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Bivariate FCLT for the Sample Quantile and Measures of Dispersion for Augmented GARCH(p, q) processes

Introduction and Notation

Since the introduction of the ARCH and GARCH processes in the seminal papers by Engle, [START_REF] Engle | Autoregressive conditional heteroscedasticity with estimates of the variance of united kingdom inflation[END_REF], and Bollerslev, [START_REF] Bollerslev | Generalized autoregressive conditional heteroskedasticity[END_REF], respectively, various GARCH modifications and extensions have been proposed and their statistical properties analysed (see e.g. [START_REF] Bollerslev | Glossary to arch (garch)[END_REF] for a non-exhaustive ARCH glossary). Conditions for the stationarity of such processes, as well as central limit theorems (CLT) or functional central limit theorems (FCLT) have been obtained in various ways by exploiting the different dependence concepts underlying these GARCH type processes (see the introduction in [START_REF] Lee | Functional central limit theorems for augmented garch (p, q) and figarch processes[END_REF] for references on CLT's under different dependence conditions).

The limit theorems extend also to different estimators apart from the underlying process itself, as for example: Powers of the process (e.g. [START_REF] Örmann | Augmented garch sequences: Dependence structure and asymptotics[END_REF] for augmented GARCH(1,1); [START_REF] Berkes | The functional central limit theorem for a family of garch observations with applications[END_REF], [START_REF] Lee | Functional central limit theorems for augmented garch (p, q) and figarch processes[END_REF] for augmented GARCH(p, q)), sample autocovariance and sample variance (e.g. [START_REF] Mikosch | Limit theory for the sample autocorrelations and extremes of a garch (1,1) process[END_REF] for the GARCH(1,1); [START_REF] Aue | Strong approximation for the sums of squares of augmented garch sequences[END_REF] for augmented GARCH(1,1)), or the sample quantile.

Still, joint asymptotics of such estimators have not been considered yet. It is what we are developing in this paper, providing bivariate functional central limit theorems for the sample quantile with the r-th absolute centred sample moment. This includes the case of the sample variance and also the sample mean absolute deviation around the sample mean (MAD), two well-known and widely used measures of dispersion, extending the results obtained in [START_REF] Br Äutigam | On the dependence between functions of quantile and dispersion estimators[END_REF] for identically and independently distributed (iid) random variables.

Note that the theoretical question arised from previous studies in financial risk management, one (see [START_REF] Br Äutigam | Pro-cyclicality of traditional risk measurements: Quantifying and highlighting factors at its source[END_REF]) where the correlation between a log-ratio of sample quantiles with the sample MAD is measured using log-returns from different stock indices, the other (see [START_REF] Zumbach | Correlations of the realized volatilities with the centered volatility increment[END_REF] and [START_REF] Zumbach | Discrete Time Series, Processes, and Applications in Finance[END_REF]) considering the correlation of 'the realized volatilities with the centred volatility increment' for different underlying processes. Thus, we think that those asymptotic results may be of great use for applications in statistics or other application fields. For instance, coming back to financial risk management and risk measure estimation, we could extend results obtained for the Value-at-Risk, when estimated by the sample quantile, to Expected Shortfall using once again the FCLT.

To cover a broad range of GARCH processes, we focus on so called augmented GARCH(p, q) processes, introduced by Duan in [START_REF] Duan | Augmented garch (p, q) process and its diffusion limit[END_REF]. They contain many well-known GARCH processes as special cases. Previous works on univariate CLT's and stationarity conditions for this class of GARCH processes are, inter alia, [START_REF] Aue | Strong approximation for the sums of squares of augmented garch sequences[END_REF], [START_REF] Berkes | The functional central limit theorem for a family of garch observations with applications[END_REF], [START_REF] Örmann | Augmented garch sequences: Dependence structure and asymptotics[END_REF] and [START_REF] Lee | Functional central limit theorems for augmented garch (p, q) and figarch processes[END_REF].

The structure of the paper is as follows. We present in Section 2 the main results about the bivariate FCLT for the sample quantile and the r-th absolute centred sample moment for augmented GARCH(p, q) processes. Then, we present specific examples of well-known GARCH models in Section 3 and show how the general conditions in the main result translate for these specific cases. The proofs are given in Section 4.

Notation

We introduce the same notation as in [START_REF] Br Äutigam | On the dependence between functions of quantile and dispersion estimators[END_REF]: Let (X 1 , • • • , X n ) be a sample of size n. Assuming the random variables X i 's have a common distribution, denote their parent random variable (rv) X with parent cumulative distribution function (cdf) F X , (and, given they exist,) probability density function (pdf) f X , mean µ, variance σ 2 , and quantile of order p defined as q X (p) := inf{x ∈ R : F X (x) ≥ p}. We denote the ordered sample by X (1) ≤ ... ≤ X (n) .

We consider the sample estimators of the two quantities of interest, i.e. first the sample quantile for any order p ∈ [0, 1] defined as q n (p) = X ( np ) , where x = min {m ∈ Z : m ≥ x}, x = max {m ∈ Z : m ≤ x} and [x], are the rounded-up, rounded-off integer-parts and the nearest-integer of a real number x ∈ R, respectively. Second, the r-th absolute centred sample moment defined, for r ∈ N, by

m(X, n, r) := 1 n n i=1 |X i -Xn | r , (1) 
Xn denoting the empirical mean. Special cases of this latter estimator include the sample variance (r = 2) and the sample mean absolute deviation around the sample mean (r = 1).

Recall the standard notation u T for the transpose of a vector u and, for the signum function, sgn(x) :=

-1I (x<0) + 1I (x>0) . Moreover the notations d →,
a.s.

→ ,

P

→ and

D d [0,1]
→ correspond to the convergence in distribution, almost surely, in probability and in distribution of a random vector in the d-dimensional Skorohod space D d [0, 1]. Further, for real-valued functions f, g, we write f (x) = O(g(x)) (as x → ∞) if and only if there exists a positive constant M and a real number x 0 s.t. |f (x)| ≤ M g(x) for all x ≥ x 0 , and f (x) = o(g(x)) (as x → ∞) if for all > 0 there exists a real number x 0 s.t. |f (x)| ≤ g(x) for all x ≥ x 0 . Analogously, for a sequence of rv's X n and constants a n , we denote by X n = o P (a n ) the convergence in probability to 0 of X n /a n .

The Bivariate FCLT

Let us introduce the augmented GARCH(p, q) process X = (X t ) t∈Z , due to Duan in [START_REF] Duan | Augmented garch (p, q) process and its diffusion limit[END_REF], namely, for integers p ≥ 1 and q ≥ 0, X t satisfies

X t = σ t t (2) with Λ(σ 2 t ) = p i=1 g i ( t-i ) + q j=1 c j ( t-j )Λ(σ 2 t-j ), (3) 
where ( t ) is a series of iid rv's with mean 0 and variance 1, σ 2 t = Var(X t ) and g i , c j , i = 1, ..., p, j = 1, ..., q, are real-valued measurable functions. Also, as in [START_REF] Lee | Functional central limit theorems for augmented garch (p, q) and figarch processes[END_REF], we restrict the choice of Λ to the so-called group of either polynomial GARCH(p, q) or exponential GARCH(p, q) processes (see Figure 1 in the Appendix):

(Lee) Λ(x) = x δ , for some δ > 0, or Λ(x) = log(x).

Clearly, for a strictly stationary solution to (2) and (3) to exist, the functions Λ, g i , c j as well as the innovation process ( t ) t∈Z have to fulfill some regularity conditions (see e.g. [START_REF] Lee | Functional central limit theorems for augmented garch (p, q) and figarch processes[END_REF], Lemma 1). Alike, for the bivariate FCLT to hold, certain conditions need to be fulfilled; we list them in the following. First, conditions concerning the dependence structure of the process X. We use the concept of L pnear-epoch dependence (L p -NED), using a definition due to Andrews in [START_REF] Andrews | Laws of large numbers for dependent non-identically distributed random variables[END_REF] but restricted to stationary processes. Let (Z n ) n∈Z , be a sequence of rv's and F t s = σ(Z s , ..., Z t ), for s ≤ t, the corresponding sigma-algebra. The usual L p -norm is denoted by

• p := E 1/p [|•| p ]. Let us recall the L p -NED definition. Definition 1 (L p -NED, [1]) For p > 0, a stationary sequence (X n ) n∈Z is called L p -NED on (Z n ) n∈Z if it holds, for k ≥ 0, that X 1 -E[X 1 |F n+k n-k ] p ≤ ν(k), for non-negative constants ν(k) such that ν(k) → 0 as k → ∞.
If ν(k) = O(k -τ -) for some > 0, we say that X n is L p -NED of size (-τ ). If ν(k) = O(e -δk ) for some δ > 0, we say that X n is geometrically L p -NED.

The second set of conditions concerns the distribution of the augmented GARCH(p, q) process. We impose three different types of conditions as in the iid case (see [START_REF] Br Äutigam | On the dependence between functions of quantile and dispersion estimators[END_REF]): First, the existence of a finite 2k-th moment for any integer k > 0 for the innovation process ( t ). Then, given that the process X is stationary, the continuity or l-fold differentiability of its distribution function F X (at a given point or neighbourhood) for any integer l > 0, and the positivity of its density f X (at a given point or neighbourhood). Those conditions are named as:

(M k ) E[| 0 | 2k ] < ∞, (C 0 ) F X is continuous, (C l ) F X is l-times differentiable, (P ) f X is positive.
The third type of conditions is set on the parameters and functions of the augmented GARCH(p, q) process of the (Lee) family: Positivity of the functions used and boundedness in L r -norm for either the polynomial GARCH, (P r ), or exponential/logarithmic GARCH, (L r ), respectively, for a given integer r > 0, (A) g i ≥ 0, c j ≥ 0, i = 1, ..., p, j = 1, ..., q,

(P r ) p i=1 g i ( 0 ) r < ∞, q j=1 c j ( 0 ) r < 1, (L r ) E[exp(4r p i=1 |g i ( 0 )| 2 )] < ∞, q j=1 |c j ( 0 )| < 1.
Note that condition (L r ) requires the c j to be constant functions. Now, let us state the main result. To ease its presentation we introduce a trivariate normal random vector (functionals of X), (U, V, W ) T , with mean zero and the following covariance matrix:

(D)                                                                Var(U ) = Var(X 0 ) + 2 ∞ i=1 Cov(X i , X 0 ) Var(V ) = Var(|X 0 | r ) + 2 ∞ i=1 Cov(|X i | r , |X 0 | r ) Var(W ) = Var p -1I (X 0 ≤q X (p)) f X (q X (p)) + 2 ∞ i=1 Cov p -1I (X i ≤q X (p)) f X (q X (p)) , p -1I (X 0 ≤q X (p)) f X (q X (p)) = p(1 -p) f 2 X (q X (p)) + 2 f 2 X (q X (p)) ∞ i=1 E[1I (X 0 ≤q X (p)) 1I (X i ≤q X (p)) ] -p 2 Cov(U, V ) = i∈Z Cov(|X i | r , X 0 ) = i∈Z Cov(|X 0 | r , X i ) Cov(U, W ) = -1 f X (q X (p)) i∈Z Cov(1I (X i ≤q X (p)) , X 0 ) = -1 f X (q X (p)) i∈Z Cov(1I (X 0 ≤q X (p)) , X i ) Cov(V, W ) = -1 f X (q X (p)) i∈Z Cov(|X 0 | r , 1I (X i ≤q X (p)) ) = -1 f X (q X (p)) i∈Z Cov(|X i | r , 1I (X 0 ≤q X (p)) ).
Theorem 2 (bivariate FCLT) Consider an augmented GARCH(p, q) process X as defined in (2) and (3) satisfying condition (Lee), (C 0 ) at the mean µ for r = 1, and both conditions (C 2 ), (P ) at q X (p). Assume also conditions (M r ), (A 0 ), and either (P max(1,r/δ) ) for polynomial GARCH, or (L r ) for exponential GARCH. Introducing the random vector T n,r (X) = q n (p) -q X (p) m(X, n, r) -m(X, r)

, for r ∈ Z, we have the following FCLT:

For t ∈ [0, 1], as n → ∞, √ n t T [nt],r (X) D 2 [0,1] → W Γ (r) (t)
where r) , where

(W Γ (r) (t)) t∈[0,1] is the 2-dimensional Brownian motion with covariance matrix Γ (r) ∈ R 2×2 defined for any (s, t) ∈ [0, 1] 2 by Cov(W Γ (r) (t), W Γ (r) (s)) = min(s, t)Γ (
Γ (r) 11 = Var(W ), Γ (r) 22 = r 2 E[X r-1 0 sgn(X 0 ) r ] 2 Var(U ) + Var(V ) -2r E[X r-1 0 sgn(X 0 ) r ] Cov(U, V ), Γ (r) 12 = Γ (r) 21 = -r E[X r-1 0 sgn(X 0 ) r ] Cov(U, W ) + Cov(V, W ),
(U, V, W ) T being the trivariate normal vector (functionals of X) with mean zero and covariance given in (D), all series being absolute convergent.

Remark 3 Note that for the bivariate FCLT in Theorem 2, apart from (P max (1,r/δ) ) or (L r ) respectively, which are the conditions for the univariate CLT of the r-th centred sample moment, also the conditions (C 0 ) at µ for r = 1, and (C 2 ), (P ) at q X (p), are needed. Requiring (C 2 ), (P ) at q X (p) exactly correspond to the conditions for the CLT of the sample quantile. Hence, the bivariate FCLT between the sample quantile and the r-th absolute centred sample moment does not require any additional condition in comparison to the respective univariate convergence.

Choosing t = 1 in Theorem 2 provides the usual CLT that we state for completeness:

Corollary 4 Consider an augmented GARCH(p, q) process as defined in (2) and (3). Under the same conditions as in Theorem 2, the joint behaviour of the sample quantile q n (p) (for p ∈ (0, 1)) and the r-th absolute centred sample moment m(X, n, r), is asymptotically bivariate normal:

√ n q n (p) -q X (p) m(X, n, r) -m(X, r) d -→ n→∞ N (0, Γ (r) ), (4) 
where the asymptotic covariance matrix

Γ (r) = (Γ (r) ij , 1 ≤ i, j ≤ 2) is as in Theorem 2.
As special case we can also recover the CLT between the sample quantile and the r-th absolute centred sample moment in the iid case, given by Theorem 7 in [START_REF] Br Äutigam | On the dependence between functions of quantile and dispersion estimators[END_REF]:

Corollary 5 Consider an augmented GARCH(p, q) process as defined in (2) and (3), choosing g i , c j , Λ such that σ 2 t is a constant. Under the same conditions as in Theorem 2, the joint behaviour of the sample quantile q n (p) (for p ∈ (0, 1)) and the r-th absolute centred sample moment m(X, n, r), is asymptotically bivariate normal:

√ n q n (p) -q X (p) m(X, n, r) -m(X, r) d -→ n→∞ N (0, Γ (r) ), (5) 
where the asymptotic covariance matrix

Γ (r) = (Γ (r) ij , 1 ≤ i, j ≤ 2) simplifies to Γ (r) 11 = p(1 -p) f 2 X (q X (p)) ; Γ (r) 22 = r 2 E[X r-1 0 sgn(X 0 ) r ] 2 σ 2 + Var(|X 0 | r ) -2r E[X r-1 0 sgn(X 0 ) r ] Cov(X 0 , |X 0 |); Γ (r) 12 = Γ (r) 21 = 1 f X (q X (p)) r E[X r-1 0 sgn(X 0 ) r ] Cov(1I (X 0 ≤q X (p)) , X 0 ) -Cov(1I (X 0 ≤q X (p)) , |X 0 | r ) .
Idea of the proof -Let us briefly describe the idea of the proof of Theorem 2, developed in Section 4.

To prove the FCLT, we need to show that two conditions are fulfilled for the vector T n,r (X). These specific conditions arise from the application of the multivariate FCLT (Theorem A.1 in [START_REF] Aue | Break detection in the covariance structure of multivariate time series models[END_REF], which extends the univariate counterpart from, e.g., Billingsley in [START_REF] Billingsley | Convergence of probability measures[END_REF]) and are the following:

(H 1 ) A representation t j of T n,r with E[t j ] = 0 and E[t 2 j ] < ∞, such that we have, for j ∈ Z 1 n n j=1 t j = T n,r (X) and t j = f ( j , j-1 , ...),
where f : R 2×∞ → R 2 is a measurable function and ( j , j ∈ Z) is a sequence of R 2 -valued iid rv's with mean 0 and variance 1.

(H 2 ) A ∆-dependent approximation of t j , i.e. the existence of a sequence of random vectors t (∆) j , j ∈ Z such that, for any ∆ ≥ 1, we have t (∆) j = f (∆) ( j-∆ , ..., j , ..., j+∆ ), for measurable functions f (∆) : R 2×(∆+1) → R 2 , and

∆≥1 t 0 -t (∆) 0 2 < ∞.
Checking the first condition, (H 1 ), is done in two steps. First, we show why we can use the Bahadur representation of the sample quantile given in [START_REF] Wendler | Bahadur representation for u-quantiles of dependent data[END_REF] (Theorem 1). Second, we prove a corresponding representation for the r-th absolute centred sample moment (extending results from [START_REF] Br Äutigam | On the dependence between functions of quantile and dispersion estimators[END_REF], [START_REF] Segers | On the asymptotic distribution of the mean absolute deviation about the mean[END_REF]). These representations of the sample quantile and r-th absolute centred sample moment then naturally fulfil (H 1 ).

To proof the second condition (H 2 ), we need to find a ∆-dependent approximation t (∆) j . For this, we show that the existence of our chosen t (∆) j can be reduced to the existence of a ∆-dependent approximation for the process X j or powers of the process |X j |, for which results in [START_REF] Lee | Functional central limit theorems for augmented garch (p, q) and figarch processes[END_REF] can be used.

Examples

In this section we review some well-known examples of augmented GARCH(p, q) processes and discuss which conditions these models need to fulfill in order for the bivariate asymptotics of Theorem 2 to be valid.

Note that the moment condition on the innovations, (M r ), as well as the continuity and differentiability conditions, (C 2 ), (P ), each at q X (p), and (C 0 ) at µ for r = 1, remain the same for the whole class of augmented GARCH processes. But, depending on the specifications of the process, (2) and (3), the conditions, (P max(1,r/δ) ) for polynomial GARCH or (L r ) for exponential GARCH respectively, translate differently in the various examples.

For this, we introduce in Table 1 different augmented GARCH(p,q) models by providing for each the corresponding volatility equation, (3), and the specifications of the functions g i and c j . We consider 10 models which belong to the group of polynomial GARCH (Λ(x) = x δ ) and two examples of exponential GARCH (Λ(x) = log(x)). As the nesting of the different models presented is not obvious, we give a schematic overview in Figure 1 in the Appendix. An explanation of the abbreviations for, and authors of, the different models can be found there too. Note that the presented selection of augmented GARCH (p,q) processes is not exhaustive.

Note that in Table 1 the specification of g i is the same for the whole APGARCH family (only the c j change), whereas for the two exponential GARCH models, it is the reverse. The general restrictions on the parameters are as follows: ω > 0, α i ≥ 0, -1 ≤ γ i ≤ 1, β j ≥ 0 for i = 1, ..., p, j = 1, ..., q. Further, the parameters in the GJR-GARCH (TGARCH) are denoted with an asterix (with a plus or minus) as they are not the same as in the other models (see the Appendix for details). 

σ 2δ t = ω + p i=1 αi (|yt-i| -γiyt-i) 2δ + q j=1 βjσ 2δ t-j gi = ω/p and cj = αj (| t-j | -γj t-j ) 2δ + βj AGARCH σ 2 t = ω + p i=1 αi (|yt-i| -γiyt-i) 2 + q j=1 βjσ 2 t-j cj = αj (| t-j | -γj t-j ) 2 + βj GJR-GARCH σ 2 t = ω + p i=1 α * i + γ * i 1I (y t-i <0) y 2 t-i + q j=1 βjσ 2 t-j cj = βj + α * j 2 t-j + γ * j max(0, -t-j ) 2 GARCH σ 2 t = ω + p i=1 αiy 2 t-i + q j=1 βjσ 2 t-j cj = αj 2 t-j + βj ARCH σ 2 t = ω + p i=1 αiy 2 t-i cj = αj 2 t-j TGARCH σt = ω + p i=1 α + i max(yt-i, 0) -α - i min(yt-i, 0) + q j=1 βjσt-j cj = αj| t-j | -αjγj t-j + βj TSGARCH σt = ω + p i=1 αi|yt-i| + q j=1 βjσt-j cj = αj| t-j | + βj PGARCH σ δ t = ω + p i=1 αi|yt-i| δ + q j=1 βjσ δ t-j . cj = αj| t-j | δ + βj VGARCH σ 2 t = ω + p i=1 αi( t-i + γi) 2 + q j=1 βjσ 2 t-j . gi = ω/p + αi( t-i + γi) 2 and cj = βj NGARCH σ 2 t = ω + p i=1 αi(yt-i + γiσt-i) 2 + q j=1 βjσ 2 t-j gi = ω/p and cj = αj( t-j + γj) 2 + βj Exponential GARCH cj = βj and MGARCH log(σ 2 t ) = ω + p i=1 αi log( 2 t-i ) + q j=1 βj log(σ 2 t-j ) gi = ω/p + αi log( 2 t-i ) EGARCH log(σ 2 t ) = ω + p i=1 αi (| t-i| -E| t-i|) + γi t-i + q j=1 βj log(σ 2 t-j ) gi = ω/p + αi(| t-i| -E| t-i|) + γi t-i
In Tables 2 and3 we present how the conditions (P max(1,r/δ) ) or (L r ) translate for each model. Table 2 treats the specific case of an augmented GARCH(p, q) process with p = q = 1 and is presented here whereas Table 3 treats the general case for arbitrary p ≥ 1, q ≥ 0 and is defered to the Appendix. In the first column we consider the conditions for the general r-th absolute centred sample moment, r ∈ N. Of biggest interest to us are the specific cases of the sample MAD (r = 1) and the sample variance (r = 2) as measure of dispersion estimators respectively, presented in the second and third column.

For the selected polynomial GARCH models the requirement p i=1 g i ( 0 ) max(1,r/δ) < ∞ in condition (P max(1,r/δ) ) will always be fulfilled. Thus, we only need to analyse the condition q j=1 c j ( 0 ) max(1,r/δ) < 1.

Note that in Table 2 (and also Table 3) the restrictions on the parameter space, given by (P max(1,r/δ) ) or (L r ) respectively, are the same as the conditions for univariate FCLT's of the process X r t itself (see [START_REF] Berkes | The functional central limit theorem for a family of garch observations with applications[END_REF], [START_REF] Örmann | Augmented garch sequences: Dependence structure and asymptotics[END_REF]). For r = 1, they coincide with the conditions for e.g. β-mixing with exponential decay (see [START_REF] Carrasco | Mixing and moment properties of various garch and stochastic volatility models[END_REF]). Table 2: Conditions (P max (1,r/δ) ) or (L r ) respectively translated for different augmented GARCH(1,1) models. Left column for the general r-th absolute centred sample moment, middle for the MAD (r = 1) and right for the variance (r = 2).

augmented GARCH (1, 1) r ∈ N r = 1 r = 2 APGARCH E[|α 1 (| 0 | -γ 1 t-1 ) 2δ + β 1 | r ] < 1 α 1 E (| 0 | -γ 1 t-1 ) 2δ + β 1 < 1 E[|α 1 (| 0 | -γ 1 t-1 ) 2δ + β 1 | 2 ] < 1 AGARCH E[|α 1 (| 0 | -γ 1 t-1 ) 2 + β 1 | r ] < 1 α 1 E (| 0 | -γ 1 t-1 ) 2 + β 1 < 1 E[|α 1 (| 0 | -γ 1 t-1 ) 2 + β 1 | 2 ] < 1 GJR-GARCH E[|α * 1 2 0 + β 1 + γ * 1 max(0, -2 0 )| r ] < 1 α * 1 + β 1 + γ * 1 E[max(0, -0 ) 2 ] < 1 E[|α * 1 2 0 + β 1 + γ * 1 max(0, -2 0 )| 2 ] < 1 GARCH E[(α 1 2 0 + β 1 ) r ] < 1 α 1 + β 1 < 1 α 2 1 E[ 4 0 ] + α 1 β 1 + β 2 1 < 1 ARCH α r 1 E[ 2r 0 ] < 1 α 1 < 1 α 2 1 E[ 4 0 ] < 1 TGARCH E[|α 1 | t-1 | -α 1 γ 1 t-1 + β 1 | r ] < 1 α 1 E| t-1 | + β 1 < 1 E[|α 1 | t-1 | -α 1 γ 1 t-1 + β 1 | 2 ] < 1 TSGARCH E[|α 1 | t-1 | + β 1 | r ] < 1 α 1 E| t-1 | + β 1 < 1 E[|α 1 | t-1 | + β 1 | 2 ] < 1 PGARCH E[|α 1 | 0 | + β 1 | 2r ] < 1 α 1 + 2α 1 β 1 E| 0 | + β 2 1 < 1 E[|α 1 | 0 | + β 1 | 4 ] < 1 VGARCH for any r ∈ N: β 1 < 1 NGARCH E[|α 1 ( 0 + γ 1 ) 2 + β 1 | r ] < 1 α 1 (1 + γ 2 1 ) + β 1 < 1 E[|α 1 ( 0 + γ 1 ) 2 + β 1 | 2 ] < 1 MGARCH for any r ∈ N: E[exp(4r|ω/p + α 1 log( 2 0 )| 2 )] < ∞ and |β 1 | < 1 EGARCH for any r ∈ N: E[exp(4r|ω/p + α 1 (| 0 | -E| 0 |) + γ 1 0 | 2 )] < ∞ and |β 1 | < 1

Proofs

Before stating the proof of the main theorem, let us start with two auxiliary results. As it requires some work to find the asymptotics of m(X, n, r) = 1 n n i=1 |X i -Xn | r for any integer r ≥ 1, and such a result is of interest in its own right, we give it separately in Proposition 7. To prove it, we need the following Lemma, which extends Lemma 2.1 in [START_REF] Segers | On the asymptotic distribution of the mean absolute deviation about the mean[END_REF] (case v = 1) to any moment v ∈ N, and the iid case presented in Lemma 8 in [START_REF] Br Äutigam | On the dependence between functions of quantile and dispersion estimators[END_REF]. Lemma 6 Consider a stationary and ergodic time-series (X n , n ≥ 1) with parent rv X. Then, for v = 1 or 2, given that the 2nd moment of X exists, or, for any integer v > 2, given that the v-th moment of X exists, it holds, as n → ∞, almost surely that

1 n n i=1 (X i -µ) v |X i -Xn | -|X i -µ| = ( Xn -µ) E[(X -µ) v sgn(µ-X)]+o P (1) +o P (1/ √ n). (6) 
Proof of Lemma 6. The proof starts exactly as its equivalent in the iid case; see proof of Lemma 8 in [START_REF] Br Äutigam | On the dependence between functions of quantile and dispersion estimators[END_REF]. The argumentation needs to be adapted at the end in two points, using the stationarity and ergodicity of the process. Here, it follows by ergodicity and stationarity that √ n| Xn -µ| v+1 P → n→∞ 0 for any integer v ≥ 1. Further, as a last step, we use the ergodicity of the process, instead of the law of large numbers, to conclude that

1 n n i=1 (X i -µ) v sgn(µ -X i ) a.s. → n→∞ E[(X -µ) v sgn(µ -X)].
Now we are ready to state the asymptotic relation between the r-th absolute centred sample moment with known and unknown mean, respectively. This enables us to compute the asymptotics of m(X, n, r). As for Lemma 6, it is an extension to the stationary and ergodic case of Proposition 9 in the iid case [START_REF] Br Äutigam | On the dependence between functions of quantile and dispersion estimators[END_REF].

Proposition 7 Consider a stationary and ergodic time series (X n , n ≥ 1) with parent rv X. Then, given that the r-th moment of X exists, with r ∈ N, it holds, as n → ∞, that

√ n 1 n n i=1 |X i -Xn | r = √ n 1 n n i=1 |X i -µ| r -r √ n( Xn -µ) E[(X-µ) r-1 sgn(X-µ) r ]+o P (1).
Proof of Propostion 7. The proof can be extended from the proof of Proposition 9 in the iid case in [START_REF] Br Äutigam | On the dependence between functions of quantile and dispersion estimators[END_REF]. We distinguish again three different cases for r: Even integers r, r = 1, and odd integers r > 1.

Whereas the first two cases (r even and r = 1) hold true without modifications from the iid case, for odd integers r > 1, we point out the three differences to the proof in the iid case. First, √ n( Xn -µ) v P → 0, for v ≥ 2, follows from the stationarity and ergodicity of the process. Second, we use the ergodicity instead of the law of large numbers. Third, we use Lemma 6 instead of its counterpart in the iid case, Lemma 8 in [START_REF] Br Äutigam | On the dependence between functions of quantile and dispersion estimators[END_REF].

Proof of Theorem 2. The proof consists of four steps. We first show that the process (X t ) fulfils the conditions required for having a Bahadur representation of the sample quantile, second, that a similar representation holds for the r-th absolute centred sample moment, third, the construction of a so called ∆-dependent approximation, which we then use in the fourth step for a multivariate FCLT.

Step 1: Bahadur representation of the sample quantile -conditions. The Bahadur representation of the sample quantile is well known, see e.g. Theorem 1 of [START_REF] Wendler | Bahadur representation for u-quantiles of dependent data[END_REF]. It holds under some conditions that we need to verify. For the ease of comparison, we adapt some of the notation of Theorem 1, [START_REF] Wendler | Bahadur representation for u-quantiles of dependent data[END_REF]. We have the following:

-Choosing the bivariate function g(x, t) := 1I (x≤t) , the non-negativity, boundedness, measurability, and non-decreasingness in the second variable, are straightforward. The function g also satisfies the variation condition uniformly in some neighbourhood of q X (p) if it is Lipschitz-continuous (see Example 1.5 in [START_REF] Wendler | Bahadur representation for u-quantiles of dependent data[END_REF]). But the latter follows from condition (C 2 ). -The differentiability of E[g(X, t)] = F X (t) and positivity of its derivative at t = q X (p) are given by condition (P ) at q X (p). -Equation ( 12) in [START_REF] Wendler | Bahadur representation for u-quantiles of dependent data[END_REF] is fulfilled as, by our assumption (C 2 ), F X is twice differentiable in q X (p) (see Remark 2, [START_REF] Wendler | Bahadur representation for u-quantiles of dependent data[END_REF]). -The stationarity of the process follows from assumption (P max(1,r/δ) ) or (L r ), respectively, and Lemma 1 of [START_REF] Lee | Functional central limit theorems for augmented garch (p, q) and figarch processes[END_REF]. -Lastly, let us verify that the process (X t ) is L 1 -NED with polynomial rate. Denoting, for s ≤ t, the sigma-algebra F t s = σ( s , ..., t ), we can write for any integer ∆ ≥ 1

X t -E[X t |F t+∆ t-∆ ] 2 2 = σ t -E[σ t |F t+∆ t-∆ ] 2 2 E[ 2 t ]. But E[ 2 t ] < ∞ since (M r ) holds. Notice that the property of being geometrically L 2 -NED, E[σ t |F t+∆ t-∆ ] 2 = O(e -κ∆
) for some κ > 0, implies L 1 -NED with polynomial rate, as

σ t -E[σ t |F t+∆ t-∆ ] 1 ≤ σ t -E[σ t |F t+∆ t-∆ ] 2 = O(e -κ∆ ) = O(∆ -(β+3) ), (7) 
for some β > 3. So it suffices showing that σ t is geometrically L 2 -NED. For the polynomial GARCH, it follows from Corrollary 1 in [START_REF] Lee | Functional central limit theorems for augmented garch (p, q) and figarch processes[END_REF], which can be applied as (A 0 ) and (P 1 ) hold. For the logarithmic GARCH case, it follows from Corrollary 3 in [START_REF] Lee | Functional central limit theorems for augmented garch (p, q) and figarch processes[END_REF] as (A 0 ) and (L r ) hold.

Thus, we can use Theorem 1 of [START_REF] Wendler | Bahadur representation for u-quantiles of dependent data[END_REF] and write, a.s., as n → ∞,

q n (p) -q X (p) + F (q X (p)) -F n (q X (p)) f X (q X (p)) = o n -5 8 -1 8 γ (log n) 3 4 (log log n) 1 2 ) , (8) 
for some γ ≥ 1/5.

Step 2: Representation of the r-th absolute centred sample moment -conditions. The representation being given in Proposition 7 under some conditions, we only need to check that we fulfil them.

-The stationarity of the process is satisfied under (P max(1,r/δ) ) or (L r ) as observed in Step 1.

-For the moment condition and ergodicity, we simply verify that the conditions for a CLT of X r t (or |X t | r ) are fulfilled, distinguishing between the polynomial and logarithmic case. Conditions (M r ), (A), (P max(1,r/δ) ) in the polynomial case, and (M r ), (A), (L r ) in the logarithmic case respectively, imply the CLT, using Corollary 2 and 3 in [START_REF] Lee | Functional central limit theorems for augmented garch (p, q) and figarch processes[END_REF], respectively.

Step 3: Conditions for applying the FCLT To use a multivariate FCLT, we need to verify the two conditions (H 1 ) and (H 2 ) given after Theorem 2.

In fact we adapt them to a three-dimensional version to simplify the computation, then apply the continuous mapping theorem to get back a two-dimensional representation. This will be made explicit in Step 4.

Condition (H 1 ) translates to first finding a representation u j such that

E[u j ] = 0, E[u 2 j ] < ∞, u j = f ( j , j-1 , ...), j ∈ Z, (9) 
where f : R 3×∞ → R 3 is a measurable function and ( j , j ∈ Z) a sequence of R 3 -valued iid rv's with mean 0 and variance 1. Second, condition (H 2 ) comes back to finding a ∆-dependent approximation u (∆) j such that, for any integer ∆ ≥ 1, it holds, for j ∈ Z, u (∆) j = f (∆) ( j-∆ , ..., j , ..., j+∆ )

and

∆≥1 u 0 -u (∆) 0 2 < ∞, (11) 
where f (∆) : R 3×(2∆+1) → R 3 is a measurable function.

Therefore, let us define, anticipating its use in Step 4 for the FCLT,

u j =    X j |X j | r -m(X, r) p-1 I (X j ≤q X (p)) f X (q X (p))    .
We need to verify that u j fulfils ( 9):

E[u j ] = 0 holds by construction. E[|X j | 2r ] < ∞ is guaranteed since |X t | r satisfies a CLT (see Step 2), thus also E[u 2 j ] < ∞.
Finally X j = f ( j , j-1 , ...) follows from Lemma 1 in [START_REF] Lee | Functional central limit theorems for augmented garch (p, q) and figarch processes[END_REF], as we assume (A). Hence, this latter relation also holds for functionals of X j , so for u j .

Then, we define a ∆-dependent approximation u (∆) 0 satisfying [START_REF] Carrasco | Mixing and moment properties of various garch and stochastic volatility models[END_REF] and [START_REF] Ding | A long memory property of stock market returns and a new model[END_REF]. Denote, for the ease of notation, X 0∆ := E[X 0 |F +∆ -∆ ], and set u

(∆) 0 =    X 0∆ E[|X 0 | r |F +∆ -∆ ] -m(X, r) p-1 I (X 0∆ ≤q X (p)) f X (q X (p))    with F t s = σ( s , ..., t )
for s ≤ t. Thus, ( 10) is fulfilled by construction. Let us verify [START_REF] Ding | A long memory property of stock market returns and a new model[END_REF]. We can write

∆≥1 u 0 -u (∆) 0 2 = ∆≥1 E (X 0 -X 0∆ ) 2 + |X 0 | r -E[|X 0 | r |F +∆ -∆ ] 2 + 1 f 2 X (q X (p)) -1I (X 0 ≤q X (p)) + 1I (X 0∆ ≤q X (p)) 2 1/2 ≤ ∆≥1 X 0 -X 0∆ 2 + |X 0 | r -E[|X 0 | r |F +∆ -∆ ] 2 + 1 f X (q X (p)) -1I (X 0 ≤q X (p)) + 1I (X 0∆ ≤q X (p)) 2 . (12) 
Noticing that

|-1I (X 0 ≤q X (p)) + 1I (X 0∆ ≤q X (p)) | = 1I (X 0∆ >q X (p)≥X 0 ) + 1I (X 0 >q X (p)≥X 0∆ ) ≤ 1I (X 0∆ -X 0 >0) 1I (q X (p)-X 0 ≥0) + 1I (0>q X (p)-X 0 ) 1I (0>X 0∆ -X 0 ) = 1I (X 0 ≤q X (p)) (1I (X 0∆ -X 0 >0) -1I (0>X 0∆ -X 0 ) ) + 1I (0>X 0∆ -X 0 ) ≤ 1I (X 0 ≤q X (p)) 1I (|X 0∆ -X 0 |>0) + 1I (|X 0∆ -X 0 |>0) ≤ 21I (|X 0∆ -X 0 |>0) , (13) 
we deduce that

-1I (X 0 ≤q X (p)) + 1I (X 0∆ ≤q X (p)) 2 ≤ E[21I (|X 0∆ -X 0 |>0) ] = √ 2 P(|X 0∆ -X 0 | > 0).
But, by the Markov inequality and Jensen's inequality, we have, for any > 0,

P(|X 0∆ -X 0 | ≥ ) ≤ X 0∆ -X 0 1 ≤ X 0∆ -X 0 2 . (14) 
Thus, we can reduce [START_REF] Duan | Augmented garch (p, q) process and its diffusion limit[END_REF] to

∆≥1   u 0 -u (∆) 0 2 ≤ ∆≥1 X 0 -X 0∆ 2 + |X 0 | r -E[|X 0 | r |F +∆ -∆ ] 2 + √ 2 f X (q X (p)) P(|X 0∆ -X 0 | > 0)   .
(15) Assuming that X 0 is geometrically L 2 -NED, i.e. X 0∆ -X 0 2 = O(e -κ∆ ) for some κ > 0, implies by ( 14) that ∆≥1 P(|X 0∆ -X 0 | ≥ ) < ∞ holds for any > 0. Hence, we will have shown that

∆≥1 P (|X 0∆ -X 0 | > 0) < ∞, reducing the finiteness of ∆≥1 -1I (X 0 ≤q X (p)) + 1I (X 0∆ ≤q X (p)) 2 to X 0 being geometrically L 2 -NED.
Therefore, a sufficient condition for the finiteness of ( 15) is the geometric L 2 -NED of X 0 and |X r 0 | respectively. This condition is satisfied, on the one hand in the polynomial case under (M r ), (A 0 ) and (P max(1,r/δ) ) via Corollary 2 in [START_REF] Lee | Functional central limit theorems for augmented garch (p, q) and figarch processes[END_REF], on the other hand under (M r ), (A 0 ) and (L r ) via Corollary 3 in [START_REF] Lee | Functional central limit theorems for augmented garch (p, q) and figarch processes[END_REF].

Step 4: Multivariate FCLT Finally, we can apply a trivariate FCLT for u j using Theorem A.1 from [START_REF] Aue | Break detection in the covariance structure of multivariate time series models[END_REF], as equations ( 9), [START_REF] Carrasco | Mixing and moment properties of various garch and stochastic volatility models[END_REF], [START_REF] Ding | A long memory property of stock market returns and a new model[END_REF] are exactly the conditions needed in this theorem. Note that we adapted (10) from originally being u (∆) j = f (∆) ( j , ..., j-∆ ). Indeed, it is straightforward to show that the proof of [START_REF] Aue | Break detection in the covariance structure of multivariate time series models[END_REF] still holds with this modification.

Using the Bahadur representation (8) of the sample quantile (ignoring the rest term for the moment), we can state:

√ n 1 n [nt] j=1 u j = √ n t    X[nt] 1 [nt] [nt] j=1 |X j | r -m(X, r) p-F [nt] (q X (p)) f X (q X (p))    D 3 [0,1] → W Γ(r) (t) as n → ∞, (16) 
where W Γ(r) (t), t ∈ [0, 1] is the 3-dimensional Brownian motion with covariance matrix Γ(r) ∈ R 3×3 , i.e. the components Γ(r) ij , 1 ≤ i, j ≤ 3, satisfy the dependence structure (D), with all series being absolutely convergent. By the multivariate Slutsky theorem, we can add 

√ n t    X[nt] -µ 1 [nt] [nt] j=1 |X j | r -m(X, r) p-F [nt] (q X (p)) f X (q X (p))   + √ n t   0 0 R [nt],p   = √ n t    X[nt] -µ 1 [nt] [nt] j=1 |X j | r -m(X, r) q [nt] (p) -q X (p)    D 3 [0,1]
→ W Γ(r) (t). [START_REF] Higgins | A class of nonlinear arch models[END_REF] Recalling the representation of m(X, n, r) in Proposition 7, we apply to [START_REF] Higgins | A class of nonlinear arch models[END_REF] the multivariate continuous mapping theorem using the function f (x, y, z) → (ax + y + b, z) with a = -r E[(X -µ) r-1 sgn(Xµ) r ] and b = o P (1/ √ n), and obtain

√ n t a( X[nt] -µ) + 1 [nt] [nt] j=1 |X j | r -m(X, r) + b q [nt] (p) -q X (p) = √ n t m(X, [nt], r) -m(X, r) q [nt] (p) -q X (p) D 2 [0,1]
→ W Γ (r) (t).

(18) where Γ (r) follows from the specifications of Γ(r) above and the continuous mapping theorem.
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Appendix A Different Augmented GARCH models

As mentioned in the paper, we give an overview over the acronyms, authors and relation to each other of the augmented GARCH processes used. The restrictions on the parameters, if not specified differently, are ω ≥ 0, α i ≥ 0, -1 ≤ γ i ≤ 1, β j ≥ 0 for i = 1, ..., p, j = 1, ..., q.

• APGARCH: Asymmetric power GARCH, introduced by Ding et al. in [START_REF] Ding | A long memory property of stock market returns and a new model[END_REF]. One of the most general polynomial GARCH models.

• AGARCH: Asymmetric GARCH, defined also by Ding et al. in [START_REF] Ding | A long memory property of stock market returns and a new model[END_REF], choosing δ = 1 in APGARCH.

• GJR-GARCH: This process is named after its three authors Glosten, Jaganathan and Runkle and was defined by them in [START_REF] Glosten | On the relation between the expected value and the volatility of the nominal excess return on stocks[END_REF]. For the parameters

gives back the well-known GARCH(p, q) process by Bollerslev in [START_REF] Bollerslev | Generalized autoregressive conditional heteroskedasticity[END_REF].

• ARCH: Introduced by Engle in [START_REF] Engle | Autoregressive conditional heteroscedasticity with estimates of the variance of united kingdom inflation[END_REF]. We recover it by setting all γ i = β j = 0, ∀i, j.

• TGARCH: Choosing δ = 1/2 in the APGARCH model leads us the so called threshold GARCH (TGARCH) by Zakoian in [START_REF] Zakoian | Threshold heteroskedastic models[END_REF]. For the parameters

• TSGARCH: Choosing γ i = 0 in the TGARCH model we get, as a subcase, the TSGARCH model, named after its authors, i.e. Taylor, [START_REF] Taylor | Modelling financial time series[END_REF], and Schwert, [START_REF] Schwert | Why does stock market volatility change over time[END_REF].

• PGARCH: Another subfamily of the APGARCH processes is the Power-GARCH (PGARCH), also called sometimes NGARCH (i.e. non-linear GARCH) due to Higgins and Bera in [START_REF] Higgins | A class of nonlinear arch models[END_REF].

• VGARCH: The volatility GARCH (VGARCH) model by Engle and Ng in [START_REF] Engle | Measuring and testing the impact of news on volatility[END_REF] is also a polynomial GARCH model but is not part of the APGARCH family.

• NGARCH: This non-linear asymmetric model is due to Engle and Ng in [START_REF] Engle | Measuring and testing the impact of news on volatility[END_REF], and sometimes also called NAGARCH.

• MGARCH: This model is called multiplicative or logarithmic GARCH and goes back to independent suggestions, in slightly different formulations, of Geweke in [START_REF] Geweke | Modeling the persistence of conditional variances: a comment[END_REF], Pantula in [START_REF] Pantula | Modeling the persistence of conditional variances: a comment[END_REF] and Milhøj in [START_REF] Milhøj | A multiplicative parameterization of arch models[END_REF].

• EGARCH: This model is called exponential GARCH, introduced by Nelson in [START_REF] Nelson | Conditional heteroskedasticity in asset returns: A new approach[END_REF].

Then we give a schematic overview of the nesting of the different models in Figure 1.

Lastly, we present in Table 3 how the conditions (P max (1,r/δ) ) or (L r ) respectively translate for those augmented GARCH(p,q) processes -this is the generalization of Table 2. As, in contrast to Table 2, we do not gain any insight by considering the choices of r = 1 or r = 2, we only present the general case, r ∈ N.

When p = q we need to consider coefficients α j , β j , γ j for j = 1, ..., max (p, q). In case they are not defined, we set them equal to 0.
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