
HAL Id: hal-02176333
https://hal.science/hal-02176333

Preprint submitted on 8 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

HyperPubSub: Blockchain based Publish/Subscribe
Gewu Bu, Thanh Son Lam Nguyen, Maria Potop-Butucaru, Kim Loan Thai

To cite this version:
Gewu Bu, Thanh Son Lam Nguyen, Maria Potop-Butucaru, Kim Loan Thai. HyperPubSub:
Blockchain based Publish/Subscribe. 2019. �hal-02176333�

https://hal.science/hal-02176333
https://hal.archives-ouvertes.fr


HyperPubSub: Blockchain based Publish/Subscribe
Gewu Bu

LIP6
Sorbonne University

Paris, France
Gewu.Bu@lip6.fr

Thanh Son Lam Nguyen
LIP6

Sorbonne University
Paris, France

Thanh-Son-Lam.Nguyen@lip6.fr

Maria Potop-Butucaru
LIP6

Sorbonne University
Paris, France

maria.potop-butucaru@lip6.fr

Kim Loan Thai
LIP6

Sorbonne University
Paris, France

kim.thai@lip6.fr

Abstract—In this paper we describe the architecture and
the implementation of a broker based publish/subscribe system
where the broker role is played by a private blockchain, Hy-
perledger Fabric. We show the effectiveness of our architecture
by implementing and deploying a photo trading plateform.
Interestingly, our architecture is generic enough to be adapted
to any digital asset trading.

Index Terms—Publish/Subscribe, Online Trading, Blockchain,
Hyperledger Fabric

I. INTRODUCTION

Publish/subscribe (e.g. [1]) is a communication primitive
designed for large scale dynamic networks due to the loosely
coupled interaction between the publishers and subscribers. In
this framework, publishers produce events and subscribers ex-
press their interests through subscriptions. Any event matching
the subscription is delivered to the corresponding subscriber.
The matching procedure is executed by brokers, which are also
responsible for the event delivery. In this way, publishers and
subscribers are completely desynchronized in time and space.
Publish/subscribe systems design follow two main research
lines: topic-based and content-based systems. In topic-based
systems events published on a specific topic are forwarded
to all clients subscribed to this topic. In content-based sys-
tems subscribers specify their interests using filters. Many
publish/subscribe systems are based on a fixed infrastructure
of reliable brokers. The broker in a publish/subscribe system
solves the following problem: instead of communicating to
each other directly, both publishers and subscribers will con-
nect to the broker. The broker receives informations sent by
publishers then it filters and transfers received information to
corresponding subscribers. One of the filtering mode is topic
based filtering. In this case, generated information may have
different topic labels defined by publishers. Subscribers will
chose topics they like to follow. The broker filters received
information by topic and delivers it to suitable subscribers.

Even though publish/subscribe systems have been designed
as an alternative communication primitive for large scale churn
prone systems their design philosophy can go beyond the
sending/receiving messages. That is, in recent years, more
and more digital assets are tradable products. Publishers and
subscribers of these valuable digital assets can be therefore
considered as producers and respectively potential customers
on a e-market place that will trade using a broker based
publish/subscribe architecture.

It should be noted that classic publish/subscribe system
do not aim at trading. Therefore, they cannot be easily
adapted to varying industrial requirement including security
and privacy of both clients and providers. That is, broker based
publish/subscribe systems make easy the coupling between
publishers and subscribers during the information delivery
however, they still suffer from many drawbacks, some of them
listed below:

• Delivery failure. During the delivery, if some subscribers
are not available for receiving data, they will lost the
information. The broker has to decide whether and when
it has to re-transfer the information. That requires bro-
kers to keep connected with subscribers and learn their
availability.

• Delivery slowdown. When a hot topic having a lot of
subscribers is published, the broker has to transfer this
information to all its subscribers. That will increase the
traffic load on the network and the delivery delay for
individual subscribers will increase due to the network
capacity limitation.

• Security risks. Lacking of a complete secure design, the
broker becomes the critical single-failure point. Addi-
tional security protocols are needed to ensure the reli-
ability of the system.

In order to circumvent some of the above mentioned
drawbacks we propose a blockchain based publish/subscribe
architecture where the role of the broker is played by a private
blockchain Hyperledger Fabric.

II. BASICS OF HYPERLEDGER FABRIC

Hyperledger Fabric [2], [3] is an open-source private
blockchain framework started at Linux Foundation, designed
for business purpose and now managed by Digital Asset and
IBM. As a private blockchain, Hyperledger Fabric shares
common property with traditional blockchains such as Bitcoin
[4]: information stored on the chain is safe and traceable.
Moreover, all interactions history are permanent and cannot be
changed unless an adversary owns more computation power
than all honest participants.

Hyperledger Fabric is composed of the following building
blocks:

• Membership Service Provider. As a private chain, partic-
ipants in the Hyperledger Fabric can have certain trust



between each others. The Membership Service Provider
(MSP ) module defines relations between participants
and gives them different access rights. Only the nodes
registered via MSP can connect to Hyperledger Fabric.
MSP provides a basic security indentification for the
system.

• Channel. Instead of having one single blockchain,
Hyperledger Fabric maintains simultaneously many
blockchains, different types of information stored in
different blockchains are independent. Participants can
join into one or multi channels according to the business
logic design. So that they can access to the blockchain
corresponding to the channels they belong to.

• Chaincode. For each channel, many Chaincodes (also
called smart contracts) can be installed. Chaincodes are
programs that can be invoked by all participants in the
same channel to interact with the information stored
into the channel. Note that interactions such as: creation,
modification or delete the information will be recorded
in blockchain of the channel.

• Ordering Service. Ordering Service is a consensus mod-
ule. It connects to all the channels. Ordering Service
receives incoming invocations belonging to the same
channel and order them into blocks. Then it diffuses these
blocks to the participants of the channel, so that they can
append the block into their local chain and update stored
information according to the invoked chaincode.

Fig. 1 describes how a block can be added into a channel
in Hyperledger Fabric with three phases: Execution-Ordering-
Validating:

Fig. 1. Three phases architecture of Hyperledger Fabric.

Execution phase. When invoking a chaincode of a channel,
a user (called client) having access to this channel can send
the proposal to the endorser peers (the network participants
who have the chaincode installed) and waits for their reply.
When receiving the proposal, endorsers execute individually
the program according to the invoked chaincode. Endorser
peers sign this endorsement with the result, send it back to

the client as a proposal response. When the client receives
enough responses, it creates an official invoke requirement
(called transaction) that assembles these responses for the next
phase.

Ordering phase. A client sends its transaction to the order-
ing service after finishing the execution phase. The ordering
service orders all submitted transactions per channel and
combines these transactions into blocks.

Validating phase. The ordering service broadcasts blocks to
all the peers in a channel. Then each peer will verify each
transaction in the block. Transactions failing the verification
will be marked as invalid. After the checking, each peer
appends the whole block (including invalid transactions) to its
local blockchain. Note that invalid transaction can be distin-
guished, and will be considered as not existent, so that invalid
invoke requirement will not affect the stored information.

Secure membership management, independent multi-
channel structure and flexible chaincodes make Hyperledger
Fabric become a powerful business logic oriented framework.

III. HYPERPUBSUB DESIGN

In this section we propose a new broker based Pub-
lish/Subscribe system, HyperPubSub, designed on top of
Hyperledger Fabric. HyperPubSub is specifically design to
support trading of digital assets. In order to validate our
architecture we designed a prototype of a online photo trading
plateform.

In HyperPubSub, publishers and subscribers are two types
of clients in Hyperledger Fabric framework: one generates
digital products, the other express their interest to consume
them. The core of Hyperledger Fabric will be the broker in
charge to connect publishers and subscribers matching to the
same topic by joining them into the corresponding channel. By
combining chaincode and multi-blockchain structure, various
topics can be managed safety and independently. In this way,
the Delivery failure and the Delivery slowdown problem in
classic Publish/Subscribe system can be avoided: subscribers
don’t need to receive the information passively. That is,
they can query the information by invoking the chaincode
proactively and individually.

When subscribers decide to buy a digital product published
by publishers, the online trading can be done safely in trading
dedicated channels, isolated from the other channels. All the
trading history and details are stored into a blockchain, so no
one can cheat during the trading.

A. Use Case: an Online Photo Trading Platform

In the following we instantiate HyperPubSub in order
to respond to a practical use case1: an online photo trading
platform that will bring together professional photographers
and press agencies. Photographers (publishers in our architec-
ture) upload their photos and set a price for their products;
customers (subscribers in HyperPubSub) can review photos
according to different categories (topics) and can choose to

1This usecase was proposed to us by Andromak start-up.
http://www.andromak.com



Fig. 2. Architecture of our trading platform.

buy those they wish. This platform makes use of blockchain
technology in order to guarantee that the metadata of a photo
cannot be altered, in the same time it ensures the security of
the online trading and the integrity of the photographers and
customers identities.

In Fig. 2 we represent our architecture. The network topol-
ogy is transparent to the clients. We have several gateways
(F1-F2-F3-F4) that share the connections with the clients. Two
database servers (B) are designed to store the photographs,
one master and one slave for backup. The information of
the clients, their photos, transactions, trades, etc. are managed
by Hyperledger Fabric network (A). This blockchain network
contains orderer nodes (C) which run Raft consensus [5]. In
our prototype we consider only one organization with six
endorser peers nodes (D) and four channels (from E1 to E4).
Each channel contains and runs one chaincode. There are four
independent blockchains: E1 channel stores the information of
the clients; E2 channel contains the meta information of all
photos; E3 channel is dedicated to all trades from customers
to photographers; E4 channel stores extra information that
facilitates the administration of this environment.

Some basic behaviors of two kinds of clients are defined
and programmed. Each of them can create a new account and
login. A photographer can upload a photo from his device to
data base (B), set this photo with three different prices for
three different copyrights. This photo can be set in multiple
categories (topics) (e.g. nature, sport, human, animal).

A customer can see all of the photos and additional in-
formation concerning the photographers so that the customer
can choose one photo and buy it using the HyperPubsub
coins (the crypto money in our system). A customer must
posse an amount of coins superior or equal to the price
value of the photo he wants to trade. Therefore, we created
an application for coins administration. The idea is that, a
customer will use fiat to transfer money to the owner of the
photo. After receiving the money, the owner of the platform
use this application to provide a customer with coins. Here
below is the description of a process to buy a photo:

• A customer uses the application to login. This application
will then connect to the gateway to transfer this cus-

tomer’s login information. Gateway then query to the
our blockchain system to verify the user. In case the
verification succeeds, the gateway queries the list of the
photos from the blockchain system and sends the result
to the customer.

• After logging in, the customer can choose to show a
specific photo category and then can chose the photo to
buy. After validation, the application will connect and
send a query to the gateway. The gateway then connect
to channel E1, E3, E4 and sends corresponding chaincode
queries. After this step, the walled of the customer will be
decreased and atomically the wallet of the photographer
who owns that photo will be increased.

• Data base server will receive the request for downloading
the original photo. It will find that photo in its data base
then send it back to the gateway such that the customer
can download it.

B. Implementation Environment for our prototype.

After having the architecture design above, we begin to
implement in a real environment. We implemented a prototype
where some parts of the above described architecture have
been omitted. We have only one gateway for all photographers
and customers and one database. We deployed our prototype in
two cloud instances, one in Germany (Heidelberg University)
and one is in France (Onelab LIP6) using 2 vCPU (2.6GHz,
4GB of RAM, runs Ubuntu 16.04.5 LTS in each instance.
Our Hyperledger Fabric blockchain network is 1.4.1 version
with RAFT consensus. The application for client as well as
database (file server) are programmed in java, and we NodeJs
for the gateway.

IV. CONCLUSION

In this paper we describe a broker based architecture for
a publish/subscribe system where the broker role is played
by Hyperledger Fabric. We instantiate our architecture for an
online trading photo plateform and implemented a prototype.
Our prototype is currently deployed on two private clouds
running in France and Germany. A demonstration video can
be found here: https://youtu.be/RFLmsSRmyMs.

REFERENCES

[1] K. Birman and T. Joseph, “Exploiting virtual synchrony in distributed
systems,” SIGOPS Oper. Syst. Rev., vol. 21, no. 5, pp. 123–138, Nov.
1987. [Online]. Available: http://doi.acm.org/10.1145/37499.37515

[2] C. Cachin, “Architecture of the hyperledger blockchain fabric,” in Work-
shop on distributed cryptocurrencies and consensus ledgers, vol. 310,
2016, p. 4.

[3] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,
A. De Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich,
S. Muralidharan, C. Murthy, B. Nguyen, M. Sethi, G. Singh, K. Smith,
A. Sorniotti, C. Stathakopoulou, M. Vukolić, S. W. Cocco, and J. Yellick,
“Hyperledger fabric: A distributed operating system for permissioned
blockchains,” in Proceedings of the Thirteenth EuroSys Conference, ser.
EuroSys ’18. New York, NY, USA: ACM, 2018, pp. 30:1–30:15.
[Online]. Available: http://doi.acm.org/10.1145/3190508.3190538

[4] S. Nakamoto et al., “Bitcoin: A peer-to-peer electronic cash system,”
2008. [Online]. Available: https://bitcoin.org/bitcoin.pdf

[5] D. Ongaro and J. Ousterhout, “In search of an understandable
consensus algorithm (extended version),” 2013. [Online]. Available:
https://raft.github.io/raft.pdf

https://youtu.be/RFLmsSRmyMs
http://doi.acm.org/10.1145/37499.37515
http://doi.acm.org/10.1145/3190508.3190538
https://bitcoin.org/bitcoin.pdf
https://raft.github.io/raft.pdf

	Introduction
	Basics of Hyperledger Fabric
	HyperPubSub Design
	Use Case: an Online Photo Trading Platform
	Implementation Environment for our prototype.

	Conclusion
	References

