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Sequence-based GWAS, network 
and pathway analyses reveal genes 
co-associated with milk cheese-making 
properties and milk composition 
in Montbéliarde cows
Marie‑Pierre Sanchez1*, Yuliaxis Ramayo‑Caldas1, Valérie Wolf2, Cécile Laithier3, Mohammed El Jabri3, 
Alexis Michenet1,4, Mekki Boussaha1, Sébastien Taussat1,4, Sébastien Fritz1,4, Agnès Delacroix‑Buchet1, 
Mickaël Brochard5 and Didier Boichard1

Abstract 

Background: Milk quality in dairy cattle is routinely assessed via analysis of mid‑infrared (MIR) spectra; this approach 
can also be used to predict the milk’s cheese‑making properties (CMP) and composition. When this method of 
high‑throughput phenotyping is combined with efficient imputations of whole‑genome sequence data from cows’ 
genotyping data, it provides a unique and powerful framework with which to carry out genomic analyses. The goal of 
this study was to use this approach to identify genes and gene networks associated with milk CMP and composition 
in the Montbéliarde breed.

Results: Milk cheese yields, coagulation traits, milk pH and contents of proteins, fatty acids, minerals, citrate, and 
lactose were predicted from MIR spectra. Thirty‑six phenotypes from primiparous Montbéliarde cows (1,442,371 test‑
day records from 189,817 cows) were adjusted for non‑genetic effects and averaged per cow. 50 K genotypes, which 
were available for a subset of 19,586 cows, were imputed at the sequence level using Run6 of the 1000 Bull Genomes 
Project (comprising 2333 animals). The individual effects of 8.5 million variants were evaluated in a genome‑wide 
association study (GWAS) which led to the detection of 59 QTL regions, most of which had highly significant effects 
on CMP and milk composition. The results of the GWAS were further subjected to an association weight matrix and 
the partial correlation and information theory approach and we identified a set of 736 co‑associated genes. Among 
these, the well‑known caseins, PAEP and DGAT1, together with dozens of other genes such as SLC37A1, ALPL, MGST1, 
SEL1L3, GPT, BRI3BP, SCD, GPAT4, FASN, and ANKH, explained from 12 to 30% of the phenotypic variance of CMP traits. 
We were further able to identify metabolic pathways (e.g., phosphate and phospholipid metabolism and inorganic 
anion transport) and key regulator genes, such as PPARA , ASXL3, and bta‑mir‑200c that are functionally linked to milk 
composition.

Conclusions: By using an approach that integrated GWAS with network and pathway analyses at the whole‑genome 
sequence level, we propose candidate variants that explain a substantial proportion of the phenotypic variance of 
CMP traits and could thus be included in genomic evaluation models to improve milk CMP in Montbéliarde cows.
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Background
About 40% of the bovine milk produced worldwide is 
processed into cheese; because of this, the cheese-mak-
ing properties (CMP) of bovine milk are economically 
important for the dairy industry. Direct measurement 
of CMP is costly and time-consuming, and cannot be 
obtained on a very large scale. However, mid-infrared 
(MIR) spectrometry, which is already widely employed 
to predict milk composition, has been shown to provide 
indirect measures of CMP that are sufficiently reliable to 
be used in genetic analyses [1]. Indeed, because of their 
strong dependence on milk composition traits [2], milk 
CMP, especially cheese yields and coagulation properties, 
can be routinely assessed at low cost from MIR spectra 
[3]. The information obtained from high-throughput 
MIR spectra can then be combined with genotypic data 
from cows that are generated for the purpose of genomic 
selection to provide a unique resource for large-scale 
genomic analyses of CMP aimed at identifying the genes 
involved in the genetic determinism of these traits.

Genomic regions containing quantitative trait loci 
(QTL) that affect traits of interest, such as CMP, can 
be identified by genome-wide association studies 
(GWAS). By combining the results of genotyping for 
genomic selection with reference data from the 1000 
Bull Genomes Project, it becomes possible to carry out 
GWAS on imputed whole-genome sequences (WGS) 
that should contain the causative mutations for traits of 
interest [4]. However, even if these analyses are carried 
out at the sequence level, GWAS alone is generally not 
sufficient to identify causative genes, let alone causative 
variants for complex and polygenic traits. Indeed, due to 
the long-range linkage disequilibrium (LD) in dairy cat-
tle, many variants with almost identical P-values that are 
potentially located in more than one gene or in intergenic 
regions are generally found in a QTL region, which com-
plicates identification of the causative mutations. More-
over, complex traits are typically influenced by many 
genomic regions, most of which explain only a small pro-
portion of the phenotypic variance and are thus difficult 
to detect by GWAS. Finally, GWAS performed on a single 
trait and single marker cannot take either the pleiotropic 
effects of variants or the interactions between them into 
account. Thus, a GWAS-based approach is a good start-
ing point for identifying QTL regions but needs to be 
supplemented by additional analyses to capture a larger 
proportion of the genetic variance and to understand in 
depth the genetic architecture of complex traits, such as 
CMP. In the last decade, methods have been developed 
that build on GWAS results by using gene network analy-
sis to highlight co-associated genes for a set of correlated 
traits [5, 6]. Once the gene network is built, it is then pos-
sible to carry out in silico functional analyses, based on 

databases from bovine or other organisms’ genomes, to 
identify key regulators that modulate gene expression or 
to highlight the enrichment of gene-sets linked to cer-
tain metabolic pathways. Gene network approaches have 
been applied to milk CMP [7], fatty acid composition [8, 
9], and protein composition [10, 11] but, to date, there 
has been no joint analysis of CMP and milk composition 
in spite of the close relationship between the two groups 
of traits. Moreover, all previous studies examined only a 
limited number of cows (164 to 1100 cows) and genomic 
variants (50 K or HD SNP chips).

The goal of the FROM’MIR project is to analyze CMP 
and milk composition traits predicted from MIR spec-
tra in the Montbéliarde dairy breed from the Franche-
Comté region, which boasts the highest production of 
protected designation of origin (PDO) cheeses in France. 
Nine CMP traits (three measures of cheese yield, five 
coagulation traits, and one acidification trait) and 27 milk 
composition traits (protein, fatty acid, mineral, citrate, 
and lactose contents) were predicted with a relatively 
high degree of accuracy from more than 6.6 million MIR 
spectra of milk samples collected from 410,622 cows. Of 
these cows, 19,586 were genotyped with a SNP chip. A 
prior study revealed medium-to-high heritabilities for 
CMP traits as well as high genetic correlations among 
CMP traits and between CMP and some milk composi-
tion traits [3].

The objectives of the current study were first, to fine-
map QTL for CMP and milk composition traits via 
GWAS of imputed WGS from 19,586 cows, and second, 
to explore the GWAS results using association weight 
matrices (AWM) [5] and partial correlation and informa-
tion theory (PCIT) [6] analyses, in order to identify gene 
networks and metabolic and regulatory pathways that 
are associated with milk cheese-making and composition 
traits.

Methods
Animals, MIR spectra, and 50 K genotypes
For this study, we did not perform any experiments 
on animals; thus, no ethical approval was required. 
Details of the animals, milk analyses, and prediction 
equations were described in a prior study by Sanchez 
et  al. [3]. Briefly, prediction equations were devel-
oped for nine CMP traits from 416 milk samples for 
which both reference measurements for those CMP 
traits and MIR spectra were taken. The CMP traits, 
described in Table 1, included three laboratory cheese 
yields  (CYFRESH,  CYDM, and  CYFAT-PROT), five coagula-
tion traits for pressed cooked cheese (PCC) and soft 
cheese (SC) (K10/RCT PCC, K10/RCT SC,  aPCC,  aSC, and 
 a2SC), and milk pH after adding starter for PCC  (pH0_

PCC). The accuracies of MIR predictions, assessed by 
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the coefficient of determination  (R2), varied between 
0.54 and 0.89 depending on the CMP trait (Table  1). 
Milk composition was also predicted using equations 
that were developed in previous projects (0.44 < R2 < 1; 

Table  1). Milk proteins and fatty acids were predicted 
with equations that were developed in the PhénoFin-
lait project [12–14], whereas for minerals and citrate 
content we used equations that were generated by the 

Table 1 Means, standard deviations (SD) for  cheese-making properties and  milk composition traits in  the  genotyped 
population (N = 19,586), and accuracy of MIR predictions equations  (R2 val)

a For pressed cooked cheese (PCC) and soft cheese (SC)

Trait Description and unit Mean SD R2 val

Cheese‑making  propertiesa

 CYFRESH 100 × (g curd/g milk), in % 37.7 4.95 0.82

 CYDM 100 × (g DM curd/g DM milk), in % 66.8 3.31 0.89

 CYFAT‑PROT (g milk fat + g milk protein)/kg curd, in g kg−1 189.7 14.3 0.54

 aPCC Curd firmness at rennet coagulation time (RCT), in firm index 
(FI)

18.8 1.72 0.76

 K10/RCT PCC Curd organization index standardized for RCT 0.37 0.06 0.68

 aSC Curd firmness at RCT, in FI 18.9 1.80 0.76

 a2SC Curd firmness at 2 times RCT, in FI 22.8 1.41 0.69

 K10/RCT SC Curd organization index standardized for RCT 0.37 0.07 0.72

 pH0_PCC Initial value of pH 6.52 0.04 0.62

Protein composition

 PC Protein content, in g/100 g milk 3.36 0.20 1.00

 α‑LA α‑lactalbumin, in g/100 g protein 4.01 0.20 0.59

 β‑LG β‑lactoglobulin, in g/100 g protein 12.4 1.09 0.74

 αs1‑CN αs1‑casein, in g/100 g protein 32.2 0.18 0.88

 αs2‑CN αs2‑casein, in g/100 g protein 9.73 0.19 0.82

 β‑CN β‑casein, in g/100 g protein 29.7 0.68 0.92

 κ‑CN κ‑casein, in g/100 g protein 8.74 0.24 0.80

 ΣCN Total caseins, in g/100 g protein 80.8 0.74 0.98

 ΣWP Total whey proteins, in g/100 g protein 16.9 1.15 0.54

Fatty acid composition

 FC Fat content, in g/100 g milk 3.73 0.32 1.00

 SFA Saturated fatty acids, in g/100 g fat 70.6 3.05 1.00

 MUFA Mono‑unsaturated fatty acids, in g/100 g fat 26.5 2.68 0.97

 UFA Unsaturated fatty acids, in g/100 g fat 30.0 2.93 0.98

 PUFA Poly‑unsaturated fatty acids, in g/100 g fat 3.33 0.39 0.76

 Σ C4‑C10 Sum of C4 to C10 fatty acids, in g/100 g fat 11.6 0.71 0.95

 Σ C4‑C12 Sum of C4 to C12 fatty acids, in g/100 g fat 14.2 0.93 0.95

 C14:0 Myristic acid, in g/100 g fat 11.1 1.05 0.94

 C16:0 Palmitic acid, in g/100 g fat 28.8 2.53 0.94

 C18:0 Stearic acid, in g/100 g fat 10.5 1.42 0.84

 C18:1 Oleic acid, in g/100 g fat 23.2 2.59 0.96

Minerals

 Ca Calcium, in mg/kg milk 1165 69.6 0.82

 P Phosphorous, in mg/kg milk 1014 62.5 0.75

 Mg Magnesium, in mg/kg milk 100.9 5.5 0.77

 K Potassium, in mg/kg milk 1496 69.3 0.68

 Na Sodium, in mg/kg milk 338.3 29.1 0.44

Other compounds

 Lactose Lactose, in g/kg milk 49.3 1.4 0.92

 Citrate Citrate, in g/kg milk 0.83 0.11 0.90
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Optimir project [15]. Lactose was predicted by a Foss 
equation.

Prediction equations were applied to the original data-
set, which comprised 6,670,769 milk samples originating 
from 410,622 Montbéliarde cows. Data from cows with 
at least three test-day records during the first lactation 
(1,442,371 test-day records from 189,817 cows) were 
adjusted for non-genetic effects in a mixed model with 
the Genekit software [16]. Herd × test-day × spectrome-
ter, age at calving, and stage of lactation were included in 
this model as fixed effects, while animal genetic and per-
manent environmental effects were assumed to be ran-
dom. Test-day data adjusted for fixed effects were then 
averaged over a lactation for each cow. A subset of 19,586 
cows for which MIR spectra were available had also been 
genotyped for the purpose of genomic selection by using 
the BovineSNP50 (50  K, 6505 cows) or the EuroG10  K 
BeadChip (Illumina Inc., San Diego, 13,081 cows). Means 
and standard deviations of the traits for this subset are in 
Table 1. Using FImpute software [17], all genotypes were 
imputed to the 50 K-SNP level. A total of 43,801 autoso-
mal SNPs were retained after quality control filters were 
applied. These filters were taken directly from the French 
national evaluation system [18]: individual call rate 
higher than 95%, SNP call rate higher than 90%, minor 
allele frequency (MAF) higher than 1% in at least one 
major French dairy cattle breed, and genotype frequen-
cies in Hardy–Weinberg equilibrium with P > 10−4.

Imputation to whole‑genome sequences
The 50  K SNP genotypes of the 19,586 cows were then 
imputed to whole-genome sequences (WGS). A two-step 
approach was applied in order to improve the accuracy 
of imputed genotypes of the WGS variants [19]: from 50 
to 777 K high-density (HD) SNPs using FImpute software 
[17], and then, from imputed HD SNPs to WGS, using 
Minimac software [20]. In spite of a longer computing 
time, Minimac was preferred over FImpute to impute on 
WGS because it infers allele dosages in addition to the 
best-guess genotypes. Compared to the best-guess geno-
types, allele dosages are expected to be more correlated 
to true genotypes [21] and to lead to a better targeting of 
causative mutations in GWAS analyses [22]. Imputations 
from 50 K to the HD SNP level were performed using a 
within-breed reference set of 522 Montbéliard bulls that 
were genotyped with the Illumina BovineHD BeadChip 
(Illumina Inc., San Diego, CA) [23]. WGS variants were 
imputed from HD SNP genotypes using WGS variants of 
2333 Bos taurus animals, from the 6th run of the 1000 
Bull Genomes Project [21, 24]. These animals represent 
51 cattle breeds and include 54 Montbéliard individu-
als, most of them being major ancestor bulls with a high 
cumulated contribution to the breed (80.6%). We applied 

the protocol defined by the “1000 Bull Genomes” con-
sortium [4, 25]: (1) short reads were filtered for quality 
and aligned to the UMD3.1 reference sequence [4, 26], 
and small genomic variations (SNPs and indels) were 
detected using SAMtools 0.0.18 [27]; (2) raw variants 
were filtered to produce 26,738,438 autosomal variants 
as described in Boussaha et al. [26]; and (3) filtered vari-
ants were annotated with the Ensembl variant effect pre-
dictor (VEP) pipeline v81 [28] and effects of amino-acid 
changes were predicted using the SIFT tool [29].

The precision of imputation from HD SNP to sequence 
was assessed using the coefficient of determination 
 (R2) calculated with Minimac software [20]. In order to 
remove variants with low imputation accuracies, only 
variants with an  R2 higher than 20% and a MAF higher 
than 1% were retained for further association analyses, 
i.e. 8,551,748 variants with a mean  R2 of 76% (Fig. 1).

Whole‑genome sequence association analyses
We performed single-trait association analyses between 
all 8,551,748 variants and the 36 CMP and milk composi-
tion traits described in Table 1. All association analyses 
were performed using the mlma option of the GCTA 
software (version 1.24), which applies a mixed linear 
model that includes the variant to be tested [30]:

where y is the vector of pre-adjusted phenotypes, aver-
aged per cow; µ is the overall mean; b is the additive fixed 
effect of the variant to be tested for association; x is the 
vector of predicted allele dosages, varying between 0 
and 2; u ∼ N(0,Gσ2u) is the vector of random polygenic 
effects, with G the genomic relationship matrix (GRM), 
calculated using the HD SNP genotypes [31], and σ2u is the 
polygenic variance, estimated based on the null model 
(y = 1µ+ u + e) and then fixed while testing for the 
association between each variant and the trait of interest; 

(1)y = 1µ+ xb+ u + e,
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Fig. 1 Distribution of imputation accuracies (coefficient of 
determination,  R2) for 26.7 million sequence variants imputed with 
Minimac. Variants in blue, with  R2 > 0.20, were retained for GWAS 
analyses
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and e ∼ N(0, Iσ2e) is the vector of random residual effects, 
with I the identity matrix and σ2e the residual variance.

The Bonferroni correction was applied to the thresh-
olds in order to account for multiple testing. We used a 
very stringent correction, which considered all 8.5 mil-
lion tests as independent. Therefore, the 5% genome-
wide threshold of significance corresponded to a nominal 
P value of 5.8 × 10−9 (− log10(P) = 8.2). When a given trait 
was significantly affected by multiple variants, the vari-
ants that were located less than 1  Mbp apart were 
grouped in the same QTL region. The bounds of QTL 
regions were then determined by considering the posi-
tions of variants that were included in the upper third of 
the peak. For each trait, the percentage of phenotypic 
variance explained by each QTL was calculated as fol-
lows: %σ 2

P = 100

(

2p(1−p)α2

σ 2
P

)

 , with σ 2
P the phenotypic var-

iance of the trait, and p and α are the frequency and the 
estimated allelic substitution effect, respectively, of the 
variant with the most significant effect in the QTL region.

Co‑associated gene network analysis
Co-associated genes were detected from the GWAS 
results using the AWM approach [5, 6]. We first con-
structed two n × m matrices with variants row-wise 
( n = 8,551,748) and traits column-wise ( m = 36). The first 
matrix contained variants’ z-score standardized additive 
effects, whereas the second one contained the P-values 
associated with those effects. Among the CMP traits, 
 CYDM was selected as the key phenotype because it has 
the highest economic importance to the cheese-making 
process. The AWM was constructed following the proce-
dure described in Ramayo-Caldas et al. [32]. SNPs were 
included in the analysis if their P-value for  CYDM was less 
than or equal to 0.001. Due to the large number of traits 
analyzed, we calculated correlation coefficients between 
SNP additive effects for different traits and then selected 
the set of traits correlated with  CYDM (|r| ≥ 0.25). Next, 
we explored the dependency among traits and we esti-
mated that on average, six other phenotypes were asso-
ciated with these SNPs at the same P-value (P ≤ 0.001). 
Other variants with significant effects on at least six traits 
were finally included in the analysis. Based on VEP anno-
tation [33], we then selected only the SNPs that were 
located within or close to (within 10 kb of ) genes. Among 
these, we retained only one variant per gene, i.e. the SNP 
that was associated with the largest number of traits or, 
in case of a tie, the variant for which the sum of P-values 
for the traits was the lowest.

Subsequently, to identify significant gene–gene interac-
tions, partial correlations were computed using the PCIT 
algorithm developed by Reverter and Chan [34]; the algo-
rithm was implemented in an R package designed for 

this purpose [35]. We visualized the gene network with 
Cytoscape 3.6.1 [36], with each node representing a gene 
and each edge representing a significant interaction. The 
centrality parameters of each node were assessed using 
the CentiScaPe 2.2 plug-in for Cytoscape [37]. For each 
node, we calculated the number of adjacent genes (degree 
parameter) and the relative node contribution (eigen-
vector parameter), with the latter value being higher (or 
lower) if the gene was connected to highly (or poorly) 
connected genes.

Identification of key regulators
Potential key regulators of the gene network were iden-
tified using two approaches. First, we used the iRegulon 
1.3 plug-in for Cytoscape [38] to identify transcription 
factors (TF) in silico; this method was based on human 
datasets but included orthologous regions of ten other 
vertebrate genomes, including Bos taurus. Two types of 
data were used to identify regulatory regions that were 
shared by the genes identified in the network: (1) TF 
binding site motifs in the cis-regulatory regions, and (2) 
thousands of ChIP-Seq (chromatin immunoprecipita-
tion followed by high-throughput sequencing) datasets 
from the ENCODE project [39] corresponding to targets 
of known TF. More details are in Janky et  al. [38]. We 
then applied an information loss-less approach [6] that 
explored the connectivity of all regulators in the network, 
including TF, miRNA, and lnRNA. As recommended by 
Reverter and Fortes [6], we tested trios of TF genes to 
find the minimal set of TF genes with maximal coverage 
of the network.

Gene‑set enrichment analysis
Next, we searched in the gene network for enrichment in 
gene ontology (GO) terms and pathways from the Kyoto 
Encyclopedia of Genes and Genomes (KEGG), using 
the ClueGO 2.5.1 plug-in for Cytoscape [40]. In order 
to avoid selecting GO terms that were too general (too 
many genes) or too specific (too few genes), we selected 
the 4th to 8th levels of the GO hierarchy. A gene set 
was considered to be enriched if the P-value associated 
with the hypergeometric test was lower than 0.05, after 
application of the Benjamini–Hochberg correction for 
multiple testing. GO terms and KEGG pathways were 
subsequently clustered in functional groups if the kappa 
statistic was higher than 0.4.

Results
GWAS analyses
GWAS that was carried out on 8,551,748 imputed WGS 
variants for the 36 CMP and milk composition traits 
revealed 236,332 significant variant × trait combina-
tions (− log10(P) > 8.2), corresponding to 79,803 different 
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variants. Due to the high maximal − log10(P) value for a 
large number of genomic regions (up to 560 for one of 
the QTL detected on chromosome 11), the number of 
variants with significant effects (− log10(P) > 8.2) was 
sometimes very large in a given region. Thus, to best tar-
get candidate variants, we selected only the variants that 
were located in the upper third of the peaks, as described 
in the Methods section. In doing so, we defined 59 QTL 
regions, which contained 6757 distinct variants (Table 2). 
In each of the QTL regions, we designated “candidate 
variants” as the variants that were located within the con-
fidence intervals of the QTL and the “best candidate vari-
ant” (described in Table  2) as the variant within a gene 
(or its upstream/downstream regions) with the most sig-
nificant effects.

These QTL regions varied in size (from 9.2  kbp to 
8.9 Mbp) and contained from 6 to 401 variants; they were 
distributed on all Bos taurus autosomes (BTA) with the 
exception of BTA8 and 23 (Fig.  2 and [see Additional 
file  1: Figure S1]). In almost all the QTL regions (56), 
we identified variants that were located in one or more 
candidate genes. Around 60% (i.e. 4312 of 7393) of the 
variants detected in the QTL regions were located within 
or in the upstream/downstream region of 264 genes 
[see Additional file  2: Table  S1]. Fifty-one of these vari-
ants were predicted to be responsible for an amino-acid 
change in the protein, whereas most of them (2972) were 
located in introns (Table 3).

We found the most significant effects around 
103.3  Mbp on BTA11 (− log10(P) = 560), 144.4  Mbp 
on BTA1 (− log10(P) = 210), 58.4 Mbp on BTA20 
(− log10(P) = 177), 1.6 Mbp on BTA14 (− log10(P) = 123), 
and 46.9  Mbp on BTA6 (− log10(P) = 120). In each of 
these five QTL, we identified variants that were located 
in candidate genes, which were, respectively, PAEP, 
SLC37A1, ANKH, GPT, and SEL1L3. All the variants 
were located in introns of the genes, with the exception 
of the best candidate variant of the GPT gene, which 
was found in the upstream region. Four other QTL had 
more moderate but nevertheless strong effects (− log10(P) 
between 60 and 83), on BTA5 (118 Mbp), BTA6 (87.4 
Mbp), BTA17 (53.1 Mbp), and BTA27 (36.2 Mbp), 
with the best candidate variants located in GRAMD4 
(upstream region), CSN3 (downstream region), BRI3BP 
(upstream region), and GPAT4 (3’UTR region), respec-
tively. We also found candidate variants (− log10(P) 
between 25 and 50) in 11 other candidate genes, on BTA2 
(ALPL), BTA4 (CBLL1), BTA5 (MGST1), BTA7 (FSTL4), 
BTA12 (ABCC4), BTA19 (FASN), BTA22 (FAM19A4 and 
KLF15), BTA25 (FAM57B), BTA26 (SCD), and BTA29 
(EED). Finally, many other variants were identified in var-
ious genomic regions that had more moderate but signifi-
cant effects after application of the Bonferroni correction 

(− log10(P) > 8.2); most of these were located in genes. All 
the QTL regions are described in detail in Table 2.

On average, each QTL had significant effects on 
about six traits. Only 13 QTL affected a single trait, 
while the other 46 QTL had pleiotropic effects on two 
to 26 traits. The QTL that affected the largest number 
of traits was located at about 1.6 Mbp on BTA14. For 
most traits, including FC, the variant with the strongest 
effect was not the well-known K232A polymorphism 
in the DGAT1 gene [see Additional file  3: Table  S2]. 
More than half of the QTL (33), and in particular those 
with the most significant effects, had effects on CMP 
traits. Almost all of the QTL with significant effects 
on CMP traits presented significant pleiotropic effects 
on milk composition traits, as well. In contrast, the 
remaining 26 QTL affected milk composition (protein, 
fatty acid, mineral, citrate, or lactose content) but not 
CMP. Among traits, we observed large differences in 
both the number of QTL detected (ranging from 6 to 
19) and in the total percentage of phenotypic variance 
(ranging from 4.7 to 62.4%) that was explained by the 
detected QTLs, and simply estimated by the sum of 
percentages per QTL. Overall, the larger the number of 
detected QTL for a given trait, the lower the percentage 
of phenotypic variance that was explained by each. For 
example, in our study, the most polygenic trait,  aSC, was 
influenced by 19 QTL, each of which explained only 
0.2 to 1.9% of the phenotypic variance. In contrast, we 
detected only six QTL for ΣWP but the QTL with the 
most important effect explained 56% of the phenotypic 
variance of this trait. As expected, the most heritable 
traits were those that presented the highest values of 
the total phenotypic variance explained by the QTL. 
The trait for which the largest amount of total phe-
notypic variance was explained by the QTL was β-LG 
(62%), which was also the most heritable trait analyzed 
in our study. For CMP traits, which are moderately her-
itable, from 12% (curd firmness) to 30% (curd firming 
time) of the phenotypic variability was explained by 
the QTL (i.e. from 27 to 65% of the genetic variance). 
Cheese yields presented intermediate results, as the 
detected QTL captured about 20% of their phenotypic 
variance, i.e. about 50% of their genetic variance. For 
CMP traits, the QTL that contributed the most were 
those detected in the regions of the PAEP, casein, and 
DGAT1 genes. However, other QTL regions on BTA5, 
6, 16, 20, and 22 also generated noteworthy contribu-
tions. For protein composition traits, the highest-con-
tributing QTL region was the PAEP gene region (up 
to 59% for β-LG). The region of the casein genes had 
a more moderate contribution (0.7–5.6%, depending 
on the trait), while the lesser-known QTL detected on 
BTA20 (at about 58 Mbp) explained 18, 9, and 7% of 
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the phenotypic variance of α-LA, αs1-CN, and κ-CN, 
respectively. For fatty acid content, the QTL that we 
detected explained a much smaller part of the pheno-
typic variability. The top-contributing QTL were the 
DGAT1 gene region on BTA14 (12% for FC), FASN on 
BTA19 (1.5% for C14:0), GPAT4 on BTA27 (3.2% for 
C16:0), and SCD on BTA26 (2% for C18:1). In contrast 
to fatty acids but similarly to proteins, a relatively large 
part of the phenotypic variance in mineral content was 
explained by QTL that were located in the region of the 
SLC37A1 gene (3, 5, and 10% for Mg, K, and P, respec-
tively) and the ANKH gene (20% for Mg). Two other 
regions influenced mineral content to a lesser extent: 
those at 117 Mbp on BTA5 (GRAMD4) and at 46 Mbp 
on BTA6 (SEL1L3).

Gene network
Using the AWM procedure, we reduced the set of 
8.5 million variants tested in the GWAS to a set of 
38,858 variants that had the most significant effects 
(P-value ≤ 0.001) on the key phenotype  (CYDM). Seven 
CMP  (CYFRESH,  CYFAT-PROT, and the five coagula-
tion traits) and eight milk composition traits (PC, FC, 
UNSAT, PUNSAT, C18:1, Ca, Mg, and P) were cor-
related with  CYDM (r ≥ 0.25). On average, each of the 
38,858 variants had significant effects (P-value ≤ 0.001) 
on six of the correlated traits. We also retained 2322 
additional variants that had significant effects on at 
least six of the correlated phenotypes. Thus, the final 
dataset included 41,180 variants, which had significant 
effects on  CYDM or on at least six correlated traits. Of 

Fig. 2 −log10(P) values plotted against the position of variants on Bos taurus autosomes for cheese‑making traits. a Cheese yields (CY) and  pH0 PPC, 
b coagulation traits
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these 41,180 variants, 15,330 were located in 736 genes 
(± 10  kb); the PCIT approach subsequently revealed 
59,168 significant interactions among these genes. 
Thus, by merging the AWM and the PCIT approaches, 
the GWAS results on milk CMP and composition traits 
could be interpreted as a gene network of 736 nodes and 
59,168 edges. The list of the 736 genes selected by AWM 
is in [see Additional file 4: Table S3].

For most of the traits, correlation coefficients from the 
z-score additive effects of the 736 variants retained by 
the AWM procedure were close to the correlation coef-
ficients obtained from pedigree for the 16 phenotypes 
(Table  4). This suggested that the additive effects of the 
variants retained in the AWM analysis explained a large 
and representative part of the genetic relationships 
among the traits.

Fig. 2 (continued)



Page 11 of 19Sanchez et al. Genet Sel Evol           (2019) 51:34 

Among the 736 genes, 86 were located within QTL 
regions that had been highlighted by the GWAS analysis 
with a most-stringent threshold; these included the best 
candidate genes for 25 QTL. The remaining 650 genes 
were unique to the AWM analysis and had not been 
detected by GWAS. In contrast, 178 genes located within 
the confidence intervals of QTL detected with GWAS 
were not found in AWM analyses.

For each node of the gene network, we calculated the 
number of adjacent genes and the relative node contribu-
tion. Figure  3 lists the values of these parameters for the 
nodes of the gene network that were also best candidate 
genes in the GWAS analyses. This revealed genes that were 
highly connected with other genes in the network (SWT1, 
GPT, MGST1, FCGR2B, CSN3, G2E3, and GRAMD4), 
genes that were moderately connected (RAB6A, FAM19A4, 
INPP1, CBLL1, ANKH, LMAN1, ARNTL, SLC37A1, and 
EED), and genes that were poorly connected (PAEP, FASN, 
GPAT4, SEL1L3, KIAA1324, and PROX1).

In silico functional analyses
Key regulators in the gene network were identified in 
silico using two approaches. From the analyses of bind-
ing site motifs and ChIP-Seq datasets, first we identified 
eight TF that presented a significant normalized enrich-
ment score (NES). Each of these TF targeted from 136 
to 261 genes in the gene network (Table 5), and all eight 
together targeted more than half of the network genes 
(416). Using an information loss-less approach, we then 
identified among the 736 genes the trios of regulators 
(TF, miRNA, and lnRNA) that had the best coverage 
of the whole gene network, i.e. trios that demonstrated 
the largest number of interactions with genes of the net-
work with the least amount of overlap. With this sec-
ond approach, we found 61 regulators, each with two to 
276 significant interactions with genes of the network. 
The trios that covered the largest number of genes were 

ASXL3—HIC2—RNF2 and HIC2—ZPFM2—bta-mir-
200c. These two trios interacted with the majority of the 
genes of the network, i.e. 529 and 528 genes, respectively.

Genes of the network were found to be enriched in five 
KEGG pathways and 115 GO terms (corrected P-value 
between 2.10−17 and 2.10−4), which clustered into 44 func-
tional groups (Fig. 4 and [see Additional file 5: Table S4]). 
The largest group comprised 15 GO terms; it contained 
31 genes of the gene network and was related to the meta-
bolic processes associated with potassium transport. The 
next three groups, with 28 GO terms and one KEGG path-
way all related to phosphate and phospholipid metabo-
lism, contained 66 genes of the network. Among these, 
there were many of the genes that had been highlighted by 
GWAS as having the most significant effects on milk CMP 
and composition traits: CSN1S1, DGAT1, FASN, GPAT4, 
INPP1, PPARA , PROX1, and SCD. Other groups, (for 
details [see Additional file 5: Table S4]), had a functional 
relationship with milk composition through endopepti-
dase activity (16 genes, including CSN2 and GRAMD4), 
protein glycosylation (19 genes), carboxylic acid biosyn-
thesis (24 genes including FASN, PAEP, PPARA , PROX1, 
and SCD), inorganic anion transport (10 genes including 
ANKH and SLC37A1), and Ca- (11 genes) and phospholi-
pase- (9 genes) signaling pathways.

Discussion
GWAS and gene network analyses are complementary
The GWAS approach used here—performed on whole-
genome sequences from a large number of animals 
for complex cheese-making traits as well as fine-scale 
milk composition traits—led to the identification of 
59 QTL regions. In order to limit the detection of false 
positives, we retained only the QTL that still demon-
strated significant effects after applying the Bonfer-
roni correction (P-value < 5.8 × 10−9) and therefore 
those that presented the strongest effects overall. 
The downside of this approach was that all the QTL 
in our analysis explained, on average, less than 50% 
of the total genetic variation of each trait (i.e. 20% of 
the phenotypic variance), and this value was probably 
overestimated. Indeed, when the true effect is small or 
when the P-value threshold is very low, the detection 
power is limited and a significant effect may be overes-
timated, leading to an overestimation of SNP variance. 
Some QTL were identified with very good resolution 
(narrow peaks), such as the 12 QTL for which only 
one candidate gene was identified within the confi-
dence interval. Other QTL regions were larger and 
more gene-rich (up to 25 genes within the confidence 
interval), and identification of the best candidate gene 
was not straightforward. To address these two short-
comings—specifically, to capture the missing genetic 

Table 3 Functional annotations of  variants included 
in the 59 QTL regions

Functional annotation Number of variants %

Intergenic 3081 41.7

Intronic 2972 40.2

Upstream 604 8.2

Downstream 584 7.9

3′ UTR 26 0.35

5′ UTR 10 0.14

Synonymous 65 0.88

Missense 51 0.69

Total 7393 100
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variability and to better identify functional candidate 
genes within QTL regions—we carried out additional 
analyses, which complemented our GWAS results. The 
AWM-PCIT approach enabled us to identify a more 
comprehensive gene network of 736 genes from lower 
significant GWAS results (P-value < 0.001) by taking 
co-associations between traits into account. When we 
used the additive effects of variants that were located 
in these genes to calculate correlations between traits, 
the values obtained were similar to the genetic correla-
tions we calculated from pedigree [3], suggesting that 
the gene network adequately explained the genetic rela-
tionships between traits. Finally, in silico functional 
analyses of genes of the network helped us to identify 
metabolic pathways and key regulators with functional 

links to milk cheese-making and composition traits. 
This last step, in addition to establishing functional 
links between the gene network and the analyzed traits, 
enabled us to identify candidate genes in some QTL 
regions. Therefore, by combining the results obtained 
through these different approaches, we are able to pro-
pose candidate genes for the main QTL regions, and for 
each, the best candidate for the causative variant, or at 
least, a variant in high LD with the causative variant.

Functional candidate genes
As expected, we confirmed the strong effects of the clus-
ter of casein genes and the PAEP gene regions on protein 
composition as well as milk CMP. The QTL detected in 
the casein genes region explained up to 20% σ2P of the 

Fig. 3 Centiscape scatter plot view: number of adjacent genes (degree) and the relative node contribution (eigenvector) a for the 736 genes of the 
gene network and b for the best candidate genes

Table 5 Transcription factors (TFs) identified as  key regulators of  milk cheese-making and  composition traits 
from both binding-site motifs and ChIP-Seq datasets, which presented significant normalized enrichment scores (NES)

TF NES Number 
of binding site 
motifs

Number 
of ChIP‑Seq 
datasets

Number 
of target 
genes

Chromosome Gene start (bp) Gene end (bp) Gene description

HSPA1L 4.90 5 1 261 23 27,334,344 27,338,328 Heat shock 70 kDa protein 
1‑like

SMAD5 4.63 4 2 253 7 49,155,483 49,217,780 SMAD family member 5

HNF1B 4.56 3 5 242 19 14,287,673 14,349,579 HNF1 homeobox B

SMAP2 4.30 7 1 236 3 106,311,859 106,358,978 Small ArfGAP2

TFAP2A 4.29 3 1 233 23 45,480,546 45,499,034 Transcription factor AP‑2 alpha

BCL11A 4.25 5 1 195 11 43,071,977 43,174,031 B Cell CLL/Lymphoma 11A

SMAD3 4.02 3 1 170 10 13,958,174 13,980,371 SMAD family member 3

RXRA 3.49 2 1 136 11 105,990,344 106,015,000 Retinoid X receptor alpha
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Fig. 4 Description of the five KEGG pathways and 105 GO terms that were significantly enriched among genes of the network and which clustered 
in 44 functional groups
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curd-firming time while the PAEP gene region explained 
up to 8.5% σ2P of cheese yields. The best candidate gene 
variants, i.e. variants with the most significant effects 
on traits, were located in the downstream region of the 
CSN3 gene, which encodes κ-CN (at 87,392,899  bp on 
BTA6), and in an intronic region of the PAEP gene, which 
encodes β-LG (at 103,301,982 pb on BTA11). The mis-
sense variants that are respectively responsible for the 
κ-CN [41] and β-LG [42] A/B polymorphisms had much 
weaker effects: they were ranked 100th and 56th, respec-
tively, among the variants. The region of the DGAT1 
gene on BTA14 had also large effects on milk composi-
tion (12% σ2P for FC) and on CMP (6.4% σ2P for  CYDM). In 
spite of its low MAF in Montbéliarde cows (0.015), the 
K232A DGAT1 mutation [43] was the top-ranked variant 
for traits that were linked with some protein and phos-
phorous contents, and coagulation traits (1st for PC, 
α-LA, β-CN, and P; 2nd for  a2SC, K10/RCT SC, and K10/
RCT PCC) and it was one of the 736 variants retained by 
the AWM. However, in this gene-rich region, the GPT 
gene, which we found to be highly connected, i.e. pre-
senting significant gene–gene interactions with many 
other genes of the AWM gene network, appeared to be 
also a good candidate for FC,  CYDM,  CYFRESH, and fatty 
acid composition. The best candidate variant, located in 
the upstream region of GPT (glutamic-pyruvic transami-
nase) at 1,629,753 bp (rs109035586), was ranked 1st for 
12 traits, including FC, cheese yields, fatty acid com-
position, αS1-CN, and CITRATE. Interestingly, two 
polymorphisms in the GPT gene, including a missense 
variant that is located very close to the best candidate 
variant detected in our study (1,629,600  bp), were also 
recently found to be associated with fat percentage in 
a concordance analysis carried out on imputed whole-
genome sequences of Holstein bulls [44]. This variant was 
also highly significant in our study but was ranked 44th 
among variants with significant effects on FC.

In addition to the three well-known QTL regions 
described above, we also found evidence that other 
genomic regions have highly significant effects on the 
traits analyzed; specifically, our analysis highlighted 
the SLC37A1, ALPL, MGST1, SEL1L3, FASN, ANKH, 
BRI3BP, SCD, and GPAT4 genes, which we had also pre-
viously detected in a sequence-based GWAS on milk pro-
tein and fatty acid composition [45, 46]. We confirm here 
their effects on milk composition and note their effects 
on CMP. As previously found, the MGST1, FASN, SCD, 
and GPAT4 genes mainly affected fatty acids whereas 
the SLC37A1, ALPL, SEL1L3, BRI3BP, and ANKH genes 
had effects mainly on proteins and minerals. As a conse-
quence, and in accordance with genetic correlations that 
we had previously estimated from this dataset [3], the 
former set of genes exclusively influenced cheese yields 

whereas the latter set had greater effects on coagulation 
traits. Strong effects of ALPL, ANKH, and SEL1L3, which 
we had previously identified for protein composition [45], 
were confirmed for milk composition and CMP. In each 
of these regions, the current analysis reduced the size of 
the confidence intervals of the QTL and, in six of them, 
only one gene was found that encoded a known protein 
(SLC37A1, ALPL, MGST1, SEL1L3, ANKH, and GPAT4).

On BTA17, we found two QTL regions associated with 
de novo milk fatty acid synthesis, i.e. synthesis within the 
mammary epithelial cells of fatty acids C4:0 to C10:0. 
The first was within the LARP1B (La ribonucleoprotein 
domain family member 1B) gene, for which the best can-
didate was a synonymous variant located at 29,938,428 bp. 
This result corroborates the discovery of Duchemin et al. 
[47], who identified LARP1B as a causative gene for de 
novo synthesis of milk fatty acids through the imputation 
of sequence variants in this region. These authors noted a 
splice-region variant at 29,940,555 bp, which was close to 
the variant that we detected here. However, in spite of its 
high MAF (0.40), we excluded this variant because it was 
not significant in our study (P-value = 10−4 vs. 5.10−11 for 
the variant located at 29,938,428 bp). This region had lim-
ited effects in our study and affected only short FA traits. 
Instead, further along the same chromosome, we identi-
fied another region with much more significant effects on 
de novo fatty acid synthesis that also affected CMP and 
protein and mineral composition. The best candidate gene 
for this region was BRI3BP (BRI3 binding protein), with 
the most significant variant located at 53,072,959 bp in an 
intron of BRI3BP. This variant had been previously high-
lighted for its effects on FA composition in an independ-
ent population [48] and, in another study, we recently 
confirmed its effects on both CMP and milk composition 
traits [46]. Thus, it is a serious candidate for the causative 
variant behind the strong effects that we observed in the 
region. Although the BRI3BP gene was not an obvious 
functional candidate, it has been also described as affect-
ing de novo fatty acid synthesis in a recent GWAS per-
formed on imputed sequence variants in this region [49]. 
The most significant variant found by the authors of this 
study was also intronic (53,078,216 bp) but that particular 
variant was ranked  31st among variants with significant 
effects on C4–C10.

Finally, we identified other candidate genes that con-
tained variants with non-negligible effects on milk com-
position and CMP traits. Among these, both GWAS and 
AWM analyses highlighted FCGR2B, KIAA1324, CBLL1, 
GRAMD4, ARNTL, RAB6A, ENSBTAG00000038238, 
SWT1, G2E3, FAM19A4, LMAN1, and EED. The 
FCGRB2, KIAA1324, G2E3, LMAN1, and EED genes 
have been previously identified as candidate genes for 
milk yield or milk composition [50–54], whereas the 
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functional link between the other genes and bovine milk 
composition and cheese-making traits remains to be 
discovered.

Co‑association gene network
The SLC37A1 (solute carrier family 37 member 1, a phos-
phorous antiporter) and ANKH (inorganic pyrophosphate 
transport regulator) genes, which encode transmembrane 
proteins involved in ion transport, both play a role in the 
inorganic anion transport that was revealed by the GO 
analysis. Thus, these genes are good candidates for hav-
ing an effect on CMP and milk composition, with the 
strongest effects obtained for phosphorous (about 11% 
σ
2
P ) and citrate (about 32% σ2P ) contents, respectively. For 

each of these genes, we propose here an intronic candi-
date variant, located at 58,446,058  bp for ANKH and at 
144,395,375  bp for SLC37A1. Very close to but distinct 
from those identified in previous studies [45, 53, 55], 
this variant is more significant in spite of a slightly lower 
imputation accuracy.

A set of genes, including those detected previously 
(DGAT1, FASN, GPAT4, CSN1S1, PAEP, and SCD) 
and those noted here for the first time (INPP1, PPARA , 
PROX1), appeared to play a role in phosphate and phos-
pholipid metabolism as well as in the biosynthesis of 
carboxylic acids, which are fatty acid precursors. PROX1 
(prospero homeobox  1) and PPARA  (peroxisome prolif-
erator activated receptor alpha) encode transcription 
factors; the former interacted with only 16 genes while 
the latter interacted with 128 genes within the network, 
including with FASN, SCD, GPAT4, and DGAT1. PPARA  
belongs to a superfamily of hormone receptors (PPAR) 
that regulate the transcription of genes involved in dif-
ferent lipid metabolism pathways [56]. FASN (fatty acid 
synthase) and SCD (stearoyl-coenzyme A desaturase 1) 
encode key enzymes in de novo fatty acid synthesis and 
fatty acid desaturation, respectively, and GPAT4 (glycerol-
3-phosphate acyltransferase 4) is paralogous to DGAT1 
(diacylglycerol O-acyltransferase 1), with the two genes 
occupying adjacent nodes of the mammary triglyceride 
synthesis chain [57]. In addition to their effects on pro-
tein composition, the PAEP and CSN1S1 genes, which 
encode milk β-LG and αs1-CN proteins, respectively, are 
also associated with genes involved in fatty acid metabo-
lism. These results suggest a close link between milk fatty 
acid and protein metabolism. In goats, variants that are 
responsible for a decrease in CSN1S1 gene expression 
were also associated with a decrease in fat content, prob-
ably due to disruption of the structure and secretion of fat 
globules [58]. A similar relationship was pointed out in 
cattle by Knutsen et al. [49], who found a major effect of 
the PAEP gene region on the C4:0 content of bovine milk, 
and Pausch et  al. [53], who identified strong pleiotropic 

effects of variants located in the CSN1S1 gene on fat 
and protein content. In addition, a strong association 
between PAEP and omega-3 fatty acids was observed by 
Boichard et al. [48]. All of these genes, which contain the 
top-ranked variants for, in particular, cheese yields and 
fatty acid composition, thus represent good candidates. 
Alone, they explained the largest part of the phenotypic 
variance captured in the present study for  CYDM and FC, 
i.e. around 16% out of 20%.

In addition to the PPARA TF, we highlight here other 
genes for putative regulators as well, such as ASXL3 (addi-
tional sex combs like 3, transcriptional regulator) and bta-
mir-200c, which interact with many genes of the network 
(276 and 240, respectively). Both are good candidates for 
key regulators in the network, as the protein encoded by 
ASXL3 has been shown to negatively regulate lipogenesis 
and bta-mir-200c miRNA has been found to be highly 
expressed in the mammary gland [59–61] and present in 
milk whey [62]. Interestingly, all of the regulators that we 
identified in our study were different from the TF found in 
previous studies that applied similar approaches to study 
milk proteins [10] or fatty acids [9]. Unlike these stud-
ies, we analyzed here milk protein, fatty acid, and mineral 
composition as well as cheese-making traits all together, 
which might explain the identification of different regula-
tory pathways. However, in spite of this, some of the sig-
nificantly enriched GO terms or KEGG pathways that 
we highlight here were concordant with those previously 
reported for CMP traits (Ca signaling pathway) [7], milk 
protein content (potassium ion transport) [10], or fatty acid 
content (hormone and steroid metabolic processes) [9].

Causative variants
The approach that we used, which combines GWAS 
and post-GWAS analyses, was successful both in con-
firming previously reported candidate genes and in 
identifying new candidates that appear to be func-
tionally linked to the analyzed traits. This was possi-
ble because our analyses were based on a large sample 
size, sequence-level genotypes, and detailed pheno-
types for milk components in addition to complex 
CMP traits. However, for most of these genes, the top-
ranked variant identified here was different both from 
what we had found before in an analysis of milk protein 
and fatty acid composition and from what had been 
detected in previous studies. Since the first GWAS on 
WGS imputed from the 1000 Bull Genomes reference 
population, in 2014 [4], to date published GWAS based 
on this approach have generally converged towards 
the same candidate genes but rarely towards the same 
best candidate variants in these genes. Using data from 
humans, Faye et  al. [63] showed that when the causal 
variant is less accurately genotyped or imputed than 
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one of its highly correlated neighboring variants, the 
neighboring variant can capture the association bet-
ter than the causal variant. However, in our study, the 
HD SNP, imputed more accurately than sequence vari-
ants, were rarely the top variants of the peaks, with the 
noticeable exception in the SCD gene. For SLC37A1, 
the peak variant was more significant than variants 
already proposed in other studies and slightly better 
imputed. Nevertheless, we can anticipate that by accu-
mulating bovine sequence data from different breeds 
and different populations, future runs of the 1000 
Bull Genome Project will lead to better identification 
of causative variants by GWAS. More specifically, the 
expansion of the bovine sequence database should 
increase the accuracy of imputed genotypes and thus 
the probability of identifying the right variant. In addi-
tion, if GWAS analyses can be carried out in different 
breeds, meta-analyses should lead to a better resolu-
tion due to the linkage disequilibrium at shorter dis-
tances between breeds than within breed, and thus to a 
better discrimination of causal variants.

Conclusions
By combining GWAS and AWM approaches at the 
whole-genome sequence level on milk cheese-mak-
ing and composition traits predicted from MIR spec-
tra, this study highlights candidate genes with major 
effects that are functionally related to milk composi-
tion. For most of these, we are able to propose some 
candidate variants that are likely to be either causative 
or in linkage disequilibrium with causative variants. 
In addition to providing a better understanding of the 
metabolic pathways involved in the genetic determin-
ism of cheese-making traits, this study should make it 
possible to select a set of variants that explain a large 
part of the genetic variability of cheese-making traits. 
The increase in the number of cows for which both 
genotypes and phenotypes are available allows bet-
ter detection of variants which could be included in 
genomic prediction to more accurately select animals 
with high genetic merit for CMP and finally improve 
the efficiency of the cheese-making process, which is 
of vital economic importance in the dairy industry.
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