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Abstract

Non-essential silicon (Si) is beneficial to plants. It increases the biomass of Si-accumulator plants by
improving photosynthetic activity and alleviating stresses. Desilication, however, takes place because of
natural soil weathering and removal of harvested biomass. Pyrolysis transforms Si-rich biomass into

biochar that can be used to supply bioavailable Si.

Here, we applied two biochar materials differing in Si content on soils differing in weathering stage: a
young Cambisol and a highly weathered Nitisol. We studied the impact of biochar supply on the
bioavailability of Si, cotton biomass and Si mineralomass. The biochar materials derived from,
respectively: Miscanthus x giganteus —Mi— (34.6 g Si kg™ in biochar) and soft woody material -SW— (0.9
g Si kg in biochar). They were compared to conventional Si fertilizer wollastonite ~-Wo— (CaSiOs).
Amendments were incorporated in soils at the rate of 3% (w/w). The content of bioavailable Si in soil was

determined through 0.01 M CaCl, extraction.

In the Cambisol, the proportion [CaCl, extractable Si: total Si content] was significantly smaller for Mi
(0.9%) than for Wo (5.2%). In the Nitisol, this proportion was much larger for Mi (1.4%) than for Wo
(0.7%). Mi-biochar significantly increased Si-mineralomass relatively to SW-biochar in both soils. This

increase was, however, much larger in the Nitisol (5.9-fold) than in the Cambisol (2.2-fold).

Mi biochar is thus an alternative Si fertilizer to Wo to supply bioavailable Si, increase plant biomass, and
promote the biological cycle of Si in the soil-plant system in the Nitisol. Besides, it increased soil fertility

and soil organic carbon content.

Keywords biochar, bioavailable silicon, soil desilication, cotton
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Introduction

Silicon (Si) is ubiquitous in rocks and soils. Si is not essential, but beneficial to plants. It increases
photosynthetic activity and plant resistance against various biotic and abiotic stresses (Belanger, 1995;
Fauteux et al., 2005; Liang et al., 2007). Aqueous monosilicic acid (H4SiO4°) is ubiquitous in soil solution
where plant roots take it up. In plants, mass flow transports HSiO,’ upwards to transpiration sites.
Therein, water loss increases H,SiO4” concentration, and induces polymerization through Si-O-Si bounds,
and further precipitation of hydrated amorphous silica as phytoliths (amorphous SiO,*nH,0) (Epstein,
1994; Ma et al., 2006). Phytoliths (PhSi) are major biogenic silicate minerals (BSi). They return into the
topsoil with dead plant materials, and further contribute to the pool of dissolved Si (DSi) in soil (Keller et
al., 2012) because of their solubility (Fraysse et al., 2009). They thus supply the pool of bioavailable Si in
soils under forests (Cornelis et al., 2011; Gérard et al., 2008), grasslands (Alexandre et al., 2011; Blecker
et al., 2006; Issaharou-Matchi et al., 2016; White et al., 2012) and croplands either in temperate conditions
(Vandevenne et al., 2015) or in the humid tropics (Henriet et al., 2008). The contribution of PhSi to DSi
pool can be substantially impacted by land use (Bardo et al., 2014; Struyf'et al., 2010), harvest exportation
(Keller et al., 2012; Vandevenne et al., 2015; Vandevenne et al., 2012), soil weathering stage (Henriet et

al., 2008) and, overall, soil processes (Cornelis and Delvaux, 2016).

The regular removal of straws of high-Si accumulator plants combined with natural desilication in freely
drained soils leads to a substantial decrease of PhSi and DSi pools in agroecosystems (Keller et al., 2012;
Struyf et al., 2010; Vandevenne et al., 2015). Si supply may therefore be required to sustain continuous
cropping in highly desilicated soils depleted in weatherable silicate minerals. The use of traditional
amendments raises cost and environmental problems (Berthelsen et al., 2001; Haynes, 2014; Haynes et al.,
2013; Datnoff and Heckman, 2014), prompting us to develop other ways to improve the use of available

biomass.

Biochar is a black carbon used as a soil amendment. It is produced by heating organic matter under
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oxygen-limited conditions. Pyrolysis converts organic substances into stable C compounds, hence
preserves atmospheric C (Lehmann and Joseph, 2015; Lehmann et al., 2011). Applied to soil, biochar
retains and supplies plant nutrients (Glaser et al., 2002; Laird et al., 2010; Lehmann et al., 2003), increases
soil C stock (Lehmann and Joseph, 2015), soil pH and plant growth (Biederman and Harpole, 2013).
Black carbon significantly increases soil cation exchange capacity (CEC) through its large surface charge
density and surface area (Liang et al., 2006). Yet the effect of biochar on plant growth largely depends on
soil properties and biochar types (Biederman and Harpole, 2013; Crane-Droesch et al., 2013; Jeffery et

al., 2011).

Pyrolysis of plant residues concentrates PhSi minerals (Houben et al., 2014) which in turn contribute to
supply DSi (Houben et al., 2014; Xiao et al., 2014), and increase Si uptake by plants (Liu et al., 2014). The
impact of both the PhSi content of biochar and soil silicon availability on plant growth and Si uptake is,
however, unknown. Here, we used two biochars differing in Si content, and apply them on soils differing
in weathering stage, respectively, a young Cambisol and an old, highly weathered, Nitisol. We studied the
release of DSi after biochar application. We further investigated the effect of biochar on soil fertility, plant

biomass and Si mineralomass, and compared it to the one of CaSiO;3-wollastonite.

Materials and methods

Biochar, wollastonite and soils

Biochars and wollastonite. The biochars were produced by industrial pyrolysis (550°C, heating rate

65 °C/min, kiln residence time 12 min) at UK Biochar Research Centre (UKBRC), respectively from
Miscanthus (Miscanthus x giganteus) —Mi— and soft wood (Mixed softwood pellets) -SW— (Table 1). The
wollastonite —Wo— was provided by R.T Vanderbilt Company, Inc. (Norwalk, CT, USA) (Table 1). In the

following text, the biochars and wollastonite are considered as soil amendments.

Soils and soil:amendment mixtures. The two soils key out as, respectively, a Dystric Cambisol (CA) and a

Wiley-VCH
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Rhodic Nitisol (NI) in the WRB system (/USS, 2014). CA (Forest of Lauzelle, Louvain-la Neuve,
Belgium) developed from quaternary calcareous silty loess under humid temperate conditions (7iteux and
Delvaux, 2009). NI is a paleosol from the quarry of Transinne (Belgium), formed under humid tropical
paleo-conditions. The quarry exhibits a deep 65m saprolithic profile derived from Early Devonian
bedrock, containing kaolinite, resistant muscovite and quartz, and Fe oxyhydroxides (Thiry et al., 2006).
The soil samples were air-dried and sieved at 2-mm. The soil:amendment mixtures were made at 100:3

g:g (dry soil weight), and are named CA-Mi, CA-SW, CA-Wo, NI-Mi, NI-SW and NI-Wo.

CaCl, extraction of Si

The extraction was carried out on the Si amendments, soils and soil:amendment mixtures before the cotton
pot experiment. The CaCl,-extractable Si content (CaCl,-Si) was determined using a 5g:50ml (0.01 M
CaCl,) soil:solution ratio, and a 5h continuous shaking time (Haysom and Chapman, 1975). After
centrifuged at 3,000xg for 20 min, the supernatant was separated for analysis. The residues were
submitted to five successive extractions during 5 days. The concentration of Si was measured in each

extract by Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES).

Analyses. pH was measured in, respectively, H,O and KCI 1M, with 5g:25ml suspensions. The CEC and
content of exchangeable cations were determined using CH;COONH, 1M buffered at pH=7 (Chapman,
1965). Elemental analysis was carried out after calcination and Li-metaborate + Li-tetraborate fusion
(Chao and Sanzolone, 1992). The elemental contents were determined by ICP-AES. Elemental contents of
alkaline and alkaline-earth cations were summed up as the total reserve in bases (TRB), which estimates
the content of weatherable minerals (Herbillon, 1986). Total carbon (C) and nitrogen (N) contents were

measured by dry combustion with a CNS analyzer (Flash EA1112 Series).

Scanning Electron Microscopy (SEM). The analyses of biochar particles were performed on specimens

using a JEOL FEG SEM 7600F, equipped with Energy Dispersive X-ray Spectrometry system (EDX, Jeol

Wiley-VCH



oONOULT A WN =

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

Journal of Plant Nutrition and Soil Science

JSM2300 with a resolution < 129 eV) operating at 15 keV with a working distance of 8 mm for the

element detection. The acquisition time for the chemical spectra lasted 100 s with a probe current of 1 nA.

Plant material and analyses, pot experiment

Cotton plant. We used Gossypium hirsutum, var (STAM 59A-Bollgard II) from southern Burkina Faso.

Pot experiment in a phytotron (5 months). The soil:amendment mixtures (100:3 g:g) were irrigated with
deionized water and allowed to equilibrate for a week at 70% of field water holding capacity before
planting. After germination in deionized water, the plantlets were allowed to grow up to 5-cm. They were
then transplanted into pots (7.5 L) containing the respective soil:amendment mixtures (3kg dry weight), in
triplicate under 28°C and relative humidity at 80%. Each pot was watered every three days with 33 ml
deionized water during the first two months, and 100 ml the last three months. No nutrients were supplied.
We collected the aboveground plant part after 5 months for further drying at 55°C during 7 days prior to

biomass weighing.

Analyses. Mineral analysis was carried out after calcination at 450°C for 1 day and fusion in Li-
metaborate + Li-tetraborate at 1,000°C (Chao and Sanzolone, 1992), followed by ash dissolution with
concentrated HNOj;. Element contents were measured by ICP-AES. Element mineralomass was computed

from total element contents and cotton biomass.

Statistical analyses

We used the SPSS 17.0 statistical software to carry out the one-way analysis of variance (ANOVA) (at

2<0.05 level) and LSD (at p<0.05 level).

Results

Properties of the biochars and wollastonite
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As shown in Table 1, the OC content (%) was 84.9 in SW, 77.1 in Mi and 0.6 in Wo. The total N content
(%) was 1.2 in SW and 2.0 in Mi. The contents of CaCl, extractable Si (g kg') were larger in Mi (11.4)
than in Wo (8.8) and SW (0.01). Si content of Wo amounted to 233.3 g kg which was 7 times larger than
that of Mi (34.6 g kg™), and 259 times larger than in SW (0.9 g kg™). The contents of Ca, Mg in Wo were
also significantly larger than in Mi and WS. The contents of K (cmol, kg™") were larger in Mi (14.9) than
in SW (2.6) and Wo (1.1). Figure 1 illustrated the SEM micrographs and associated EDX spectra of
biochar materials SW and Mi. In particular, Fig. 1(f) showed the occurrence of dumbbell-shaped, fine silt-
sized phytoliths in Mi biochar. As inferred from Fig.1 (e), they were abundant and undamaged after

pyrolysis at 550 °C.

Soil and soil:amendment properties

CA and NI are acid soils since their pHy.er values were 4.6 and 5.2, respectively (Table 2). C and N
contents, CEC and contents of exchangeable cations were larger in CA than in NI. Of course, biochar
application resulted in a huge increase in C content while Wo did not. The latter application led to a
marked increase in pH and content of exchangeable Ca. SW application did not generate any change of
pH, CEC, contents of exchangeable cations and base saturation whatever the soil type. To the contrary, Mi
application induced a significant increase of these parameters. In particular, exchangeable K content
(cmol, kg") increased from, respectively 0.2 to 0.97 in CA, and 0.05 t 0.81 in NI. From Total contents of
Al and Fe (g kg") amounted to, respectively, 39.2 and 18.5 in CA, 96.5 and 30.6 in NI (Table 3). Total Si
content (g kg™) in CA and NI was 376.8 and 311.9, respectively. Computed values of Si/(Al+Fe) atomic
ratio were thus larger in CA (7.5) than in NI (2.7). TRB (cmol, kg™") amounted to 112 in CA and 99 in NI.
Residual weatherable minerals in CA were plagioclase and feldspar, and soil clay minerals. From Figure 2,
CA clay minerals consisted of kaolinite and an assemblage of 2:1:1 and 2:1 clay minerals involving
chlorite, illite, vermiculite and smectite. NI distinctly differed by the large dominance of well crystallized
muscovite and kaolinite. In the Nitisol, K was by far the largest dominant cation in TRB, in line with the

occurrence of muscovite, a dioctahedral mica resistant to weathering. The large amount of non-
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exchangeable K (Table 3) thus hided the advanced weathering stage of NI because muscovite is stable and
does not weather in soils. The reserve of weatherable minerals was then estimated by the difference
between TRB and the content of non-exchangeable K, excluding K-bearing muscovite. [TRB-K] (cmol,
kg™) amounted to 72.5 in CA and 22.1 in NI, indicating the strongly advanced weathering stage of NI.
[TRB-K] did not increase following biochar application. To the contrary, wollastonite application
generated a marked increase of total Ca content (cmol, kg™): from 15 to 63 in CA, and from 1 to 48 in NI.
Cumulative CaCl,-Si (mg kg) (Table 3, Figure 3) was significantly larger in CA (34) than in NI (24).
CaCl,-Si significantly (p<0.01) increased after Wo application in CA (398.7) and NI (71.7). Unlike SW,

Mi significantly (p<0.01) increased CaCl,-Si in CA (43.2) and NI (38.5).

Biomass and mineralomass of cotton plants

The cotton biomass (g plant™) was significantly larger in CA (8.6) than in NI (0.32) (Table 4). Mi
significantly increased cotton biomass, by 84% in CA, and 368% in NI. Mi significantly increased plant
mineralomass of Ca, K and Mg in both soils. Plant Si mineralomass (mg plant ™) was, by far, significantly
larger in CA (10.6) than in NI (0.8). Relatively to SW, Mi significantly increased the plant Si content (g Si
kg DW): 0.65 for CA-Mi and 0.74 for NI-Mi, as well as plant Si mineralomass (mg Si plant™): 10.52 for
CA-Mi and 1.12 for NI-Mi). Si mineralomass indeed increased by 120% in CA-Mi and 180% in NI-Mi

relatively to the untreated soils CA and Mi.

Discussion

Weathering stage of soils

The values of TRB and Si/(Al+Fe) ratio as well as the nature of secondary clay minerals are used to
assess soil weathering stage (Herbillon, 1986). Taking into account the stability of muscovite in soils, NI
exhibited an advanced weathering stage characteristic of strongly weathered ferrallitic soils (Herbillon,

1986). In CA, the large dominance of quartz is characteristic of soils of the Belgian loess belt, in which the
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reserve of weatherable minerals is concentrated in the clay fraction (Brahy et al., 2000). CA soil clay
minerals (kaolinite, chlorite, illite, vermiculite and smectite: Figure 2a) revealed a mineralogical
assemblage typical of moderately weathered soils under temperate climates. To the contrary, NI soil clay
minerals (Figure 2b) make an assemblage typical for desilicated, highly weathered soils formed under
humid tropical conditions. Consequently, CaCl,-Si content was significantly larger in CA than in NI

(Figure 3).

Mobility of Si in soil:amendment mixtures

As it is linked to the DSi pool from which plant roots take up Si, CaCl,-Si could quantify the pool of
bioavailable Si in soils (Sauer et al., 2006). Cumulative CaCl,-Si (mg kg') was significantly larger in
soil:Wo (398.7 in CA-Wo, 71.7 in NI-Wo) than in soil:biochar CA-Mi (43.2), NI-Mi (38.5), CA-SW
(30.9) and NI-SW (24.1) (Table 3; Figure 3). Wo is indeed an efficient Si fertilizer releasing bioavailable
Si. For each amendment, CaCl,-Si was systematically smaller in NI:amendment mixtures. Part of HySi04°
released by amendments was undoubtedly adsorbed by oxide surfaces in NI as it commonly occurs in

highly weathered soils (Herbillon et al., 1977).

To further assess Si mobility, we define the efficiency of each amendment (AM) using CaCl,-Si and total

Si contents (Table 3) as follows:

[ CaCl2 — Si in soil: AM] — [CaCl2 — Si in soil]
Total Si content of AM

x 100

In CA, the efficiency of MI was significantly smaller (0.9%) than that of Wo (5.2%). To the contrary, in
NI, Mi efficiency was larger (1.4%) than to the one of Wo (0.7%). Possibly phytolith solubility could be
larger in NI-Mi, because of a larger pH. Besides, the release of bioavailable Si was significantly larger for
Mi than for SW (Figure 3 ¢, d). The ample reserve of PhSi in Mi vs SW (34.6 vs 0.9 g Si kg™, Table 1) and

the accessibility of phytoliths in Mi (Figure 1 e, f) support that phytoliths readily contribute to DSi. They
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resist to pyrolytic temperatures as high as 550°C, and further dissolve to release DSi given their solubility
(Fraysse et al., 2009). Since their dissolution rate increases with increasing pH in the range of pH 3-12
(Fraysse et al., 2006), the ability of phytolith-rich Mi to supply DSi is enhanced by pH increase, especially
in NI, where silica sorption increased pH of surrounding solution. Indeed, Fe oxides adsorb Si in soils

(Jones and Handreck, 1963, 1967) and control DSi (McKeague and Cline, 1963).

The release of bioavailable Si in Mi-amended soils was not affected by soil type and weathering stage.
The biochar derived from high-Si accumulator Miscanthus is thus an alternative Si fertilizer to

wollastonite to supply bioavailable Si in the highly weathered Nitisol.

Effect of biochar amendment on soil properties

As already reported (Sohi et al., 2010; Van Zwieten et al., 2010), biochar application to soils affects their
properties (Table 2). The impact depends, however, on the types of biochar and soil. Supplying ash
biochar induces a change of pH and nutrient availability, (Clarholm, 1994; Mahmood et al., 2003). Here,
applying biochar did not significantly modify CEC in CA. However, it slightly increased CEC in NI, but
only after Mi application, which also increased the contents of exchangeable cations, namely K and Mg in
CA-Mi, and Ca, K, Na and Mg in NI-Mi (Table 2). Such increases were not observed after SW addition.
Since applying Mi increased the effective CEC (ECEC), we hypothesize that it is due to an increase of
surface area and surface charge density of biochar particle, as previously reported for black C (Liang et al.,
2006). The pH rise, in turn, undoubtedly led to increase ECEC (Glaser et al., 2002; Houben et al., 2014;
Laird et al., 2010). Relatively to SW, Mi contained more ashes and initial exchangeable and non-
exchangeable cations (Table 1 and Figure 1). Mi thus had a larger ability to increase pH and ECEC, as
observed by Houben et al. (2014). Furthermore, the improvement of soil properties was more pronounced
in NI-Mi than in CA-Mi. Base saturation (BS %) significantly increased in both CA-Mi and NI-Mi,
reflecting the ability of Mi biochar to enhance nutrient availability (Table 3) as predicted by Liang et al.

(2006) for black C. The larger BS after Mi amendment was due to the larger nutrient content (Ca, Mg and

10
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K) in Mi relatively to SW (Table 1). The impact of Mi biochar on soil fertility was thus positive,

particularly in the highly weathered Nitisol, though at a very low level tested in non-fertilized soil.

Effect of biochar amendment on cotton biomass and Si mineralomass

The amounts of available nutrients (exchangeable Ca, K and Mg) and bioavailable Si were larger in CA
than in NI (Tables 2 and 3). Thus, the cotton biomass and mineralomass were significantly larger in CA

than in NI regardless the type of biochar amendment.

Plant response to biochar amendment varied with the type of biochar (Spokas and Reicosky, 2009) and
application rate (Liu et al., 2013). Mi-biochar increased both the plant biomass and element uptake, as a
result of elevated nutrient availability (Ca, Mg and K). Here, both the Ca, Mg and K mineralomass and
soil Ca, Mg and K contents were significantly larger, respectively, in CA-Mi and NI-Mi than in CA-SW
and NI-SW (Table 2 and Table 4). Nutrients were likely released in soil via the degradation of labile
organic compounds associated with biochar (Rajkovich et al., 2012; Topoliantz et al., 2005; Yamato et al.,
2006). Moreover, biochar amendment promotes plant productivity through the increase of pH, which in
turn increases nutrient availability and/or decrease mineral toxicities (Lehimann et al., 2003; Rondon et al.,
2007; Yamato et al., 2006). Here, the biochar-induced increase of ECEC likely promoted plant growth and
biomass (Table 2 and Table 4) (Major et al., 2010). The marked difference of soil fertility between CA and
NI, discussed above, induced a huge difference in cotton biomass (g plant™): 8.8 in CA vs 0.3 in NI (Table
3 and Table 4). The increase of cotton biomass was 4.7 fold from NI to NI-Mi and 1.8-fold from CA to
CA-Mi, whereas no significant effect was measured after SW amendment. Mi-biochar induced an increase
of CEC and ECEC, and thus improved soil fertility in the highly weathered Nitisol, thereby promoting

plant growth.

Si uptake by cotton plants markedly differed between CA and NI (Figure 4). After Mi application, Si

uptake increased by 5.9-fold in NI, and 2.2-fold in CA, keeping in mind that biomass (g.plant™) (0.2 — 1.5

11
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g.plant') was very low in NI (0.2-1.5) compared to CA (8.8-16.2) (Table 4). As discussed above,
phytoliths were abundant in Mi; they dissolved and released DSi, thereby contributing to the pool of
bioavailable Si, which was readily taken up by plant roots (Figure 1, 2, 3; Table 3). This effect was

particularly important in the highly weathered Nitisol depleted in primary and secondary silicates.

Conclusion

Miscanthus biochar and wollastonite amendments significantly (p<0.01) enhanced the release of CaCl,-
extractable Si in a young Cambisol and an old, highly weathered Nitisol. Soft wood biochar amendment
had no effect on the release of CaCl,-extractable Si in both soils. Miscanthus biochar supply increased
ECEC, particularly the content of exchangeable K, while soft wood biochar did not have any effect on
these parameters whatever the soil type. Both biochar amendments induced a significant effect on C and N
contents in both soils. Miscanthus biochar generated a significant increase of cotton biomass. That
increase was, however, larger in the Nitisol than in the Cambisol, since it was 4.7-fold in the former and
1.8-fold in the latter. In terms of Si uptake after Mi application, the increase in the Nitisol (5.9-fold) was
much larger than in the Cambisol (2.2-fold), supporting a larger efficiency of Si release from Miscanthus

phytoliths in the Nitisol.

Our data thus highlight that Miscanthus biochar is an alternative Si amendment to wollastonite to supply
bio-available Si, increase plant biomass and promote the biological cycle of Si in the soil-plant system.
This positive impact of a Si-rich biochar is, however, larger in the old, desilicated, highly weathered
Nitisol. Overall, it demonstrates that Si is progressively released from phytolith-rich biochar, and directly
contributes to the pool of bioavailable Si for plant root uptake in soil. This is particularly important for
agro-ecosystems in which high-Si accumulator plants grow in highly weathered, desilicated soils. Further
field experiments are required to confirm the effect of phytolith-rich biochar as a Si fertilizer over the
whole plant cycle. Furthermore, the efficiency of various biochar types to release Si and plant nutrients

should be studied.
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422  Tablel. Selected properties of the soft wood (SW), Miscanthus (Mi) biochars and wollastonite (Wo):
423 PHyaer, total contents of Carbon (C), Nitrogen (N), CaCl, extractable Si (CaCl,-Si), major
424 alkaline and alkaline-earth cations (Ca, Mg, K, Na), and silicon (Si).

NOuUh WN =

C N CaCl,-Si Ca Mg Na K Si

H
S mendments P . .
9 H,0 | (%) | gkg' | (gkg)

BW 74 8490 1.5  0.01(0.00)  2.79(0.79)  0.53(0.17)  0.15(0.05) 2.20(0.61)  0.77(0.22)
NI 10.1  77.13 201 11.45(1.05)  6.92(0.10)  2.15(0.10)  0.58(0.03) 14.87(0.16)  34.65(0.23)
WWo 9.1  0.56 nd 8.87(1.04)  314.71(2.54)  10.80(0.06)  <0.01 1.10(0.06)  233.34(2.03)

15 425  Note: nd means not determined,; % Single measurements only.
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Table 2. Selected physico-chemical properties of the untreated soils (Cambisol CA, Nitisol NI) and amended soils, using soft wood (CA-SW, NI-
SW), Miscanthus (CA-Mi, NI-Mi) and wollastonite (CA-Wo, NI-Wo). The average values presented with distinct letters (a, b, ¢) in the
Cambisol and (X, y, z) in the Nitisol are significantly different at the p<0.05 level of confidence according to LSD’s multiple comparison

Page 22 of 28

test.
pH C N CEC Exchan§eable cations BS
Treatments (cmol, kg™)

H,O KCl gkg' Ca™ K" Na' Mg** (%)

CA 4.62(0.02)c  3.72(0.03)c 14.12(1.32)b 1.19(0.05)a 6.67(0.31)b 2.31(0.05)b 0.20(0.02)b 0.04(0.02)c 0.39(0.01)c 44.08

CA-SW 4.72(0.00)c  3.73(0.01)c 30.95(2.38)a 1.22(0.12)a 6.14(0.82)b 2.29(0.07)b 0.22(0.02)b 0.04(0.01)c 0.39(0.01)c 47.88

CA-Mi 5.03(0.03)b 4.08(0.02)b 35.85(2.56)a 1.27(0.35)a 5.98(0.17)b 2.36(0.06)b 0.97(0.20)a 0.07(0.01)b 0.47(0.04)a 64.72
_CA-Wo ___625(001)a _5.36(0.02)a _14.78(1.23)b _1.11(003)a _8.11(0.1Da _5.42(0.13)a_024(0.03)b _ 0.100.01)a_ 0.43(0.00)b__76.32_
NI 5.18(0.04)z 4.32(0.01)z  0.58(0.35)y 0.27(0.02)y 0.68(0.08)z 0.15(0.01)z 0.05(0.02)y 0.01(0.01)z 0.30(0.00)y 75.00

NI-SW 5.45(0.00)z 4.44(0.06)z 26.41(4.56)x 0.53(0.12)x 0.87(0.13)z 0.16(0.02)z 0.07(0.04)y 0.02(0.00)z 0.30(0.00)y 63.22
NI-Mi 6.25(0.10)y 5.79(0.13)y 21.29(3.69)x 0.50(0.11)x 1.04(0.07)y 0.36(0.13)y 0.81(0.55)x 0.07(0.03)x 0.37(0.05)x 154.81
NI-Wo 7.84(0.12)x  6.53(0.10)x  0.85(0.32)y 0.27(0.01)y 1.82(0.03)x 2.89x(0.23) 0.03(0.03)z 0.06(0.01)y 0.28(0.02)z 179.12
18
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Table 3. Total contents of selected major elements and Total Reserve in Bases (TRB) in CA and NI, CA-SW, CA-Mi, CA-Wo; NI-SW, NI-Mi, NI-
Wo). The average values presented with distinct letters (a, b, ¢) in Cambisols and (X, y, z) in Nitisols are significantly different at the
p<0.05 level of confidence according to LSD’s multiple comparison test.

.1 . Total elements TRB? [TI}B- Total elements
Treatments CaCl-Si Total Si Kl Si/(Al+Fe)
(cmol, kg™ (g ke
(mg kg'") (gkg) Ca K Na Mg Al Fe
CA 34.05(1.67)c 376.78 16.50 40.00 29.80  26.00 112.3 72.5 39.21 18.52 7.52
CA-SW 30.95(1.00)c  365.47 16.55 39.06 28.92  25.34) 109.9 70.5 38.02 17.92 7.52
CA-Mi 43.22(1.90)b  366.50 17.08 40.00 28.99 2534 111.4 72.4 38.01 17.93 7.54
._CA-Wo _ _398.69(1.03)a_ _368.74 __63.25_ 3894 _ 2891 _ 2786 __1589 _ 1202 _ 3813 _ _18.00___ _7.57 __
NI 24.03(0.68)z 311.92 1.00 77.60 7.70 13.40 99.7 22.1 96.52 30.61 2.69
NI-SW 24.11(1.04)z  302.57 1.46 75.70 7.47 13.13 97.7 22.0 93.62 29.71 2.69
NI-Mi 38.50(1.52)y 303.60  2.00 76.64 7.54 13.13 99.3 234 93.64 29.73 2.70
NI-Wo 71.702.64)x  305.84 48.16 75.57 7.46 15.64 146.8 71.3 93.73 29.72 2.72

'+ cumulative amount after 5 extractions (see also Figure 3);
2. TRB is the sum of total contents of Ca, Mg, Na and K in soil (Herbillon, 1986);
*: TRB-K is the sum of total contents of Ca, Mg and Na in soil, excluding non-exchangeable K [total K — exchangeable K], associated with

resistant muscovite or oxidized biotite, both dioctahedral micaceous minerals.
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Table 4. Experimental values of cotton biomass, plant contents of Ca, Mg, Na, K, and Si, and element mineralomass (i.e. uptake) in the cotton
plants grown on the untreated soils (Cambisol CA, Nitisol NI), and biochar-amended soils (Miscanthus Mi; Soft Wood SW). The average
values presented with distinct letters (a, b, ¢) in CA and (X, y, z) in NI are significantly different at the p<0.05 level of confidence
according to LSD’s multiple comparison test.

Treatments CA CA-SW CA-Mi NI NI-SW NI-Mi
Biomass g plant’1 8.82(1.10)b 8.63(2.51)b 16.24(2.11a :  0.32(0.07)y 0.24(0.11)y 1.51(0.40)x
Ca 14.64(4.59)a 7.79(0.62)b 13.22(2.05)a 3.16(1.09)y 3.82(1.39)y 11.42(2.46)x
Mg 2.76(0.48)a 2.13(0.30)b 2.48(0.27)a:  1.54(0.00)y 1.30(0.10)y 2.25(0.05)x
Na g kg'1 0.24(0.08)a 0.11(0.02)b 0.09(0.03)b :  0.82(0.01)x  0.58(0.00)y 0.20(0.22)z
K 15.17(3.39)b 15.15(1.33)b 23.03(4.96)a i 10.40(0.01)y  14.51(0.60)y 26.74(1.61)x
Si 0.54(0.16)b 0.46(0.11)b 0.65(0.03)a : 0.58(0.00)y 0.54(0.00)y 0.74(0.11)x
Ca 129.09(25.14)b 67.22(16.59)c  214.73(37.52)a i 1.01(0.22)y  0.92(0.65)y 17.24(4.52)x
Mg 24.35(7.27)bc 18.42(3.05)c 40.25(2.64)a 0.49(0.11)y ~ 0.31(0.16)y 3.41(0.89)x
Na mg plant'1 2.09(0.84)a 0.92(0.32)c 1.53(0.44)b : 0.26(0.05)xy 0.14(0.07)y 0.30(0.07)x
K 133.76(45.57)b  130.78(28.06)b  374.05(79.87)a 3.33(0.72)y 3.48(1.73)y 40.38(10.59)x
Si 4.76(0.32)b 3.93(0.21)c 10.52(2.30)a :  0.19(0.05)y  0.13(0.07)y 1.12(0.12)x
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Figure 1. Scanning electron micrographs (SEM) images of biochar materials from soft wood (a, b), and
Miscanthus (Miscanthus * giganteus) straws (¢, d). e and f are the SEM images of Miscanthus
phytoliths. The energy dispersive X-ray spectra (EDX) (g) collected from f, shows the
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dominance of C, O and Si, hence documenting the presence of phytoliths (SiO,-nH,0).
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Figure 2. XRD patterns of the clay-size fraction (<2 pm) of the Cambisol CA (a) and Nitisol NI (b) after
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K *-saturation at 20, 105, 300 and 550°C; Mg*"-saturation at 20 °C, and saturation with ethylene-

glycol.
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Figure 3. Plot of the cumulative amount of CaCl, extractable Si content against the extraction number (the
Si content at each number is added to the Si contents extracted following the preceding(s)
extraction(s) in (a, b) soil:wollastonite (a, b: NI-Wo and CA-Wo); (c¢) NI, NI-Mi and NI-SW, and

Extraction number (n)

(d) CA, CA-Mi and CA-SW.
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469  Figure 4. Plot of Si uptake by cotton plants against the total reserve of Ca, Mg and Na minerals
470 (excluding K-bearing muscovite) in the Cambisol (CA) and Nitisol (NI).
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