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Sewage sludge is a phosphorus (P) source alternative to P fertiliser derived from rock phosphate, but its impact on soil processes driving P cycling in agroecosystems requires further study. In order to optimise the use of sludge for sustainable P fertilisation, we need to elucidate the drivers of P dynamics. The present study aims at determining how different sludges (heated sludge, HS and composted sludge, CS) affect soil P pools and dynamics. A field experiment was established and soil was amended either with sludge or with inorganic P (triple superphosphate, TSP). Soil samples were collected five times during a vegetation period, and analysed for Hedley P fractions, microbial P and phosphatase activity. Phosphorus dynamics in soil was strongly influenced by P concentrations in sludge. About one year after application, sludge with the highest P concentration (HS) was as effective as TSP to improve soil P availability. The P source of TSP was immediately available for plant uptake, but the high phosphatase activity of the HS treatment evidenced that soil microorganisms released phosphatases which can hydrolyse HS-derived organic P compounds. In addition, the high content of microbial P in the HS treatment suggests that soil microorganisms assimilate P into their own biomass. By contrast, sludge with the lowest P concentration (CS) enriched primarily the weakly-soluble soil P fractions, resulting in lower P availability compared with that in the TSP treatment. Our findings suggest that both high P concentration and slow, but continuous microbial breakdown of organic P substrates derived from HS allow using this resource as an important source for plant mineral nutrition. This study stresses the need to both characterise P concentrations and P forms in sludge, prior to their application in the field.

Introduction

Phosphorus (P) is a limiting nutrient for the productivity of many agroecosystems and indispensable to feed an ever-increasing human population [START_REF] Filippelli | The Global Phosphorus Cycle: Past, Present, and Future[END_REF][START_REF] Withers | Stewardship to tackle global phosphorus inefficiency: The case of Europe[END_REF]. Currently, most of the P used in chemical fertilisers is derived from phosphate rocks that are finite and located in only a few places on Earth [START_REF] Edixhoven | Recent revisions of phosphate rock reserves and resources: reassuring or misleading? An in-depth literature review of global estimates of phosphate rock reserves and resources[END_REF][START_REF] Reijnders | Phosphorus resources, their depletion and conservation, a review[END_REF]. Developing sustainable fertilisation practices based on the use of renewable resources such as P-rich waste is thus essential to ensure long-term food security [START_REF] Dawson | Fertiliser availability in a resource-limited world: Production and recycling of nitrogen and phosphorus[END_REF][START_REF] Houben | Effect of biochar on phosphorus bioavailability in an acidic silt loam soil[END_REF]. Among P-rich wastes, sewage sludge appears an excellent candidate because it represents the largest component of recycled P, and due to the world's population growth, this reserve is expected to increase [START_REF] Lwin | The implications of allocation scenarios for global phosphorus flow from agriculture and wastewater[END_REF]. Its use in agriculture will likely increase, requiring continued vigilance in assessing the impacts of the presence of potential pollutants such as metals, organic contaminants (e.g., pharmaceuticals and personal care products), emerging contaminants, viruses and other pathogens [START_REF] Clarke | Review of 'emerging' organic contaminants in biosolids and assessment of international research priorities for the agricultural use of biosolids[END_REF]. Since 1986, Council Directive No. 86/278/EEC has governed the use of sewage sludge in the European Union by prescribing testing of sludge and soil for a number of potential pollutants. This Directive has been implemented into the national legislation of member states, most often with stricter limits than that prescribed in the Directive [START_REF] Kirchmann | From agricultural use of sewage sludge to nutrient extraction: A soil science outlook[END_REF].

Because sewage sludge has a much lower P concentration than mineral P fertilisers, large amounts of sludge need to be transported to and applied on farms which may result in higher costs compared with mineral P fertilisers (Mackay et al., 2017a). Moreover, in contrast to conventional P fertilisers in which P is predominantly in a soluble form readily available to plants, sewage sludge contains a range of P forms with varying availability to plants [START_REF] Kahiluoto | Phosphorus in manure and sewage sludge more recyclable than in soluble inorganic fertilizer[END_REF]. Phosphorus is present as a mixture of inorganic P forms including calcium (Ca) phosphates and amorphous aluminium (Al)-or iron (Fe)-bound P, while organic P generally represents a small fraction (Xie et al., 2011a). We already have solid evidence from different laboratory studies that the concentration of P in the soil solution, which is the form of P for plant uptake, after adding sewage sludge is controlled by the forms of P in sludge which depend on the origin and the treatment process of sludge [START_REF] Frossard | The fate of sludge phosphorus in soilplant systems[END_REF][START_REF] Maguire | Relationships between biosolids treatment process and soil phosphorus availability[END_REF]. However, very little is known on changes in other soil P forms, and processes that are often driven by functional traits of plants and soil microorganisms (e.g., mycorrhizal colonisation, release of extracellular enzymes involved in P cycling) (Mackay et al., 2017b;[START_REF] Requejo | Organic and inorganic phosphorus forms in soil as affected by long-term application of organic amendments[END_REF].

In addition to supplying P to the plant-available soil P pool through dissolution of inorganic P and mineralisation of organic P, sludge application can also alter P dynamics in soil by modifying abiotic and biotic soil properties [START_REF] Faucon | Advances and perspectives to improve the phosphorus availability in cropping systems for agroecological phosphorus management[END_REF]. Like other organic amendments, the presence of sludge in soil may enhance the activity of phosphatases [START_REF] Bastida | Application of fresh and composted organic wastes modifies structure, size and activity of soil microbial community under semiarid climate[END_REF]. Phosphatases are a broad group of enzymes that catalyse the hydrolysis of organic P, leading to the release of available ortho-phosphate. Recent findings have shown that organic P, rather than available P, is the most important P fraction in regulating phosphatase activity in soil [START_REF] Margalef | Global patterns of phosphatase activity in natural soils[END_REF]. Transformation of organic P through enzymatic reactions and its subsequent potential immobilisation by microbial biomass play a fundamental role in P dynamics, and is likely affected by the source of P [START_REF] Saha | Relative changes in phosphatase activities as influenced by source and application rate of organic composts in field crops[END_REF]. However, although studies about the effects of sewage sludge addition on soil biological properties have been numerous, they generally focused on one type of sludge [START_REF] Criquet | Short-term effects of sewage sludge application on phosphatase activities and available P fractions in Mediterranean soils[END_REF] and were carried out under controlled conditions, which do not fully mimic field scenarios. As a result, the extent of biological processes involved in situ in P cycling (i.e. organic P hydrolysis, P immobilisation) under different sludge sources has not been clearly identified, and it appears difficult to generalise previous results to different types of sewage sludge applied under field conditions.

Given the interest in using sewage sludge for P fertilisation, it is crucial to find out how its properties mediate both chemical and microbial processes affecting P cycling in agroecosystems. In particular, unravelling the role of sludge application in changes in soil P forms over time by characterising both chemical and microbial soil properties involved in P dynamics may shed light on the pathway of P release in sludge-amended soils. Ultimately, this knowledge helps predict the prospective P availability and establish the dose, frequency, and timing of sludge application. Therefore, this study aimed at gaining a better insight into the effects of sludge application on P lability and availability under field conditions, taking into account the impacts on soil microbial activities. We monitored shifts in soil P fractions over time (Hedley fractionation method;[START_REF] Tiessen | Characterization of available P by sequential extraction[END_REF] and determined phosphatase activity and microbial P in a field experiment using soil amended with two types of sewage sludge with different P concentrations. In order to estimate the potential of sludge to supply plant-available P relative to that by conventional P fertilisers, we also performed treatments with triple superphosphate (TSP). We hypothesised that i) changes in soil P availability would be driven by P composition of the sludge, and ii) sludge would increase microbial alkaline phosphatase activity, possibly resulting in higher P availability over time.

Materials and methods

2.1.

Sewage sludge properties Two types of sewage sludge treated in different processes were provided by the Parisian public sanitation service (Seine Aval wastewater treatment plant, SIAAP, Paris). The first sludge (hereafter called heated sewage sludge, HS) was derived from a treatment process comprising P precipitation using ferric chloride, an anaerobic digestion, followed by a dewatering by thickening and thermal conditioning (heat exchange and heating at 195° C and 20 bars). The second sludge (hereafter called composted sewage sludge, CS) was treated by anaerobic digestion followed by composting. Four biochemical fractions were determined using a modified Van Soest method (AFNOR, 2009): soluble (SOL), hemicellulose-like (HCE), cellulose-like (CEL) and lignin-like (LIG). The indicator of residual organic carbon (C), I ROC , which represents the proportion of stable organic C was then calculated as [START_REF] Lashermes | Indicator of potential residual carbon in soils after exogenous organic matter application[END_REF]: I ROC = 44.5 + 0.5 x SOL -0.2 x CEL + 0.7 x LIG -2.3 x MinC3 where I ROC , SOL, CEL and LIG are expressed in % total organic C in sludge and MinC3 is the proportion (%) of mineralised organic C during the first three days of incubation [START_REF] Afnor | Norme XP U 44-162. Amendements organiques et supports de culture -Caracterisation de la matière organique par fractionnement biochimique et estimation de sa stabilité biologique[END_REF]. Organic C concentration, C/N ratio [START_REF] Afnor | NF EN 15936 -Boues, bio-déchets traités, sols et déchets -Détermination de la teneur en carbone organique total (COT) par combustion sèche[END_REF][START_REF] Afnor | NF EN 16168 -Boues, biodéchets traités et sols -Détermination de la teneur totale en azote par combustion sèche[END_REF] and water-soluble P (WSP) concentrations [START_REF] García-Albacete | Fractionation of phosphorus biowastes: Characterisation and environmental risk[END_REF] were also determined. Phosphorus forms in sewage sludge which were determined through the SMT (Standards, Measurements and Testing programme) protocol. The SMT method is a harmonised protocol proposed by the European Commission for sequential extraction of P initially in sediments which was then extended to other materials, including sewage sludge [START_REF] García-Albacete | Fractionation of phosphorus biowastes: Characterisation and environmental risk[END_REF][START_REF] Medeiros | Analytical phosphorus fractionation in sewage sludge and sediment samples[END_REF]. Briefly, inorganic P (IP) was extracted with 1 M HCl for 16 h and residues of this extraction were calcined for 3 h at 450 °C and then again extracted with 1 M HCl for organic P (OP). Nonapatite inorganic P (NAIP) associated with oxides and hydroxides of Fe, Al or Mn was extracted with 1 M NaOH for 16 h, and then some part of this extract was treated with 3.5 M HCl. The residues of this extraction were extracted for apatite P (AP) associated with Ca (Ca-P) with 1 M HCl for 16 h. Total P (TP) is the sum of OP and IP. As shown in Table 1, HS contains three times more total P than CS, while AP, NAIP and OP concentrations are 2.6, 11.4 and 2.8 times greater in HS than in CS. 2.2.

Study site and experimental design A field experiment was established in September 2015 in Beauvais, North of France (49°28'N; 2°4'W). The experimental site is included in a long-term (> 20 years) cropland field with an oilseed rape -winter wheat -winter barley rotation and an organic and mineral fertilisation based on soil tests, crop requirements, and timed to crop uptake. Cattle manure (25 Mg ha -1 ) and lime amendments were applied, respectively, every three years, and six years before this experiment. Reduced tillage (5 cm of soil deep rotary harrow) was practiced since 2010. The oceanic climate is characterised by an average precipitation of 669 mm year -1 . Average minimum and maximum temperatures vary from 1 to 6.7°C in winter, 5 to 14.5°C in spring, 12 to 23°C in summer and from 7.2 to 15.3°C in autumn. The studied soil was classified as a Haplic Luvisol (IUSS Working Group WRB, 2015). The soil texture was a silt loam with 12% sand, 66% silt and 22% clay. The soil pH H2O was 7.53, the organic carbon concentration was 24 g kg -1 and the cation exchange capacity was 15 cmol c kg -1 . Given its soil properties and long-term fertilisation and cropping history, the study site is considered representative of the agricultural areas receiving the SIAAP sludge.

Five treatments were tested: two sludge amendments (HS and CS) were applied at a rate of 4.78 Mg dry matter ha -1 (i.e. 7.5 Mg fresh matter ha -1 ), which is based on common practices of farmers who use SIAAP sludge. Two mineral controls (triple superphosphate) adding the same quantity of P as in each sludge were also included (MHS for HS and MCS for CS) as well as a control without P fertilisation (C). A randomised complete block with four replicates per treatment was used. Each plot had an area of 40 m² (10 x 4 m) as used in [START_REF] Gallet | Effect of phosphate fertilization on crop yield and soil phosphorus status[END_REF]. The experimental field had an area of 1000 m². The homogeneity of soil properties within the study area was previously assessed by a topsoil (0-5 cm) sampling (20 samples collected) and chemical characterisation. Before spreading sludge, the soil was tilled with a stubble cultivator in order to make the spreading homogeneous (5 cm depth). All the treatments were carried out on the 15 th of September 2015. Then, the soil was again tilled with a harrow to incorporate the sludge following the French legislation. Winter barley (Viva, two-rowed cultivar) was sown on the 9 th October 2015. Nitrogen application of 130 kg ha -1 was based on a nitrogen balance calculation.

2.3.

Plant sampling and analysis Plants were harvested on 26 th June 2016 and the crop was weighed on board of a harvester. After harvest, plants were dried at 70°C for 72 h, weighed and then ground to 250 µm prior to analysis. Phosphorus concentrations in straw and grain were determined by Inductively Coupled Plasma Mass Spectrometry (ICP-MS, Thermo Scientific XSERIES2) after digesting the dried biomass in aqua regia. Briefly, 0.2 g of plant powder was mixed with 8 mL of concentrated HNO 3 and 2 mL of concentrated HCl directly in a microwave Teflon vessel [START_REF] Lange | Prediction of the edaphic factors influence upon the copper and cobalt accumulation in two metallophytes using copper and cobalt speciation in soils[END_REF] with a control without plant. The vessels (Easyprep 432175A, CEM µWaves) were placed in the microwave system (Mars 5, CEM Corporation, Charlotte, USA). The digestion programme consisted of a ramp time of 5 min to reach 180 °C and digestion was performed for 15 min. The power was set at 1600 W [START_REF] Lange | Prediction of the edaphic factors influence upon the copper and cobalt accumulation in two metallophytes using copper and cobalt speciation in soils[END_REF]. The digest was then diluted to approximately 30 g (accurately weighed) and then stored until being analysed with ICP-MS.

2.4.

Soil sampling and analysis Two composite soil samples were collected at the surface (0 -10 cm) within each plot in September (before and one week after fertilisation), January (during winter), May (during spring) and July (a few days after harvesting) to characterise P fractions, Olsen-P and soil chemical properties. Subsamples were used either fresh for microbial P and alkaline phosphatase activity (May and July) analyses or oven-dried (35°C, 48 h), crushed and sieved through a 2-mm plastic sieve. Soil pH and electrical conductivity were measured in suspensions by shaking 2 g of soil with water (1:5 ratio). The [START_REF] Hedley | Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations[END_REF] sequential fractionation method as modified by [START_REF] Tiessen | Characterization of available P by sequential extraction[END_REF] was used to fractionate soil P. This method uses a sequence of increasingly strong extractants that remove labile inorganic P (Pi) and organic P (Po) forms first, then stable P forms. Briefly, 0.5 g of air-dried soil (ground to pass through a 2 mm sieve) was successively extracted with resin strips in deionised water (plantavailable Pi), 0.5 M NaHCO 3 (pH 8.5) (Pi and Po adsorbed onto the soil surface), 0.1 M NaOH (Pi and Po held more strongly by sorption to surfaces of Al and Fe oxides), 1 M HCl (P associated to Ca, derived from primary mineral-apatite). The last fraction (residual-P; stable Po forms and relatively insoluble Pi forms) was determined using a microwave digestion (Mars 5, CEM Corporation, USA) with aqua regia and hydrofluoric acid, EN 13 656 [START_REF] Gaudino | The role of different soil sample digestion methods on trace elements analysis: a comparison of ICP-MS and INAA measurement results[END_REF]. Labile P was considered the sum of resin-P and NaHCO 3 -extracted P [START_REF] Cross | A literature review and evaluation of the. Hedley fractionation: Applications to the biogeochemical cycle of soil phosphorus in natural ecosystems[END_REF][START_REF] Tiessen | Characterization of available P by sequential extraction[END_REF]. The Pi concentration in the extracts was determined colourimetrically using the molybdate blue method according to [START_REF] Murphy | A modified single solution method for the determination of phosphate in natural waters[END_REF] at 712 nm, as recommended by [START_REF] Tiessen | Characterization of available P by sequential extraction[END_REF] to reduce possible interference from traces of organic matter. Total P (Ptot) in the extracts was determined by ICP-MS and the concentration of Po was estimated by subtracting Pi from Ptot. In addition to Hedley's fractionation, Olsen-P concentration was determined [START_REF] Olsen | Estimation Of Available Phosphorus In Soils By Extraction With Sodium Bicarbonate[END_REF].

2.5. Microbial phosphorus Microbial P was determined by hexanol fumigation [START_REF] Bergkemper | An inter-laboratory comparison of gaseous and liquid fumigation based methods for measuring microbial phosphorus (Pmic) in forest soils with differing P stocks[END_REF] and extraction with anion-exchange membranes (VWR, 551642S). Anion-exchange membrane strips were prepared by initially shaking in 0.5 M NaHCO 3 . For each sample, three portions of fresh soil (2 g on a dry-weight basis) were weighed into 50 mL bottles with 30 mL deionised water and two anion-exchange membrane strips. One bottle received 1 mL of hexanol and the samples were shaken for 16 h. The membranes were then removed and rinsed in deionised water and the phosphate (P fumigated ) recovered by shaking for 1 h in 20 mL (HCl 0.5 M). Another bottle only contained water and was treated the same way as previously (P non-fumigated ). To determine the amount of P retained by soil particles and complexation after fumigation incubation, a defined P concentration (KH 2 PO 4 ), which was equal to the measured P concentrations in fumigated subsamples, was added to additional non-fumigated, but otherwise identically treated subsamples. Phosphorus concentrations were analysed colourimetrically [START_REF] Murphy | A modified single solution method for the determination of phosphate in natural waters[END_REF] using a spectrophotometer (712 nm). The ratio of recovered P to added P was used to calculate the P mic concentration as follows [START_REF] Nassal | Effects of phosphorus-mobilizing bacteria on tomato growth and soil microbial activity[END_REF]):

• !" [µ# # -1 ] = (• %& !#'()* [µ# # -1 ] -• +,+ -%& !#'()* [µ# # -1 ]) (• -)",.)-)* [µ# # -1 ]/• '**)* [µ# # -1 ]) 2.6.
Alkaline phosphatase activity According to the pH of the soil (7.53), alkaline phosphomonoesterase (alkaline phosphatase) activity was assayed as an enzyme involved in P cycling. Alkaline phosphatase activity was assayed by the method of [START_REF] Tabatabai | Use of p-nitrophenyl phosphate for assay of soil phosphatase activity[END_REF], which involves the determination of p-nitrophenol released by incubation at 37°C for 1 h of 1 g soil with 0.2 ml toluene, 4 ml universal buffer and 1 ml substrate. Sodium p-nitrophenyl phosphate was used as substrate for assay of phosphatase activities [START_REF] Eivazi | Phosphatases in soils[END_REF]. The quantity of pnitrophenol produced by alkaline phosphatase was measured using a spectrophotometer (410 nm). 2.7.

Statistical analyses All recorded data were analysed using descriptive statistics (mean ± standard error) and normality was determined using the Shapiro-Wilk test. The data were subjected to one-way ANOVA and Tukey's post-hoc test to compare treatments, which had a normal distribution. Data without normal distribution were subjected to the Kruskall-Wallis test and Mann-Whitney post-hoc test Two-way ANOVAs were performed considering time as a fixed factor and fertilisation type as variable. All statistical analyses were performed using R software version 3.5.0. (R Core Team, 2017) and the package Rcmdr [START_REF] Fox | The R Commander: A Basic-Statistics Graphical User Interface to R[END_REF].

Results

Sewage sludge properties

Table 1 indicates that CS and HS had a similar I ROC and C/N ratio, while HS was slightly more alkaline than CS, and had a higher C concentration. For each sludge, NAIP was the predominant P form. The proportion of AP was slightly higher in HS, while the proportions of WSP and OP were similar between both sludges. More importantly, the total P concentration in HS was three times as high as that in CS, suggesting that the main difference between both sludges is not P fraction, but total P concentration.

Changes in labile P concentration over time

The effect of sludge addition on the labile P concentration (i.e. the sum of resin-P and NaHCO 3 -P concentration) was strongly affected by the type of sludge applied (Fig. 1). After 124 days, the labile P concentration in the presence of HS was greater than that of the no-P control (C), but lower than the mineral control (MHS) (χ²= 9.85, df=2, p value<0.01). However, after 240 days, the labile P concentration in HS was as high as that in MHS (χ²= 8.77, df=2, p value<0.05). Unlike HS, labile P concentrations in the presence of CS were similar to that of C (p > 0.05) and significantly lower (p < 0.05) than its mineral control (MCS) for the duration of the experiment (Fig. 1). Despite differences in labile P concentrations among fertilisation treatments, P concentrations and quantity in shoot (straw) and grain were not significantly different among treatments (Supplementary Fig. 1,2,3).

3.3.

Phosphorus forms and microbial-P in soil Among the studied forms, only HCl-P was unaffected by fertilisation treatment, while only Resin-P was unaffected by time (Table 2). NaHCO 3 -P, NaOH-P and residual P fractions were significantly affected by fertilisation treatment and also by time (Table 2). After 307 days (Fig. 2), HS significantly increased the NaHCO 3 -Pi fraction and decreased the residual-P fraction compared with MHS and C. The NaOH-Po fraction was also significantly greater in the presence of HS compared with that in the other treatments. Moreover, only HS significantly increased the concentration of microbial-P in the soil (Fig. 3). In contrast with HS, CS had no effect on P forms in soil compared with both C and its mineral control (MCS).

3.4. Soil pH Soil pH was influenced by fertilisation treatment and time (Table 2). The soil amended with MHS was significantly (p < 0.05) more acidic over the entire experimental period, while the pH did not differ significantly among the other treatments (Supplementary Fig. 4). 3.5.

Alkaline phosphatase activity Alkaline phosphatase activity was significantly increased by the application of HS while no significant difference was observed for the other treatments (Fig. 3).

Discussion

Most of previous studies investigating the P fertiliser potential of waste products such as sewage sludge have only focused on change in available P concentration after their application, disregarding how other soil P forms are affected. Here, our findings suggest, however, that P availability may change with time due to chemically and biologically controlled shifts in soil P fractions, which are themselves mediated by P concentrations in sludge.

4.1.

Effect of sludge on labile P concentration over time Monitoring labile P concentration over time is necessary to ensure that P supplies will meet crop demand. Labile P can be continuously supplied to the soil solution, for instance, by organic P mineralisation through microbial activity and by mineral P desorption through chemical reactions [START_REF] Chen | Effects of plant species on microbial biomass phosphorus and phosphatase activity in a range of grassland soils[END_REF][START_REF] Sanyal | Chemistry of Phosphorus Transformations in Soil[END_REF]. Chemical extractions have been extensively used to evaluate P lability in soils [START_REF] Sharpley | Bioavailable phosphorus in soil. Methods Phosphorus Anal[END_REF], even though they may be inappropriate in detecting changes produced by natural environmental soil modification such as cycles of alternating oxidation and reduction conditions [START_REF] Scalenghe | Release of phosphorus under reducing and simulated open drainage conditions from overfertilised soils[END_REF]. Here, as recommended by [START_REF] Cross | A literature review and evaluation of the. Hedley fractionation: Applications to the biogeochemical cycle of soil phosphorus in natural ecosystems[END_REF], we consider labile P to be the sum of resinextractable P + NaHCO 3 -extractable P. According to these authors, P extracted by ion exchange resins and NaHCO 3 solutions represents the most likely contributors to plant-available P over the course of a growing season, because it cycles readily through the microbial community and is made available to plant roots through a variety of chemical and biological processes. Our results reveal that HS significantly increased the labile P concentration over time (by 100% after 124 days). After 240 days, the HS treatment showed the same concentration of labile P as the mineral control (MHS). According to [START_REF] Huang | Dynamics of phosphorus phytoavailability in soil amended with stabilized sewage sludge materials[END_REF], who observed an increase in P availability in sludge-amended soil after 100 days of incubation, the strong increase of labile P concentration in the presence of HS likely results from the continuous mineralisation of its large organic P pool (9.49 g kg -1 ). This increase in P availability with time suggests that sludge with a high organic P concentration must be regarded as a slow-release P fertiliser. This slow-release P fertiliser behaviour has also been reported by [START_REF] Lemming | Plant availability of phosphorus from dewatered sewage sludge, untreated incineration ashes, and other products recovered from a wastewater treatment system[END_REF]. The authors showed that when applying a sludge similar to HS to a soil with pH 7.8, the efficiency in terms of available P relative to TSP increased from 20% to 46% after 84 days. Since many crops have high P demands in the early stage of their life cycle [START_REF] Fageria | The Use of Nutrients in Crop Plants[END_REF], for example wheat plants take up 50-60% of their P in the first six weeks of growth [START_REF] Römer | Phosphorus requirements of the wheat plant in various stages of its life cycle[END_REF], there is a risk that the slow release of P from HS negatively impacts early plant growth. This might, however, be compensated by adding fertiliser mixtures of soluble P (e.g., TSP) and HS. In contrast with HS, CS did not influence the available P concentration. Since both sludges did not differ in their P fractions, it is likely that the much lower total P concentration in CS was the predominant driver of the lack of increase in P availability after addition to the soil [START_REF] Welch | Effect of microorganisms and microbial metabolites on apatite dissolution[END_REF]. Due to its low total P concentration, the potential of CS to be used as a P fertiliser is thus limited, at least during the first year after its application, in such cropping systems. One possibility to mobilise the sparingly available CS-derived P might be to develop cropping systems with species having highly efficient P-acquisition strategy such as Lupinus albus L. (e.g., by intercropping it with cereals) [START_REF] Hallama | Hidden miners -the roles of cover crops and soil microorganisms in phosphorus cycling through agroecosystems[END_REF][START_REF] Lambers | How a phosphorus-acquisition strategy based on carboxylate exudation powers the success and agronomic potential of lupines (Lupinus, Fabaceae)[END_REF]. Further researches are however needed to determine to what extent this would counteract the limited P fertiliser potential of CS. Taken together, our results indicate that the efficacy of sludge to increase P availability in soils would depend on the concentration and the forms of P added and the cropping system used.

It is important to note that the lack of any improvement of P concentration and quantity in plants in spite of the increase in available P concentration in soil after the addition of HS likely results from the already high P concentrations in these soils as a result of the long-term addition of P fertiliser [START_REF] Gallet | Effect of phosphate fertilization on crop yield and soil phosphorus status[END_REF]. According to [START_REF] Glaesner | Phosphorus characterization and plant availability in soil profiles after long-term urban waste application[END_REF], a significant increase in P uptake might be expected in the long run, as P applied with sludge remained highly plant available in the soil after long-term application.

Phosphorus forms and concentrations in sludge influence P forms in soil

Interactions between P forms in sludge and P forms in soil are not fully understood so far, most studies focusing only on total and water-extractable P concentrations. As shown by other researchers using pot experiments [START_REF] Frossard | The fate of sludge phosphorus in soilplant systems[END_REF][START_REF] Meyer | Water soluble phosphate fertilizers for crops grown in calcareous soils -an outdated paradigm for recycled phosphorus fertilizers?[END_REF][START_REF] Nanzer | The molecular environment of phosphorus in sewage sludge ash: implications for bioavailability[END_REF], our results indicate that coupling the determination of P concentration and forms in sludge is, however, essential. Indeed, depending on total P concentration, P forms in sludge drive P distribution in various soil pools, which, in turn, impact P availability. By contrast to HS, CS had no effect on P distribution in soil pools compared with its mineral control (MCS). Since CS and HS had a relatively similar P composition (OP is ca 20% while insoluble AP+NAIP is ca 80% in both sludges), the lack of any effect of CS is thus most likely related to its much lower total P concentration.

The application of HS increased the NaHCO 3 -P pool, which is considered readily available to plants and is strongly related to P uptake by most crops [START_REF] Saleque | Inorganic and organic phosphorus fertilizer effects on the phosphorus fractionation in wetland rice soils[END_REF]. However, some crops with highly efficient P-acquisition strategies (e.g., white lupine, canola) can access additional P fractions [START_REF] Gardner | The acquisition of phosphorus by Lupinus albus L. III. The probable mechanism by which phosphorus movement in the soil/root interface is enhanced[END_REF][START_REF] Hoffland | Solubilization of rock phosphate by rape .2. Local root exudation of organic-acids as a response to P-starvation[END_REF]. These results confirm the high potential of HS as a P fertiliser.

The application of HS also strongly increased the NaOH-P (Pi +Po) concentration. The NaOH-Pi pool is considered P sorbed to Al and Fe (hydr)oxides while NaOH-Po has been found to be predominantly associated with organic matter, namely fulvic and humic acids [START_REF] Cassagne | Forms and profile distribution of soil phosphorus in alpine Inceptisols and Spodosols (Pyrenees, France)[END_REF][START_REF] Schroeder | Comparison of organic and inorganic phosphorus fractions in an established buffer and adjacent production field[END_REF][START_REF] Tiessen | Characterization of available P by sequential extraction[END_REF]. Although Al and Fe oxides are important P-sorbing components in soil [START_REF] Hinsinger | Bioavailability of soil inorganic P in the rhizosphere as affected by rootinduced chemical changes: a review[END_REF][START_REF] Houben | Predicting the degree of phosphorus saturation using the ammonium acetate-EDTA soil test[END_REF], it is unlikely that they act as a significant sink for P added by HS, since, even in the mineral controls, the fraction of P in the NaOH-Pi was not significantly increased compared with the control. The higher proportion of NaOH-Pi in HS-amended soil might be due to the high NAIP content in HS which results from the pre-treatment of this sludge (i.e. iron chloride precipitation) [START_REF] Kahiluoto | Phosphorus in manure and sewage sludge more recyclable than in soluble inorganic fertilizer[END_REF]. On the other hand, the significantly higher NaOH-Po fraction following the application of HS probably results in part from the high concentration of organic P in this sludge [START_REF] Malik | Organic amendments differ in their effect on microbial biomass and activity and on P pools in alkaline soils[END_REF][START_REF] Smith | Soil phosphorus dynamics and phytoavailability from sewage sludge at different stages in a treatment stream[END_REF]. As a slowly exchangeable P pool [START_REF] Frossard | Processes governing phosphorus availability in temperate soils[END_REF], the NaOH-P pool can be mobilised when P in soil solution is depleted from the soil by plant uptake [START_REF] Guo | Changes in phosphorus fractions in soils under intensive plant growth[END_REF][START_REF] Saleque | Inorganic and organic phosphorus fertilizer effects on the phosphorus fractionation in wetland rice soils[END_REF]. [START_REF] Beck | Soil phosphorus fraction dynamics during 18 years of cultivation on a typic paleudult[END_REF] reported that

NaOH-P is the dominant pool related to availability of P to plants in an 18-year continuouslycultivated and fertilised cropping system because it maintains the levels of plant-available P through P mineralization. According to [START_REF] Crews | Changes in soil phosphorus forms through time in perennial versus annual agroecosystems[END_REF], the NaOH-P pool holds P for years to decades before crop demand shifts the equilibrium in the soil solution and causes P to be released. In addition to increasing the readily-available P pool in soil, our findings suggest that the addition of HS might also supply available P in the long run. Further investigations will however, be necessary to determine the contribution of the NaOH-P pool to long-term P release and thus better predict the dynamics of P in sewage sludge-amended soils. 4.3. Phosphorus in microbial biomass Microbial biomass plays a key role in P availability in agroecosystems. It acts as a buffer by immobilising P from the soil solution and potentially preventing it from bonding with soil particles [START_REF] Crews | Changes in soil phosphorus forms through time in perennial versus annual agroecosystems[END_REF]. Microbial P is released when cells are disrupted, e.g., in response to sudden changes in soil temperature, water content, and carbon availability [START_REF] Turner | Potential contribution of lysed bacterial cells to phosphorus solubilisation in two rewetted Australian pasture soils[END_REF] or due to predation [START_REF] Bonkowski | Protozoa and plant growth: the microbial loop in soil revisited[END_REF], which results in an increase in available P [START_REF] Oehl | Kinetics of microbial phosphorus uptake in cultivated soils[END_REF]. Our results indicate that sludge application may have a strong impact on the microbial-P pool. By contrast to CS, which showed a similar microbial-P pool to its mineral control (MCS), HS application significantly increased the microbial-P pool compared with its mineral control (MHS). [START_REF] Andriamananjara | Drivers of plantavailability of phosphorus from thermally conditioned sewage sludge as assessed by isotopic labeling[END_REF] also observed a significant increase in microbial-P concentration after sewage sludge application compared with TSP. Consistently with [START_REF] Crews | Changes in soil phosphorus forms through time in perennial versus annual agroecosystems[END_REF], this can be related to the increase of the NaOH-Po fraction brought about by this treatment, resulting in a stronger assimilation of P into soil microorganisms. Two different mechanisms might lead to the enrichment of P in soil microorganisms: 1. Soil microorganisms might grow faster due to the accelerated decomposition of organic P compounds, or 2. Soil microorganisms might change the stoichiometry of their cells towards a lower C/P ratio. Independently on the mechanism of P accumulation of soil microorganisms, the mean residence time of P in soil microorganisms is only 18 to 39 days and depends on soil P availability [START_REF] Spohn | Turnover of carbon and phosphorus in the microbial biomass depending on phosphorus availability[END_REF]. Therefore, soil microorganisms represent a short-term storage of easily-available P fractions in soil, and store P somewhat longer in the case of restricted P access from soils. The P fraction stored in soil microorganisms is not only released by death of soil microorganisms, but also by the feeding behaviour of soil animals that require carbon resource to a higher extent than nutrients like P and N. This phenomenon, which was first described by [START_REF] Clarholm | Interactions of bacteria, protozoa and plants leading to mineralization of soil nitrogen[END_REF] for protozoa, is now extended to a wider group of soil animals (protists, nematodes) and to other nutrients like P [START_REF] Trap | Ecological importance of soil bacterivores for ecosystem functions[END_REF]. Consequently, the importance of food webs in agroecosystems for biotic release of P derived from organic resources (like sludge) needs further study [START_REF] Richardson | Soil microorganisms mediating phosphorus availability update on microbial phosphorus[END_REF]. Additional work including the characterisation of microbial biomass and structure of microbial community using phospholipid fatty acid analysis, sequencing and quantification of genes involved in P dynamic in soil (i.e. phoB and phoR) [START_REF] Anderson | Biochar induced soil microbial community change: Implications for biogeochemical cycling of carbon, nitrogen and phosphorus[END_REF]) might be of help to better understand this microbial P increase in the presence of sludge.

4.4.

Effect of sludge on alkaline phosphatase activity The relationship between phosphatase activities and P in soil amended with sludge is still poorly understood, despite extensive investigations (Xie et al., 2011b). Phosphatase activities are expected to increase after application of organic matter, resulting in higher P availability in soil [START_REF] Garg | Phosphorus availability to maize as influenced by organic manures and fertilizer P associated phosphatase activity in soils[END_REF]. However, the response of phosphatase activities to applied organic waste also depends upon its initial constituents, amount and size, and must be investigated prior its application [START_REF] Criquet | Short-term effects of sewage sludge application on phosphatase activities and available P fractions in Mediterranean soils[END_REF][START_REF] Saha | Relative changes in phosphatase activities as influenced by source and application rate of organic composts in field crops[END_REF][START_REF] Tejada | Application of different organic amendments in a gasoline contaminated soil: Effect on soil microbial properties[END_REF]Xie et al., 2011b) [START_REF] Criquet | Short-term effects of sewage sludge application on phosphatase activities and available P fractions in Mediterranean soils[END_REF][START_REF] Saha | Relative changes in phosphatase activities as influenced by source and application rate of organic composts in field crops[END_REF][START_REF] Tejada | Application of different organic amendments in a gasoline contaminated soil: Effect on soil microbial properties[END_REF]. Increases of alkaline phosphatase activity after the application of organic amendments have been primarily attributed to both the supply of easily decomposable organic compounds and change in soil pH [START_REF] Dick | Soil acid and alkaline phosphatase activity as pH adjustment indicators[END_REF][START_REF] Garg | Phosphorus availability to maize as influenced by organic manures and fertilizer P associated phosphatase activity in soils[END_REF]. In our study, application of HS did not affect soil pH. For this treatment, it can therefore be inferred that the supply of large amounts of substrates, including substrates for phosphatases [START_REF] Bachmann | Phosphorus availability and soil microbial activity in a 3 year field experiment amended with digested dairy slurry[END_REF], was the main process responsible for the stimulation of enzyme production by soil microorganisms (including mycorrhizal fungi). The stimulation of phosphatase activity is largely due to increased microbial numbers in the soil which, with time, cause a build-up of enzymes [START_REF] Feder | The phosphatases[END_REF]. Therefore, the higher alkaline phosphatase activity in the presence of HS is consistent with the higher NaOH-Po fraction and the subsequent increase in microbial-P concentration measured under this treatment. Unlike HS, CS application did not increase alkaline phosphatase activity, most likely because it did not increase the soil organic P pool due to its low total P concentration, as discussed above [START_REF] Margalef | Global patterns of phosphatase activity in natural soils[END_REF][START_REF] Requejo | Organic and inorganic phosphorus forms in soil as affected by long-term application of organic amendments[END_REF]. In line with the recent efforts directed toward increasing P availability by mobilising recalcitrant soil P [START_REF] Menezes-Blackburn | Opportunities for mobilizing recalcitrant phosphorus from agricultural soils: a review[END_REF], gaining insight into the factors responsible for the higher phosphatase activity in the presence of HS might help develop strategy to transform organic P to inorganic P available for plants. More generally, our data are consistent with the literature showing a positive effect of sewage sludge on the soil enzyme activities, with a positive correlation between rate of sludge application and enzyme activity [START_REF] Fernandes | Effect of sewage sludge on microbial biomass, basal respiration, metabolic quotient and soil enzymatic activity[END_REF][START_REF] Siebielec | Long-term impact of sewage sludge, digestate and mineral fertilizers on plant yield and soil biological activity[END_REF].

4.5. Implications Moving toward more sustainable sources for managing the P nutrition in agroecosystems, it is increasingly suggested to replace mineral fertilizers by P-rich materials originating from waste materials [START_REF] Dawson | Fertiliser availability in a resource-limited world: Production and recycling of nitrogen and phosphorus[END_REF]. In addition to studying the release of available P from these soil amendments, it is however essential to gain further insights into their indirect effects on the soil P pools, especially by paying attention to modifications of soil biota [START_REF] Faucon | Advances and perspectives to improve the phosphorus availability in cropping systems for agroecological phosphorus management[END_REF]. Here, our results showed that changes in soil biological properties after the addition of sewage sludge with high total P concentration (and 20% as organic P) contributed to increase the labile P concentration to a level as high as that of conventional fertiliser. It is necessary, however, to conduct further studies to identify the relative contribution of soilderived P and sludge-derived P to this P lability increase, especially through the use of isotopic labelling techniques.

5. Concluding Remarks This study showed that the impact of sewage sludge with similar P fractions on P dynamics in agroecosystem is predominantly driven by total P concentration in sludge. Our findings suggest that, despite a relatively low water-soluble P concentration, the addition of sewage sludge with high total P concentration and 20% of total P as organic P has a great potential to improve sustainable P fertilisation, since it increased alkaline phosphatase activity and microbial-P, temporarily protecting P from fixation by soil particles. The positive effect of sludge with high total P concentration (and 20% as organic P) on the microbial-P pool and phosphatase activity is a pivotal result to understand the effects of organic waste on agroecosystem functioning, and, ultimately, to improve sustainable P fertilisation. Overall, our results stress the need that sludge provider measure both P concentration and P forms in sludge prior to their application in the field. The perspective is to elucidate the sludge's long-term effects on P pools and availability over the whole crop rotation in several soil types to define new sustainable practices of P fertilisation by taking into account both microbial and plant functional traits involved in P mobilisation/acquisition. 
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Table 1 .

 1 Chemical properties of sludge. I ROC : proportion of stable organic matter; Corg: organic carbon; WSP: Water-soluble phosphorus; AP: Apatite phosphorus; NAIP: Non-apatite inorganic phosphorus; OP: Organic phosphorus. Carbon and P concentrations are expressed in dry matter of sludge (g kg -1 MS). Values in parentheses represent the percentage of P in each fraction (%).

	Tables							
	Sludge I ROC	pH Corg	C/N	WSP	AP	NAIP	OP	Total P
			(g kg -1 )	ratio	(g kg -1 )	(g kg -1 )	(g kg -1 )	(g kg -1 )	(g kg -1 )
	CS	79.9% 7.4 185	9.5	0.03	12.46	0.83	3.32	16.63
					(0.2)	(74.9)	(5.0)	(19.9)
	HS	80.8% 8.4 251	12.3 0.08	32.18	9.49	9.17	50.92
					(0.2)	(63.2)	(18.6)	(18.0)

Table 2 . Summary of Two Way ANOVA analysis.

 2 

			Treatment				Time			Treatment x Time
		Df	MS	F	P	Df	MS	F	P	Df	MS	F	P
	pH	4	0.7383	14.346 ***	4	0.493 9.581	***	16	0.0479 0.931	NS
	Olsen-P	4 128613 104.216 ***	4	52 886 42.854	***	16	9489	7.689	***
	Resin-P	4	296.34	56.393 ***	3	3.33	0.634	NS	12	5.44	1.035	NS
	NaHCO 3-P 4	91.25	27.183 ***	3	199.67 59.478	***	12	5.37	1.599	NS
	NaOH-P	4	89.77	29.82	***	3	23.41 7.776	***	12	5.64	1.874	NS
	HCl-P	4	56.92	1.898	NS	3	153.35 5.114	**	12	18.57 0.619	NS
	Residual-P 4	658.5	18.343 ***	3	577	16.073	***	12	47.3	1.316	NS

NS: non significant; **: P < 0.01; ***: P < 0.001
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