence from different 
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61 laboratory studies that  the concentration of P in the soil solution, which is the form of P for 

62 plant uptake, after adding sewage sludge is controlled by the forms of P in sludge which depend 

63 on the origin and the treatment process of sludge (Frossard et al., 1996; Maguire et al., 2001). 

64 However, very little is known on changes in other soil P forms, and processes that are often 

65 driven by functional traits of plants and soil microorganisms (e.g., mycorrhizal colonisation, 

66 release of extracellular enzymes involved in P cycling) (Mackay et al., 2017b; Requejo and 

67 Eichler-Löbermann, 2014). 

68 In addition to supplying P to the plant-available soil P pool through dissolution of 

69 inorganic P and mineralisation of organic P, sludge application can also alter P dynamics in soil 

70 by modifying abiotic and biotic soil properties (Faucon et al., 2015). Like other organic 

71 amendments, the presence of sludge in soil may enhance the activity of phosphatases (Bastida 

72 et al., 2008). Phosphatases are a broad group of enzymes that catalyse the hydrolysis of organic 

73 P, leading to the release of available ortho-phosphate. Recent findings have shown that organic 

74 P, rather than available P, is the most important P fraction in regulating phosphatase activity in 

75 soil (Margalef et al., 2017). Transformation of organic P through enzymatic reactions and its 

76 subsequent potential immobilisation by microbial biomass play a fundamental role in P 

77 dynamics, and is likely affected by the source of P (Saha et al., 2008). However, although 

78 studies about the effects of sewage sludge addition on soil biological properties have been 

79 numerous, they generally focused on one type of sludge (Criquet et al., 2007) and were carried 

80 out under controlled conditions, which do not fully mimic field scenarios. As a result, the extent 

81 of biological processes involved in situ in P cycling (i.e. organic P hydrolysis, P immobilisation) 

82 under different sludge sources has not been clearly identified, and it appears difficult to 

83 generalise previous results to different types of sewage sludge applied under field conditions.

84 Given the interest in using sewage sludge for P fertilisation, it is crucial to find out how 

85 its properties mediate both chemical and microbial processes affecting P cycling in 
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86 agroecosystems. In particular, unravelling the role of sludge application in changes in soil P 

87 forms over time by characterising both chemical and microbial soil properties involved in P 

88 dynamics may shed light on the pathway of P release in sludge-amended soils. Ultimately, this 

89 knowledge helps predict the prospective P availability and establish the dose, frequency, and 

90 timing of sludge application. Therefore, this study aimed at gaining a better insight into the 

91 effects of sludge application on P lability and availability under field conditions, taking into 

92 account the impacts on soil microbial activities. We monitored shifts in soil P fractions over 

93 time (Hedley fractionation method; Tiessen and Moir, 2008) and determined phosphatase 

94 activity and microbial P in a field experiment using soil amended with two types of sewage 

95 sludge with different P concentrations. In order to estimate the potential of sludge to supply 

96 plant-available P relative to that by conventional P fertilisers, we also performed treatments 

97 with triple superphosphate (TSP). We hypothesised that i) changes in soil P availability would 

98 be driven by P composition of the sludge, and ii) sludge would increase microbial alkaline 

99 phosphatase activity, possibly resulting in higher P availability over time.

100

101 2. Materials and methods

102 2.1. Sewage sludge properties

103 Two types of sewage sludge treated in different processes were provided by the Parisian 

104 public sanitation service (Seine Aval wastewater treatment plant, SIAAP, Paris). The first 

105 sludge (hereafter called heated sewage sludge, HS) was derived from a treatment process 

106 comprising P precipitation using ferric chloride, an anaerobic digestion, followed by a 

107 dewatering by thickening and thermal conditioning (heat exchange and heating at 195° C and 

108 20 bars). The second sludge (hereafter called composted sewage sludge, CS) was treated by 

109 anaerobic digestion followed by composting. Four biochemical fractions were determined using 
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110 a modified Van Soest method (AFNOR, 2009): soluble (SOL), hemicellulose-like (HCE), 

111 cellulose-like (CEL) and lignin-like (LIG). The indicator of residual organic carbon (C), IROC, 

112 which represents the proportion of stable organic C was then calculated as (Lashermes et al., 

113 2009):

114 IROC = 44.5 + 0.5 x SOL – 0.2 x CEL + 0.7 x LIG - 2.3 x MinC3

115 where IROC, SOL, CEL and LIG are expressed in % total organic C in sludge and MinC3 is the  

116 proportion (%) of mineralised organic C during the first three days of incubation (AFNOR, 

117 2009). Organic C concentration, C/N ratio (AFNOR, 2013, 2012) and water-soluble P (WSP) 

118 concentrations (García-Albacete et al., 2012) were also determined. Phosphorus forms in 

119 sewage sludge which were determined through the SMT (Standards, Measurements and Testing 

120 programme) protocol. The SMT method is a harmonised protocol proposed by the European 

121 Commission for sequential extraction of P initially in sediments which was then extended to 

122 other materials, including sewage sludge (García-Albacete et al., 2012; Medeiros et al., 2005). 

123 Briefly, inorganic P (IP) was extracted with 1 M HCl for 16 h and residues of this extraction 

124 were calcined for 3 h at 450 °C and then again extracted with 1 M HCl for organic P (OP). Non-

125 apatite inorganic P (NAIP) associated with oxides and hydroxides of Fe, Al or Mn was extracted 

126 with 1 M NaOH for 16 h, and then some part of this extract was treated with 3.5 M HCl. The 

127 residues of this extraction were extracted for apatite P (AP) associated with Ca (Ca–P) with 1 

128 M HCl for 16 h. Total P (TP) is the sum of OP and IP. As shown in Table 1, HS contains three 

129 times more total P than CS, while AP, NAIP and OP concentrations are 2.6, 11.4 and 2.8 times 

130 greater in HS than in CS. 

131

132



7

133 2.2. Study site and experimental design 

134 A field experiment was established in September 2015 in Beauvais, North of France 

135 (49°28’N; 2°4’W). The experimental site is included in a long-term (> 20 years) cropland field 

136 with an oilseed rape – winter wheat – winter barley rotation and an organic and mineral 

137 fertilisation based on soil tests, crop requirements, and timed to crop uptake. Cattle manure (25 

138 Mg ha-1) and lime amendments were applied, respectively, every three years, and six years 

139 before this experiment. Reduced tillage (5 cm of soil deep rotary harrow) was practiced since 

140 2010. The oceanic climate is characterised by an average precipitation of 669 mm year-1. 

141 Average minimum and maximum temperatures vary from 1 to 6.7°C in winter, 5 to 14.5°C in 

142 spring, 12 to 23°C in summer and from 7.2 to 15.3°C in autumn. The studied soil was classified 

143 as a Haplic Luvisol (IUSS Working Group WRB, 2015). The soil texture was a silt loam with 

144 12% sand, 66% silt and 22% clay. The soil pHH2O was 7.53, the organic carbon concentration 

145 was 24 g kg-1 and the cation exchange capacity was 15 cmolc kg-1. Given its soil properties and 

146 long-term fertilisation and cropping history, the study site is considered representative of the 

147 agricultural areas receiving the SIAAP sludge.

148 Five treatments were tested: two sludge amendments (HS and CS) were applied at a rate 

149 of 4.78 Mg dry matter ha-1 (i.e. 7.5 Mg fresh matter ha-1), which is based on common practices 

150 of farmers who use SIAAP sludge. Two mineral controls (triple superphosphate) adding the 

151 same quantity of P as in each sludge were also included (MHS for HS and MCS for CS) as well 

152 as a control without P fertilisation (C). A randomised complete block with four replicates per 

153 treatment was used. Each plot had an area of 40 m² (10 x 4 m) as used in Gallet et al. (2003). 

154 The experimental field had an area of 1000 m². The homogeneity of soil properties within the 

155 study area was previously assessed by a topsoil (0-5 cm) sampling (20 samples collected) and 

156 chemical characterisation. Before spreading sludge, the soil was tilled with a stubble cultivator 

157 in order to make the spreading homogeneous (5 cm depth). All the treatments were carried out 
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158 on the 15th of September 2015. Then, the soil was again tilled with a harrow to incorporate the 

159 sludge following the French legislation. Winter barley (Viva, two-rowed cultivar) was sown on 

160 the 9th October 2015. Nitrogen application of 130 kg ha− 1 was based on a nitrogen balance 

161 calculation. 

162

163 2.3.  Plant sampling and analysis

164 Plants were harvested on 26th June 2016 and the crop was weighed on board of a harvester. 

165 After harvest, plants were dried at 70°C for 72 h, weighed and then ground to 250 µm prior to 

166 analysis. Phosphorus concentrations in straw and grain were determined by Inductively 

167 Coupled Plasma Mass Spectrometry (ICP-MS, Thermo Scientific XSERIES2) after digesting 

168 the dried biomass in aqua regia. Briefly, 0.2 g of plant powder was mixed with 8 mL of 

169 concentrated HNO3 and 2 mL of concentrated HCl directly in a microwave Teflon vessel 

170 (Lange et al., 2014) with a control without plant. The vessels (Easyprep 432175A, CEM 

171 µWaves) were placed in the microwave system (Mars 5, CEM Corporation, Charlotte, USA). 

172 The digestion programme consisted of a ramp time of 5 min to reach 180 °C and digestion was 

173 performed for 15 min. The power was set at 1600 W (Lange et al., 2014). The digest was then 

174 diluted to approximately 30 g (accurately weighed) and then stored until being analysed with 

175 ICP-MS.

176

177 2.4.  Soil sampling and analysis

178 Two composite soil samples were collected at the surface (0 – 10 cm) within each plot in 

179 September (before and one week after fertilisation), January (during winter), May (during 

180 spring) and July (a few days after harvesting) to characterise P fractions, Olsen-P and soil 

181 chemical properties. Subsamples were used either fresh for microbial P and alkaline 
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182 phosphatase activity (May and July) analyses or oven-dried (35°C, 48 h), crushed and sieved 

183 through a 2-mm plastic sieve. Soil pH and electrical conductivity were measured in suspensions 

184 by shaking 2 g of soil with water (1:5 ratio). The Hedley et al. (1982) sequential fractionation 

185 method as modified by Tiessen and Moir (2008) was used to fractionate soil P. This method 

186 uses a sequence of increasingly strong extractants that remove labile inorganic P (Pi) and 

187 organic P (Po) forms first, then stable P forms. Briefly, 0.5 g of air-dried soil (ground to pass 

188 through a 2 mm sieve) was successively extracted with resin strips in deionised water (plant-

189 available Pi), 0.5 M NaHCO3 (pH 8.5) (Pi and Po adsorbed onto the soil surface), 0.1 M NaOH 

190 (Pi and Po held more strongly by sorption to surfaces of Al and Fe oxides), 1 M HCl (P 

191 associated to Ca, derived from primary mineral-apatite). The last fraction (residual-P; stable Po 

192 forms and relatively insoluble Pi forms) was determined using a microwave digestion (Mars 5, 

193 CEM Corporation, USA) with aqua regia and hydrofluoric acid, EN 13 656 (Gaudino et al., 

194 2007). Labile P was considered the sum of resin-P and NaHCO3-extracted P (Cross and 

195 Schlesinger, 1995; Tiessen and Moir, 2008). The Pi concentration in the extracts was 

196 determined colourimetrically using the molybdate blue method according to Murphy and Riley 

197 (1962) at 712 nm, as recommended by Tiessen and Moir (2008) to reduce possible interference 

198 from traces of organic matter. Total P (Ptot) in the extracts was determined by ICP-MS and the 

199 concentration of Po was estimated by subtracting Pi from Ptot. In addition to Hedley’s 

200 fractionation, Olsen-P concentration was determined (Olsen, 1954).

201

202 2.5. Microbial phosphorus

203 Microbial P was determined by hexanol fumigation (Bergkemper et al., 2016) and 

204 extraction with anion-exchange membranes (VWR, 551642S). Anion-exchange membrane 

205 strips were prepared by initially shaking in 0.5 M NaHCO3. For each sample, three portions of 

206 fresh soil (2 g on a dry-weight basis) were weighed into 50 mL bottles with 30 mL deionised 
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207 water and two anion-exchange membrane strips. One bottle received 1 mL of hexanol and the 

208 samples were shaken for 16 h. The membranes were then removed and rinsed in deionised water 

209 and the phosphate (Pfumigated) recovered by shaking for 1 h in 20 mL (HCl 0.5 M). Another bottle 

210 only contained water and was treated the same way as previously (Pnon-fumigated). To determine 

211 the amount of P retained by soil particles and complexation after fumigation incubation, a 

212 defined P concentration (KH2PO4), which was equal to the measured P concentrations in 

213 fumigated subsamples, was added to additional non-fumigated, but otherwise identically treated 

214 subsamples. Phosphorus concentrations were analysed  colourimetrically (Murphy and Riley, 

215 1962) using a spectrophotometer (712 nm). The ratio of recovered P to added P was used to 

216 calculate the Pmic concentration as follows (Nassal et al., 2018):

217 � !" [µ# # ‒ 1] =  
(�%& !#'()* [µ# # ‒ 1] ‒ �+,+ ‒ %& !#'()* [µ# # ‒ 1])

(�-)",.)-)* [µ# # ‒ 1]/�'**)* [µ# # ‒ 1])

218

219 2.6.  Alkaline phosphatase activity

220 According to the pH of the soil (7.53), alkaline phosphomonoesterase (alkaline 

221 phosphatase) activity was assayed as an enzyme involved in P cycling. Alkaline phosphatase 

222 activity was assayed by the method of Tabatabai and Bremner (1969), which involves the 

223 determination of p-nitrophenol released by incubation at 37°C for 1 h of 1 g soil with 0.2 ml 

224 toluene, 4 ml universal buffer and 1 ml substrate. Sodium p-nitrophenyl phosphate was used as 

225 substrate for assay of phosphatase activities (Eivazi and Tabatabai, 1977). The quantity of p-

226 nitrophenol produced by alkaline phosphatase was measured using a spectrophotometer (410 

227 nm).

228
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229

230 2.7.  Statistical analyses

231 All recorded data were analysed using descriptive statistics (mean ± standard error) and 

232 normality was determined using the Shapiro-Wilk test.  The data were subjected to one-way 

233 ANOVA and Tukey’s post-hoc test to compare treatments, which had a normal distribution. 

234 Data without normal distribution were subjected to the Kruskall-Wallis test and Mann-Whitney 

235 post-hoc test Two-way ANOVAs were performed considering time as a fixed factor and 

236 fertilisation type as variable. All statistical analyses were performed using R software version 

237 3.5.0. (R Core Team, 2017) and the package Rcmdr (Fox, 2005).

238

239 3. Results

240 3.1. Sewage sludge properties

241 Table 1 indicates that CS and HS had a similar IROC and C/N ratio, while HS was slightly 

242 more alkaline than CS, and had a higher C concentration. For each sludge, NAIP was the 

243 predominant P form. The proportion of AP was slightly higher in HS, while the proportions of 

244 WSP and OP were similar between both sludges. More importantly, the total P concentration 

245 in HS was three times as high as that in CS, suggesting that the main difference between both 

246 sludges is not P fraction, but total P concentration.

247 3.2. Changes in labile P concentration over time

248 The effect of sludge addition on the labile P concentration (i.e. the sum of resin-P and 

249 NaHCO3-P concentration) was strongly affected by the type of sludge applied (Fig. 1). After 

250 124 days, the labile P concentration in the presence of HS was greater than that of the no-P 

251 control (C), but lower than the mineral control (MHS) (χ²= 9.85, df=2, p value<0.01). However, 
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252 after 240 days, the labile P concentration in HS was as high as that in MHS (χ²= 8.77, df=2, p 

253 value<0.05). Unlike HS, labile P concentrations in the presence of CS were similar to that of C 

254 (p > 0.05) and significantly lower (p < 0.05) than its mineral control (MCS) for the duration of 

255 the experiment (Fig. 1). Despite differences in labile P concentrations among fertilisation 

256 treatments, P concentrations and quantity in shoot (straw) and grain were not significantly 

257 different among treatments (Supplementary Fig. 1, 2, 3). 

258

259 3.3.  Phosphorus forms and microbial-P in soil

260 Among the studied forms, only HCl-P was unaffected by fertilisation treatment, while 

261 only Resin-P was unaffected by time (Table 2). NaHCO3-P, NaOH-P and residual P fractions 

262 were significantly affected by fertilisation treatment and also by time (Table 2). After 307 days 

263 (Fig. 2), HS significantly increased the NaHCO3-Pi fraction and decreased the residual-P 

264 fraction compared with MHS and C. The NaOH-Po fraction was also significantly greater in 

265 the presence of HS compared with that in the other treatments. Moreover, only HS significantly 

266 increased the concentration of microbial-P in the soil (Fig. 3). In contrast with HS, CS had no 

267 effect on P forms in soil compared with both C and its mineral control (MCS).

268

269 3.4.  Soil pH

270 Soil pH was influenced by fertilisation treatment and time (Table 2). The soil amended 

271 with MHS was significantly (p < 0.05) more acidic over the entire experimental period, while 

272 the pH did not differ significantly among the other treatments (Supplementary Fig. 4).

273

274
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275

276 3.5.  Alkaline phosphatase activity

277 Alkaline phosphatase activity was significantly increased by the application of HS while 

278 no significant difference was observed for the other treatments (Fig. 3). 

279

280 4. Discussion

281 Most of previous studies investigating the P fertiliser potential of waste products such as 

282 sewage sludge have only focused on change in available P concentration after their application, 

283 disregarding how other soil P forms are affected. Here, our findings suggest, however, that P 

284 availability may change with time due to chemically and biologically controlled shifts in soil P 

285 fractions, which are themselves mediated by P concentrations in sludge. 

286

287 4.1.  Effect of sludge on labile P concentration over time

288 Monitoring labile P concentration over time is necessary to ensure that P supplies will 

289 meet crop demand. Labile P can be continuously supplied to the soil solution, for instance, by 

290 organic P mineralisation through microbial activity and by mineral P desorption through 

291 chemical reactions (Chen et al., 2004; Sanyal and Datta, 1991). Chemical extractions have been 

292 extensively used to evaluate P lability in soils (Sharpley, 2009), even though they may be 

293 inappropriate in detecting changes produced by natural environmental soil modification such 

294 as cycles of alternating oxidation and reduction conditions (Scalenghe et al., 2014). Here, as 

295 recommended by Cross and Schlesinger (1995), we consider labile P to be the sum of resin-

296 extractable P + NaHCO3-extractable P. According to these authors, P extracted by ion exchange 

297 resins and NaHCO3 solutions represents the most likely contributors to plant-available P over 
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298 the course of a growing season, because it cycles readily through the microbial community and 

299 is made available to plant roots through a variety of chemical and biological processes. Our 

300 results reveal that HS significantly increased the labile P concentration over time (by 100% 

301 after 124 days). After 240 days, the HS treatment showed the same concentration of labile P as 

302 the mineral control (MHS). According to Huang et al. (2012), who observed an increase in P 

303 availability in sludge-amended soil after 100 days of incubation, the strong increase of labile P 

304 concentration in the presence of HS likely results from the continuous mineralisation of its large 

305 organic P pool (9.49 g kg-1). This increase in P availability with time suggests that sludge with 

306 a high organic P concentration must be regarded as a slow-release P fertiliser. This slow-release 

307 P fertiliser behaviour has also been reported by Lemming et al. (2017). The authors showed that 

308 when applying a sludge similar to HS to a soil with pH 7.8, the efficiency in terms of available 

309 P relative to TSP increased from 20% to 46% after 84 days. Since many crops have high P 

310 demands in the early stage of their life cycle (Fageria, 2016), for example wheat plants take up 

311 50-60% of their P in the first six weeks of growth (Römer and Schilling, 1986), there is a risk 

312 that the slow release of P from HS negatively impacts early plant growth. This might, however, 

313 be compensated by adding fertiliser mixtures of soluble P (e.g., TSP) and HS. In contrast with 

314 HS, CS did not influence the available P concentration. Since both sludges did not differ in their 

315 P fractions, it is likely that the much lower total P concentration in CS was the predominant 

316 driver of the lack of increase in P availability after addition to the soil (Welch et al., 2002). Due 

317 to its low total P concentration, the potential of CS to be used as a P fertiliser is thus limited, at 

318 least during the first year after its application, in such cropping systems. One possibility to 

319 mobilise the sparingly available CS-derived P might be to develop cropping systems with 

320 species having highly efficient P-acquisition strategy such as Lupinus albus L. (e.g., by 

321 intercropping it with cereals) (Hallama et al., 2019; Lambers et al., 2013). Further researches 

322 are however needed to determine to what extent this would counteract the limited P fertiliser 
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323 potential of CS. Taken together, our results indicate that the efficacy of sludge to increase P 

324 availability in soils would depend on the concentration and the forms of P added and the 

325 cropping system used. 

326 It is important to note that the lack of any improvement of P concentration and quantity 

327 in plants in spite of the increase in available P concentration in soil after the addition of HS 

328 likely results from the already high P concentrations in these soils as a result of the long-term 

329 addition of P fertiliser (Gallet et al., 2003). According to Glæsner et al. (2019), a significant 

330 increase in P uptake might be expected in the long run, as P applied with sludge remained highly 

331 plant available in the soil after long-term application.

332

333 4.2.  Phosphorus forms and concentrations in sludge influence P forms in soil

334 Interactions between P forms in sludge and P forms in soil are not fully understood so far, 

335 most studies focusing only on total and water-extractable P concentrations. As shown by other 

336 researchers using pot experiments (Frossard et al., 1996; Meyer et al., 2018; Nanzer et al., 

337 2014), our results indicate that coupling the determination of P concentration and forms in 

338 sludge is, however, essential. Indeed, depending on total P concentration, P forms in sludge 

339 drive P distribution in various soil pools, which, in turn, impact P availability. By contrast to 

340 HS, CS had no effect on P distribution in soil pools compared with its mineral control (MCS). 

341 Since CS and HS had a relatively similar P composition (OP is ca 20% while insoluble 

342 AP+NAIP is ca 80% in both sludges), the lack of any effect of CS is thus most likely related to 

343 its much lower total P concentration.

344 The application of HS increased the NaHCO3-P pool, which is considered readily 

345 available to plants and is strongly related to P uptake by most crops (Saleque et al., 2004). 

346 However, some crops with highly efficient P-acquisition strategies (e.g., white lupine, canola) 
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347 can access additional P fractions (Gardner et al., 1983; Hoffland et al., 1989). These results 

348 confirm the high potential of HS as a P fertiliser. 

349 The application of HS also strongly increased the NaOH-P (Pi +Po) concentration. The 

350 NaOH-Pi pool is considered P sorbed to Al and Fe (hydr)oxides while NaOH-Po has been found 

351 to be predominantly associated with organic matter, namely fulvic and humic acids (Cassagne 

352 et al., 2000; Schroeder and Kovar, 2006; Tiessen and Moir, 2008). Although Al and Fe oxides 

353 are important P-sorbing components in soil (Hinsinger, 2001; Houben et al., 2011), it is unlikely 

354 that they act as a significant sink for P added by HS, since, even in the mineral controls, the 

355 fraction of P in the NaOH-Pi was not significantly increased compared with the control. The 

356 higher proportion of NaOH-Pi in HS-amended soil might be due to the high NAIP content in 

357 HS which results from the pre-treatment of this sludge (i.e. iron chloride precipitation) 

358 (Kahiluoto et al., 2015). On the other hand, the significantly higher NaOH-Po fraction following 

359 the application of HS probably results in part from the high concentration of organic P in this 

360 sludge (Malik et al., 2013; Smith et al., 2006). As a slowly exchangeable P pool (Frossard et 

361 al., 2000), the NaOH-P pool can be mobilised when P in soil solution is depleted from the soil 

362 by plant uptake (Guo et al., 2000; Saleque et al., 2004). Beck and Sanchez (1994) reported that 

363 NaOH-P is the dominant pool related to availability of P to plants in an 18-year continuously-

364 cultivated and fertilised cropping system because it maintains the levels of plant-available P 

365 through P mineralization. According to Crews and Brookes (2014), the NaOH-P pool holds P 

366 for years to decades before crop demand shifts the equilibrium in the soil solution and causes P 

367 to be released. In addition to increasing the readily-available P pool in soil, our findings suggest 

368 that the addition of HS might also supply available P in the long run. Further investigations will 

369 however, be necessary to determine the contribution of the NaOH-P pool to long-term P release 

370 and thus better predict the dynamics of P in sewage sludge-amended soils. 

371
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372 4.3.  Phosphorus in microbial biomass

373 Microbial biomass plays a key role in P availability in agroecosystems. It acts as a buffer 

374 by immobilising P from the soil solution and potentially preventing it from bonding with soil 

375 particles (Crews and Brookes, 2014). Microbial P is released when cells are disrupted, e.g., in 

376 response to sudden changes in soil temperature, water content, and carbon availability (Turner 

377 et al., 2003) or due to predation (Bonkowski, 2004), which results in an increase in available P 

378 (Oehl et al., 2001). Our results indicate that sludge application may have a strong impact on the 

379 microbial-P pool. By contrast to CS, which showed a similar microbial-P pool to its mineral 

380 control (MCS), HS application significantly increased the microbial-P pool compared with its 

381 mineral control (MHS). Andriamananjara et al., (2016) also observed a significant increase in 

382 microbial-P concentration after sewage sludge application compared with TSP. Consistently 

383 with Crews and Brookes (2014), this can be related to the increase of the NaOH-Po fraction 

384 brought about by this treatment, resulting in a stronger assimilation of P into soil 

385 microorganisms. Two different mechanisms might lead to the enrichment of P in soil 

386 microorganisms: 1. Soil microorganisms might grow faster due to the accelerated 

387 decomposition of organic P compounds, or 2. Soil microorganisms might change the 

388 stoichiometry of their cells towards a lower C/P ratio. Independently on the mechanism of P 

389 accumulation of soil microorganisms, the mean residence time of P in soil microorganisms is 

390 only 18 to 39 days and depends on soil P availability (Spohn and Widdig, 2017). Therefore, 

391 soil microorganisms represent a short-term storage of easily-available P fractions in soil, and 

392 store P somewhat longer in the case of restricted P access from soils. The P fraction stored in 

393 soil microorganisms is not only released by death of soil microorganisms, but also by the 

394 feeding behaviour of soil animals that require carbon resource to a higher extent than nutrients 

395 like P and N. This phenomenon, which was first described by Clarholm (1985) for protozoa, is 

396 now extended to a wider group of soil animals (protists, nematodes) and to other nutrients like 
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397 P (Trap et al., 2016). Consequently, the importance of food webs in agroecosystems for biotic 

398 release of P derived from organic resources (like sludge) needs further study (Richardson and 

399 Simpson, 2011). Additional work including the characterisation of microbial biomass and 

400 structure of microbial community using phospholipid fatty acid analysis, sequencing and 

401 quantification of genes involved in P dynamic in soil (i.e. phoB and phoR) (Anderson et al., 

402 2011) might be of help to better understand this microbial P increase in the presence of sludge.

403

404 4.4. Effect of sludge on alkaline phosphatase activity

405 The relationship between phosphatase activities and P in soil amended with sludge is still 

406 poorly understood, despite extensive investigations (Xie et al., 2011b). Phosphatase activities 

407 are expected to increase after application of organic matter, resulting in higher P availability in 

408 soil (Garg and Bahl, 2008). However, the response of phosphatase activities to applied organic 

409 waste also depends upon its initial constituents, amount and size, and must be investigated prior 

410 its application (Criquet et al., 2007; Saha et al., 2008; Tejada et al., 2008; Xie et al., 2011b) 

411 (Criquet et al., 2007; Saha et al., 2008; Tejada et al., 2008). Increases of alkaline phosphatase 

412 activity after the application of organic amendments have been primarily attributed to both the 

413 supply of easily decomposable organic compounds and change in soil pH (Dick et al., 2000; 

414 Garg and Bahl, 2008). In our study, application of HS did not affect soil pH. For this treatment, 

415 it can therefore be inferred that the supply of large amounts of substrates, including substrates 

416 for phosphatases (Bachmann et al., 2014), was the main process responsible for the stimulation 

417 of enzyme production by soil microorganisms (including mycorrhizal fungi). The stimulation 

418 of phosphatase activity is largely due to increased microbial numbers in the soil which, with 

419 time, cause a build-up of enzymes (Feder, 1973). Therefore, the higher alkaline phosphatase 

420 activity in the presence of HS is consistent with the higher NaOH-Po fraction and the 

421 subsequent increase in microbial-P concentration measured under this treatment. Unlike HS, 
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422 CS application did not increase alkaline phosphatase activity, most likely because it did not 

423 increase the soil organic P pool due to its low total P concentration, as discussed above  

424 (Margalef et al., 2017; Requejo and Eichler-Löbermann, 2014). In line with the recent efforts 

425 directed toward increasing P availability by mobilising recalcitrant soil P (Menezes-Blackburn 

426 et al., 2017), gaining insight into the factors responsible for the higher phosphatase activity in 

427 the presence of HS might help develop strategy to transform organic P to inorganic P available 

428 for plants. More generally, our data are consistent with the literature showing a positive effect 

429 of sewage sludge on the soil enzyme activities, with a positive correlation between rate of 

430 sludge application and enzyme activity (Fernandes et al., 2005; Siebielec et al., 2018).

431

432 4.5. Implications

433 Moving toward more sustainable sources for managing the P nutrition in agroecosystems, 

434 it is increasingly suggested to replace mineral fertilizers by P-rich materials originating from 

435 waste materials (Dawson and Hilton, 2011). In addition to studying the release of available P 

436 from these soil amendments, it is however essential to gain further insights into their indirect 

437 effects on the soil P pools, especially by paying attention to modifications of soil biota (Faucon 

438 et al., 2015). Here, our results showed that changes in soil biological properties after the 

439 addition of sewage sludge with high total P concentration (and 20% as organic P) contributed 

440 to increase the labile P concentration to a level as high as that of conventional fertiliser. It is 

441 necessary, however, to conduct further studies to identify the relative contribution of soil-

442 derived P and sludge-derived P to this P lability increase, especially through the use of isotopic 

443 labelling techniques. 

444

445 5. Concluding Remarks
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446 This study showed that the impact of sewage sludge with similar P fractions on P 

447 dynamics in agroecosystem is predominantly driven by total P concentration in sludge. Our 

448 findings suggest that, despite a relatively low water-soluble P concentration, the addition of 

449 sewage sludge with high total P concentration and 20% of total P as organic P has a great 

450 potential to improve sustainable P fertilisation, since it increased alkaline phosphatase activity 

451 and microbial-P, temporarily protecting P from fixation by soil particles. The positive effect of 

452 sludge with high total P concentration (and 20% as organic P) on the microbial-P pool and 

453 phosphatase activity is a pivotal result to understand the effects of organic waste on 

454 agroecosystem functioning, and, ultimately, to improve sustainable P fertilisation. Overall, our 

455 results stress the need that sludge provider measure both P concentration and P forms in sludge 

456 prior to their application in the field. The perspective is to elucidate the sludge’s long-term 

457 effects on P pools and availability over the whole crop rotation in several soil types to define 

458 new sustainable practices of P fertilisation by taking into account both microbial and plant 

459 functional traits involved in P mobilisation/acquisition. 

460
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Figures

Figure 1. Release of labile phosphorus (resin-P + NaHCO3-extractable P) over time. C: 

No-P control; CS: Composted Sludge; MCS: Mineral control of Composted Sludge; HS: 

Heated Sludge; MHS: Mineral control of Heated Sludge. Different letters indicate significant 

differences between treatments (P<0.05). Capital letter indicate differences between 

composted-sludge/Mineral control of CS/ No-P control, lower case letter between heated 

sludge/ Mineral control of HS/ No-P control. Values are the mean of four replicates ± standard 

error. Significant differences have been tested using Kruskal Wallis test for the comparison HS-

MHS-C and One Way ANOVA for the comparison CS-MCS-C.

Figure 2. Effect of sewage sludge application on phosphorus (P) fractionation (Hedley 

scheme) after 307 days. C: No-P control; CS: Composted Sludge; MCS: Mineral control of 

Composted Sludge; HS: Heated Sludge; MHS: Mineral control of Heated Sludge. The means 

with the same letters are not significantly different. Values are the mean of four replicates± 

standard error. Significant differences has been revealed by a Kruskall-Wallis test with a Mann-

Withney post hoc test (Resin-P and NaOH-P) or One Way ANOVA with Tukey post hoc test. 

Phosphorus fractions are ordered by their availability (highest for Resin-P and lowest for 

Residual-P). *: P < 0.05 ; **: P < 0.01 ; ***: P < 0.001.

Figure 3. Alkaline phosphatase activity (left y-axis) and microbial-phosphorus (P) (right 

y-axis) after 307 days. C: No-P control; CS: Composted Sludge; MCS: Mineral control of 

Composted Sludge; HS: Heated Sludge; MHS: Mineral control of Heated Sludge. Significant 

differences has been revealed using a Kruskall Wallis test with a Mann Withney post hoc test 

(for alkaline phosphatase) and One Way ANOVA followed by Tukey post hoc test. Values are 

the mean of four replicates ± standard error. The means with the same letters are not 

significantly different at the 5 % level.
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Tables

Table 1. Chemical properties of sludge. IROC: proportion of stable organic matter; Corg: 

organic carbon; WSP: Water-soluble phosphorus; AP: Apatite phosphorus; NAIP: Non-apatite 

inorganic phosphorus; OP: Organic phosphorus. Carbon and P concentrations are expressed in 

dry matter of sludge (g kg-1MS). Values in parentheses represent the percentage of P in each 

fraction (%).

Sludge IROC pH Corg 

(g kg-1)

C/N 

ratio

WSP

(g kg-1) 

AP 

(g kg-1)

NAIP 

(g kg-1)

OP 

(g kg-1)

Total P

(g kg-1) 

CS 79.9% 7.4 185 9.5 0.03 12.46 0.83 3.32 16.63

(0.2) (74.9) (5.0) (19.9)

HS 80.8% 8.4 251 12.3 0.08 32.18 9.49 9.17 50.92

(0.2) (63.2) (18.6) (18.0)

Table 2. Summary of Two Way ANOVA analysis.

Treatment Time Treatment x Time

Df MS F P Df MS F P Df MS F P

pH 4 0.7383 14.346 *** 4 0.493 9.581 *** 16 0.0479 0.931 NS

Olsen-P 4 128613 104.216 *** 4 52 886 42.854 *** 16 9489 7.689 ***

Resin-P 4 296.34 56.393 *** 3 3.33 0.634 NS 12 5.44 1.035 NS

NaHCO3-P 4 91.25 27.183 *** 3 199.67 59.478 *** 12 5.37 1.599 NS

NaOH-P 4 89.77 29.82 *** 3 23.41 7.776 *** 12 5.64 1.874 NS

HCl-P 4 56.92 1.898 NS 3 153.35 5.114 ** 12 18.57 0.619 NS

Residual-P 4 658.5 18.343 *** 3 577 16.073 *** 12 47.3 1.316 NS

NS: non significant; **: P < 0.01; ***: P < 0.001
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Supplementary Figure 1. Phosphorus concentration in winter barley at crop maturity. 

C: No-P control; CS: Composted Sludge; MCS: Mineral control of Composted Sludge; HS: 

Heated Sludge; MHS: Mineral control of Heated Sludge. Values are average (n = 4) ± 

standard error. Columns with the same letter do not differ significantly at the 5% level.

Supplementary Figure 2. Dry biomass at crop maturity. C: No-P control; CS: Composted 

Sludge; MCS: Mineral control of Composted Sludge; HS: Heated Sludge; MHS: Mineral 

control of Heated Sludge. Values are average (n = 4) ± standard error. Columns with the same 

letter do not differ significantly at the 5% level.
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Supplementary Figure 3. Phosphorus exported by shoot at full tillering and flowering 

stages. C: No-P control; CS: Composted Sludge; MCS: Mineral control of Composted 

Sludge; HS: Heated Sludge; MHS: Mineral control of Heated Sludge. Values are average (n = 

4) ± standard error. Columns with the same letter do not differ significantly at the 5% level.

Supplementary Figure 4. Soil pH. C: No-P control; CS: Composted Sludge; MCS: Mineral 

control of Composted Sludge; HS: Heated Sludge; MHS: Mineral control of Heated Sludge.


