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Quadratic variation and quadratic roughness

Rama CONT and Purba DAS

Mathematical Institute, University of Oxford

Abstract

We study the concept of quadratic variation of a continuous path along a sequence of
partitions and its dependence with respect to the choice of the partition sequence. We
define the quadratic roughness of a path along a partition sequence and show that, for
Hölder-continuous paths satisfying this roughness condition, the quadratic variation along
balanced partitions is invariant with respect to the choice of the partition sequence. Paths
of Brownian motion are shown to satisfy this quadratic roughness property almost-surely.
Using these results we derive a formulation of Föllmer’s pathwise integration along paths
with finite quadratic variation which is invariant with respect to the partition sequence.
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The concept of quadratic variation plays a central role in stochastic analysis and the modern
theory of stochastic integration [12, 30]. The quadratic variation of a (real-valued) random
process (X(t), t ∈ [0, T ]) with càdlàgsample paths is defined as the limit in the sense of (uniform)
convergence in probability, of the sum of squared increments∑

πn

(X(tnk+1 ∧ t)−X(tnk ∧ t))2 (1)

along a sequence of partitions πn = (0 = tn0 < tn1 < · · · < tnN(πn) = T ) with vanishing step size
|πn| = sup

i=1..N(πn)

|tni − tni−1| → 0. The relevance of this notion is underlined by the fact that

large classes of random processes –such as Brownian motion and diffusion processes– have finite
quadratic variation, while at the same time possessing infinite p−variation for p = 2.

Although quadratic variation for a stochastic process X is usually defined as a limit in prob-
ability of (1), it is essentially a pathwise property. In his seminal paper Calcul d’Ito sans
probabilités [15], Hans Föllmer introduced the class of càdlàg paths X ∈ D([0, T ],R) with finite
quadratic variation along a sequence of partitions (πn), for which (1) has a limit with Lebesgue

decomposition [X]π(t) = [X]c(t) +
∑

0≤s≤t

(∆Xs)
2 and showed that for f ∈ C2(R) one can define

a pathwise integral

∫ .

0

(∇f ◦X)dπX as a pointwise limit of left Riemann sums along (πn):

∫ T

0

(∇f ◦X)dπX = lim
n→∞

∑
πn

∇f(X(t)).(X(tni+1)−X(tni )), (2)

and this integral satisfies a change of variable formula:

f(X(t)) = f(X(0)) +

∫ t

0

(∇f ◦X)dπX +
1

2

∫ t

0

∇2f(X(s)).d[X]cπ

+
∑
[0,t]

(f(X(s))− f(X(s−))−∇f(X(s))∆X(s)) . (3)

This ‘pathwise Itô formula’ could be potentially used as a starting point for a purely pathwise
construction of the Itô calculus but, unlike the analogous theory for Riemann-Stieltjes or Young
integrals, the construction in [15] seems to depend on the choice of the sequence of partitions
(πn): both the quadratic variation [X]π and the pathwise integral (2) are defined as limits along
this sequence of partitions. In fact, as shown by Freedman [16, p. 47], for any continuous function
x one can construct a sequence of partitions π such that [x]π = 0. This result was extended by
Davis et al. [10] who showed that given any continuous path x and any increasing function A,
one can construct a partition πA,x such that [x]πA,x = A. These negative results seem to suggest
that the dependence of [x]π on π leaves no hope for uniqueness of the quantities in (3).

On the other hand, as shown by Lévy [27, 28] and Dudley [13], for typical paths of Brownian
motion the sums (1) converge to a unique limit along any sequence of partitions which are
refining or whose mesh decreases to zero fast enough. Therefore there exists a large set of paths
-containing all typical Brownian paths- for which one should be able to define the quantities
in (3) independently of the choice of the partition sequence (πn)n≥1 for a large class of such
sequences.

We clarify these issues by investigating in detail the dependence of quadratic variation with re-
spect to the sequence of partitions, and deriving sufficient conditions for the stability of quadratic
variation with respect to this choice. These conditions are related to an irregularity property
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of the path, which we call quadratic roughness (Def. 3.1): this property requires cross-products
of increments along the partition to average to zero at certain scales and is different from other
notions of roughness such as Hölder roughness [17] or ρ−irregularity [4]. Importantly, we show
that the quadratic roughness property is satisfied almostsurely by Brownian paths (Theorem
3.8).

Our main result is for Hölder-continuous paths satisfying this irregularity condition, the
quadratic variation along balanced partitions (Def. 2.1) is invariant with respect to the choice
of the partition sequence. This leads to an intrinsic notion of quadratic variation, a robust
formulation of the pathwise Itô calculus (Theorem 5.1) and uniqueness of pathwise local time
(Theorem 5.2) for such irregular paths.

Our results thus complement previous results on the pathwise approach to Itô calculus [2, 5,
7, 9, 9, 10, 15, 21, 25, 29] by identifying a set of paths for which these results are robust to the
choice of the sequence of partitions involved in the construction. In contrast to the constructions
in [22, 23, 24], our construction does rely on a specific choice of partitions and does not rely on
any probabilistic tools.

Outline Section 1 recalls the definition of quadratic variation along a sequence of partitions,
following [5, 15]. Section 2 defines the class of balanced sequences of partitions and discusses
asymptotic comparability of such partitions.

Section 3 introduces the concept of quadratic roughness and explores some of its properties.
In particular we show that Brownian paths satisfy this property almost-surely (Theorem 3.8).
Section 4 shows that quadratic roughness of a path is a sufficient condition for the invariance
of quadratic variation with respect to the choice of partitions (Theorem 4.2). This result allows
to give an intrinsic definition of quadratic variation without reference to a specific partition
sequence (Proposition 4.5).

Section 5.1 builds on these result to arrive at a robust formulation of the Föllmer integral
and the pathwise Itô formula. Section 5.2 extends these results to pathwise local time.

1 Quadratic variation along a sequence of partitions

Let T > 0. We denote D([0, T ],Rd) the space of Rd-valued right-continuous functions with left
limits (càdlàg functions), C0([0, T ],Rd) the subspace of continuous functions and, for 0 < ν < 1,
Cν([0, T ],Rd) the space of Hölder continuous functions with exponent ν:

Cν([0, T ],Rd) = {x ∈ C0([0, T ],Rd), sup
(t,s)∈[0,T ]2,t6=s

‖x(t)− x(s)‖
|t− s|ν

< +∞},

and Cν−([0, T ],Rd) =
⋂

0≤α<ν

Cα([0, T ],Rd).

We denote by Π([0, T ]) the set of all finite partitions of [0, T ]. A sequence of partitions of
[0, T ] is a sequence (πn)n≥1 of elements of Π([0, T ]):

πn = (0 = tn0 < tn1 < · · · < tnN(πn) = T ).

We denote N(πn) the number of intervals in the partition πn and

|πn| = sup{|tni − tni−1|, i = 1..N(πn)}, πn = inf{|tni − tni−1|, i = 1..N(πn)} (4)

the size of the largest (resp. the smallest) interval of πn.
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Definition 1.1 (Quadratic variation of a path along a sequence of partitions).
Let πn = (0 = tn0 < tn1 .. < tnN(πn) = T ) be a sequence of partitions of [0, T ] with vanishing mesh
|πn| = sup

i=0···N(πn)−1

|tni+1 − tni | → 0. A càdlàg function x ∈ D([0, T ],R) is said to have finite

quadratic variation along the sequence of partitions (πn)n≥1 if the sequence of measures∑
tnj ∈πn

(x(tnj+1)− x(tnj ))2δtnj

converges weakly on [0, T ] to a limit measure µ such that t 7→ [x]cπ(t) = µ([0, t])−
∑

0<s≤t

|∆x(s)|2

is continuous and increasing. The increasing function [x]π : [0, T ]→ R+ defined by

[x]π(t) = µ([0, t]) = lim
n→∞

∑
πn

(x(tnk+1 ∧ t)− x(tnk ∧ t))2 (5)

is called the quadratic variation of x along the sequence of partitions π. We denote Qπ([0, T ],R)
the set of càdlàg paths with these properties.

Qπ([0, T ],R) is not a vector space (see e.g [31]) and the extension to vector-valued paths
requires some care [15]:

Definition 1.2. A càdlàg path x = (x1, ..., xd) ∈ D([0, T ],Rd) is said to have finite quadratic
variation along π = (πn)n≥1 if for all i, j = 1..d we have xi ∈ Qπ([0, T ],R) and xi + xj ∈
Qπ([0, T ],R). We then denote [x]π ∈ D([0, T ], S+

d ) the matrix-valued function defined by

[x]i,jπ (t) =
[xi + xj ]π(t)− [xi]π(t)− [xj ]π(t)

2
∈ S+

d ,

where S+
d is the set of symmetric semidefinite positive matrices. We denote by Qπ([0, T ],Rd)

the set of functions satisfying these properties.

For x ∈ Qπ([0, T ],Rd), [x]π is a càdlàgfunction with values in S+
d : [x]π ∈ D([0, T ], S+

d ).
As shown in [5], the above definitions may be more simply expressed in terms of convergence

of discrete approximations. In the case of continuous paths, which is our focus in this paper, we
have the following characterization [6, 5]:

Proposition 1.3. x ∈ C0([0, T ],Rd) has finite quadratic variation along π = (πn, n ≥ 1) if and
only if the sequence of functions [x]πn defined by

[x]πn(t) =
∑
tnj ∈πn

(x(tnj+1 ∧ t)− x(tnj ∧ t))t(x(tnj+1 ∧ t)− x(tnj ∧ t))

converges uniformly on [0, T ] to a continuous (increasing) function [x]π ∈ C0([0, T ], S+
d ).

The notion of quadratic variation along a sequence of partitions is different from the p-
variation for p = 2. The p-variation involves taking a supremum of over all partitions, whereas
quadratic variation is a limit taken along a given sequence (πn)n≥1. In general [x]π given by (5)
is smaller than the p-variation for p = 2. In fact, for diffusion processes the typical situation is
that the p-variation is (almost-surely) infinite for p = 2 [14, 32] while the quadratic variation is
finite for sequences satisfying some mesh size condition. For instance, typical paths of Brownian
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motion have finite quadratic variation along any sequence of partitions with mesh size o(1/ log n)
[13, 11] while simultaneously having infinite p-variation almost surely for p ≤ 2 [28, p. 190]:

inf
π∈Π(0,T )

∑
π

|W (tk+1)−W (tk)|2 = 0, while sup
π∈Π(0,T )

∑
π

|W (tk+1)−W (tk)|2 =∞

almost-surely.
The quadratic variation of a path along a sequence of partitions strongly depends on the

chosen sequence. In fact, as shown by Freedman [16, p. 47], given any continuous functions,
one can always construct a sequence of partitions along which the quadratic variation is zero.
This result was extended by Davis et al. [10] who show that, given any continuous path x ∈
C0([0, T ],R) and any increasing function A : [0, T ]→ R+ one can construct a partition sequence
π such that [x]π = A. Notwithstanding these negative results, we shall identify a class of paths
x for which [x]π is uniquely defined across the class of balanced partition sequences, which we
now define.

2 Balanced partition sequences

One difficulty in comparing quadratic variation along two different partition sequences is the lack
of uniform bounds on the partition intervals. We introduce in this section the class of balanced
partition sequences which allow for such bounds.

We will say that two (real) sequences a = (an)n≥1 and b = (bn)n≥1 are asymptotically
comparable, denoted an � bn, if |an| = O(|bn|) and |bn| = O(|an|) as n→∞. If both sequences
are strictly positive then

an � bn ⇐⇒ lim sup
n→∞

|bn|
|an|

<∞ and lim sup
n→∞

|an|
|bn|

<∞.

2.1 Definition and properties

Definition 2.1 (Balanced partition sequence).
Let πn = (0 = tn0 < tn1 .. < tnN(πn) = T ) be a sequence of partitions of [0, T ] and

πn = inf
i=0..N(πn)−1

|tni+1 − tni |, |πn| = sup
i=0..N(πn)−1

|tni+1 − tni |.

We say that (πn)n≥1 is balanced if

∃c > 0, ∀n ≥ 1,
|πn|
πn
≤ c. (6)

This condition means that all intervals in the partition πn are asymptotically comparable.
Note that since πnN(πn) ≤ T , any balanced sequence of partitions satisfies

|πn| ≤ c πn ≤ cT

N(πn)
. (7)

We will denote by B([0, T ]) the set of all balanced partition sequences of [0, T ].

Proposition 2.2. Let π = (πn)n≥1 be a sequence of partitions of [0, T ]. Then:

(i) π ∈ B([0, T ]) ⇐⇒ lim inf
n→∞

N(πn)πn > 0 and lim sup
n→∞

N(πn)|πn| <∞.
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(ii) Let N(πn, t1, t2) be the number of partition points of πn in [t1, t2]. If π ∈ B([0, T ]) then for
any h > 0,

lim sup
n→∞

supt∈[0,T−h]N(πn, t, t+ h)

inft∈[0,T−h]N(πn, t, t+ h)
<∞.

(iii) If π = (πn)n≥1 ∈ B([0, T ]) then

lim sup
n

N(πn+1)

N(πn)
<∞ ⇐⇒ lim sup

n

|πn|
|πn+1|

<∞ ⇐⇒ lim sup
n

πn

πn+1
<∞. (8)

(iv) If g ∈ C1([0, T ],R) is strictly increasing with inf g′ > 0 then g maps any balanced partition
of [0, T ] to a balanced partition sequence of g([0, T ]).

The proof of this proposition is given in Appendix A.1.
We will say that wo balanced partition sequences τ = (τn)n≥1 and σ = (σn)n≥1 are (asymp-

totically) comparable if

0 < lim inf
n→∞

|σn|
|τn|

≤ lim sup
n→∞

|σn|
|τn|

<∞ (9)

which then implies

0 < lim inf
n→∞

N(σn)

N(τn)
≤ lim sup

n→∞

N(σn)

N(τn)
<∞ (10)

We denote τ � σ (or τn � σn). Note that for general (not balanced) sequences of partitions (9)
does not imply (10): this is a consequence of (7). If τ � σ then the number of points of τn in
any interval of σn remains bounded as n→∞.

The following lemma, whose proof is given in Appendix A.2, shows how one can adjust the
rate at which the mesh of a balanced sequence decreases to zero.

Lemma 2.3 (Adjusting the mesh of a balanced sequence). Let τ = (τn)n≥1 and σ = (σn)n≥1

be two balanced partition sequences of [0, T ] with lim sup
n

|σn|
|τn|

< 1 and |τn| n→∞−−−−→ 0.

(i) There exists a subsequence (τk(n))n≥1 of τ such that:

lim sup
n

|σn|
|τk(n)|

≥ 1.

(ii) If lim sup
n

|τn|
|τn+1|

< ∞, there exists a subsequence (τk(n))n≥1 of τ which is asymptotically

comparable to σ: τk(n) � σn.

(iii) There exists r : N 7→ N such that

lim sup
n

|σr(n)|
|τn|

≥ 1.

(Note that r : N 7→ N may not be injective i.e. (σr(n), n ≥ 1) is not a subsequence of σ.)
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Coarsening A partition may be refined by adding points to it. The inverse operation, which
we call coarsening, corresponds to removing points i.e. subsampling or grouping of partition
points. We will be specifically interested in coarsenings which preserve the balance property but
may modify the asymptotic rate of decrease of the mesh size:

Definition 2.4 (Coarsening of a balanced partition sequence). Let πn = (0 = tn0 < tn1 · · · <
tnN(πn) = T ) be a balanced sequence of partitions of [0, T ] with vanishing mesh |πn| → 0 and
0 < β < 1. A β-coarsening of π is a sequence of subpartitions of πn:

An = (0 = tnp(n,0) < tnp(n,1) < · · · < tnp(n,N(An)) = T )

such that (An)n≥1 is a balanced partition sequence of [0, T ] and |An| � |πn|β .

Note that since β < 1, |An| � |πn|β � |πn| as n increases, so the number of points of πn in
each interval of An increases to infinity:

inf
j=1...N(An)

p(n, j)− p(n, j − 1)
n→∞→ ∞.

2.2 Quadratic variation along balanced partition sequences

If a path has quadratic variation along a sequence of partitions, then it also has (the same)
quadratic variation along any sub-sequence. This simple remark has interesting implications
when the partition sequences is balanced: comparing the sum of squared increments along the
original sequence with the sum along a sub-sequence (with finer mesh) we obtain that, under some
scaling conditions on the mesh, cross-products of increments along the finer partition average to
zero across the coarser partition.

Lemma 2.5 (Averaging property of cross-products of increments). Let x ∈ Cα([0, T ],Rd) for
some α > 0 and σn = {sn0 = 0, sn1 , s

n
2 , · · · , snN(σn)=T } be a balanced sequence of partitions of [0, T ]

such that x ∈ Qσ([0, T ],Rd). Let κ >
1

α
and (σln)n≥1 a subsequence of σn with |σln | � |σn|κ.

Define p(k, n) = inf{m ≥ 1 : slnm ∈ (snk , s
n
k+1]} for k = 1 · · ·N(σn). Then

N(σn)∑
k=1

∑
p(k,n)≤i6=j<p(k+1,n)−1

(
x(slni+1)− x(slni )

)t(
x(slnj+1)− x(slnj )

)
n→∞−−−−→ 0.

We provide the proof for d = 1. The extension to d > 1 is straightforward.

Proof. Let σln be a sub-sequence of σn satisfying |σln | � |σn|κ. Define

[x]σn(t) =

N(σn)−1∑
k=1

(
x(snk+1 ∧ t)− x(snk ∧ t)

)2
, [x]σln (t) =

∑
slnk ∈σln

(
x(slnk+1 ∧ t)− x(slnk ∧ t)

)2

.

Then [x]σln (t)− [x]σn(t)→ 0. Grouping the points of σln along intervals of σn, we obtain:∣∣∣∣[x]σn − [x]σln

∣∣∣∣ =

∣∣∣∣∣∑
σn

(x(sni+1)− x(sni ))2 −
∑
σln

(x(slni+1)− x(slni ))2

∣∣∣∣∣
=

∣∣∣∣∣∣
∑
σn

(
(x(sni+1)− x(sni ))2 −

p(i+1,n)−1∑
j=p(i,n)

(x(slnj+1)− x(slnj ))2

)
+

N(σn)∑
k=1

(x(slnp(k,n))− x(slnp(k,n)−1))2

∣∣∣∣∣∣
7



≥

∣∣∣∣∣∣
∑
σn

(
(x(sni+1)− x(sni ))2 −

p(i+1,n)−1∑
j=p(i,n)

(x(slnj+1)− x(slnj ))2

)∣∣∣∣∣∣−
N(σn)∑
k=1

(x(slnp(k,n))− x(slnp(k,n)−1))2.

Using the Hölder continuity of f , the last term in the above equation is bounded above by
N(σn)∑
k=1

C|σln |2α ≤ CN(σn)|σln |2α. Now using the balanced property of σln , the last term is

bounded above by

N(σn)∑
i=1

C1|σln |2α ≤ N(σn)C1|σln |2α ≤
C2N(σn)

N(σln)2α
≤ C2 ×N(σn)1−2ακ n→∞→ 0

since 1− 2κα < 0. So finally we obtain

lim
n→∞

∣∣∣∣∣∣
N(σn)∑
k=1

∑
p(k,n)≤i 6=j<p(k+1,n)

(
x(slni+1)− x(slni )

)(
x(slnj+1)− x(slnj )

)∣∣∣∣∣∣ ≤ lim
n→∞

|[x]σn − [x]σln | = 0.

�

3 Quadratic roughness

3.1 Quadratic roughness along a sequence of partitions

Lemma 2.5 shows that if a function has finite quadratic variation along a balanced partition
sequence, then the product of the increments along any subsequence with sufficiently small mesh
average to zero if we do the averaging along the original (coarser) sequence. Intuitively, this
means that there is enough cancellation across neighboring increments such that their cross-
products average to zero over a coarser grid. We will now introduce a slightly extended version
of this property, which we call quadratic roughness, and show that plays a key role in the stability
of quadratic variation with respect to the partition.

Definition 3.1 (Quadratic roughness). Let πn = (0 = tn0 < tn1 .. < tnN(πn) = T ) be a balanced

sequence of partitions of [0, T ] with |πn| → 0 and 0 < β < 1. We say that x ∈ Qπ([0, T ],Rd) has
the quadratic roughness property along π with coarsening index β on [0, T ] if for any β-coarsening
An = (0 = tnp(n,0) < tnp(n,1) < · · · < tnp(n,N(An)) = T ) of π we have

N(An)∑
j=1

∑
p(n,j−1)≤i6=i′<p(n,j)

(
x(tni+1 ∧ t)− x(tni ∧ t)

)t (
x(tni′+1 ∧ t)− x(tni′ ∧ t)

) n→∞−−−−→ 0.

We denote by Rβπ([0, T ],Rd) ⊂ Qπ([0, T ],Rd) the set of paths satisfying this property.
In other words, the quadratic roughness property states that cross-products of increments

along πn average to zero over any (β-)coarsening of πn as the mesh is refined.

Remark 3.2. Let σ = (σn)n≥1 be a balanced partition sequence of [0, T ] with |σn| → 0. Then
the quadratic roughness property along σ implies existence of quadratic variation along any
β-coarsening of σ i.e. any sequence of subpartitions of σ satisfying Definition 2.4:

Rβσ([0, T ],Rd) ⊂
⋂

π∈C(β,σ)

Qπ([0, T ],Rd),

where C(β, σ) denotes the set of all possible β-coarsenings of σ.
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Proposition 3.3. Let π = (πn)n≥1 be a balanced partition sequence of [0, T ] with |πn| → 0 and
x ∈ Rβπ([0, T ],Rd) with 0 ≤ β < 1. Then:

1. For any interval I ⊂ [0, T ], x has the quadratic roughness property on I along πI =
(πnI )n≥1 = (πn ∩ I)n≥1: x ∈ RβπI ([0, T ],Rd).

2. For any subsequence τn = πk(n) of π, we have x ∈ Rβτ ([0, T ],Rd).

3. For any λ ∈ R, λx ∈ Rβπ([0, T ],Rd).

4. If y is a function with bounded variation then x+ y ∈ Rβπ([0, T ],Rd).

The proof of this lemma is given in Appendix A.3.

3.2 Quadratic roughness of Brownian paths

We will now show that the quadratic roughness property is satisfied by typical sample paths of
Brownian motion.

Denote by

d(τn, σn) = max

{
max
t∈τn

min
s∈σn

|t− s|,max
s∈σn

min
t∈τn
|t− s|

}
the Hausdorff distance between two partitions σn and τn of [0, T ]. For any t ∈ τn there exists
s ∈ σn such that |t− s| ≤ d(τn, σn).

Lemma 3.4. Let π = (πn)n≥1 be a balanced sequence of partitions of [0, T ]. Then for all
A,B ∈ C(β, π) there exists M(A,B) > 0 such that, for all n ≥ 1, the number of points of An in
each interval of Bn is bounded by M(A,B).

Proof. Let, An = (tnp(n,1), t
n
p(n,2), · · · , t

n
p(n,N(An))) and Bn = (tnq(n,1), t

n
q(n,2), · · · , t

n
q(n,N(Bn))) be

β−coarsenings of π. Since

lim sup
n→∞

|An|
Bn
≤ lim sup

n→∞

[
|An|
|πn|β

× |π
n|β

|Bn|
× |B

n|
Bn

]

lim sup
n→∞

|An|
Bn
≤ lim sup

n→∞

[
lim sup
n→∞

|An|
|πn|β

]
×
[
lim sup
n→∞

|πn|β

|Bn|

]
×
[
lim sup
n→∞

|Bn|
Bn

]
≤M <∞.

using the fact that |An| � |πn|β � |Bn| and Bn is a balanced sequence of partitions of [0, T ].

Interchanging the roles of An and Bn we also have lim sup
n→∞

|Bn|
An

< ∞. Hence for all An, Bn ∈

Cn(β, π), there exists M(A,B) > 0 such that, for all n ≥ 1, the number of points of An in each
interval of Bn is bounded by M(A,B). �

For a β-coarsening A = (An)n≥1, of π define:

||A||π = max{lim sup
n→∞

|An|
|πn|β

, lim sup
n→∞

|πn|β

|An|
, lim sup
n→∞

|An|
An
} <∞.

Denoting G(β, π, k) = {A ∈ C(β, π) : ||A|| ≤ k} ⊂ C(β, π) we have C(β, π) = ∪k∈NG(β, π, k).

Lemma 3.5. Let πn be a balanced sequence of partitions of [0, T ]. Then:

∀k ≥ 1, ∃L(β, π, k) > 0, ∀n ≥ 1, sup
A,B∈G(β,π,k)

d(An, Bn) ≤ L(β, π, k) |πn|β .

9



Proof. If the conclusion does not hold, then lim sup
n→∞

sup
A,B∈C(β,π)

d(An, Bn)

|πn|β
=∞. Then, given any

K > 0 there exists A,B ∈ C(β, π) such that

lim sup
n→∞

d(An, Bn)

|πn|β
> K.

Since A,B ∈ C(β, π), there exists C > 0 such that for all n ≥ 1,

|An| ≤ C|πn|β , |Bn| ≤ C|πn|β .

From Lemma 3.4 and the definition of G(β, π, k), there exists M(A,B) > 0 such that for all
n ≥ 1, the number of points of An in each interval of Bn is bounded by M(A,B). So:

max
t∈An

min
s∈Bn

|t− s| ≤M |Bn| ≤MC|πn|β and max
s∈Bn

min
t∈An

|t− s| ≤M |An| ≤MC|πn|β .

Therefore for all n ≥ 1, d(An, Bn) ≤ MC|πn|β . Choosing L > MC leads to a contradiction.
Hence the result follows. �

Lemma 3.6. Let π be a balanced sequence of partitions of [0, T ] and A,B ∈ C(β, π) be β-

coarsenings of π. Let β < γ <
1

2
. If for n ≥ 1, d(An, Bn) ≤ c|πn|γ for some c <∞ then

∀ω ∈ C 1
2−([0, T ],R), [ω]A = [ω]B .

Proof. Since d(An, Bn) ≤ c|πn|γ for any t ∈ An there exists at least one s ∈ Bn such that
|s− t| ≤ c|πn|γ . Let

An = (0 = an1 < an2 < · · · < anN(An) = T ).

For i ∈ {1, 2 · · ·N(An)} there exists mi ≥ 1 such that

s
ani
1 < s

ani
2 < · · · < s

ani
mni
∈ Bn such that sup

j∈{1···man
i
}
|sa

n
i
j − a

n
i | ≤ c|πn|γ

Now from Lemma 3.4 we can conclude that mn
i < M <∞ for all n ≥ 1 and i. Also notice that:

{sa
n
i
j |i = 1, 2 · · ·N(An) and j = 1, 2, · · ·mn

i } ⊇ Bn

as, d(An, Bn) ≤ c|πn|γ .
Let ω ∈ C1/2−([0, T ],R). Then for any γ < α < 1/2:∣∣∣∣∣∣(ω(ani+1)− ω(ani )

)2 − mni∑
j=2

(
ω(s

ani
j+1)− ω(s

ani
j )
)2

−
mni+1∑
j′=2

(
ω(s

ani
j′+1)− ω(s

ani
j′ )
)2

∣∣∣∣∣∣ = O(|πn|γα|An|α).

So, |[ω]An − [ω]Bn | = O(N(An)|πn|γα|An|α) = O(|πn|γα+βα−β) = O(|πn|β( γβα+α−1)). Now

from the construction we have
γ

β
> 1 which implies

γ

β
+ 1 > 2. Choosing

β

γ + β
< α <

1

2
then

leads to
γ

β
α+ α− 1 > 0 so

|[ω]An − [ω]Bn | = O(|πn|β( γβα+α−1))
n→∞−−−−→ 0.

�
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Remark 3.7. In fact one can obtain a more refined estimate for A,B ∈ G(β, π, k). Let β < γ <
1

2
.

Then d(An, Bn) ≤ c|πn|γ implies

∀ω ∈ C 1
2−([0, T ],R), ∀α < 1

2
, |[ω]An − [ω]Bn | ≤ cM2Tkα‖ω‖α|πn|α(γ+β)−β ,

where ‖ω‖α is the α-Hölder norm of ω. Furthermore, there exists a > 0 such that

sup
A,B∈G(β,π,k)

|[ω]An − [ω]Bn | = o(|πn| a2 ).

Theorem 3.8 (Quadratic roughness of Brownian paths). Let W be a Wiener process on a
probability space (Ω,F ,P), T > 0 and (πn)n≥1 a balanced sequence of partitions of [0, T ] with

(log n)ν |πn| n→∞→ 0 for some ν > 2. (11)

Then the sample paths of W almost-surely satisfy the quadratic roughness property on [0, T ]:

∀β ∈ (
2

ν
, 1), P

(
W ∈ Rβπ([0, T ],R)

)
= 1.

Proof. Let W be a Wiener process on a probability space (Ω,F ,P), which we take to be the
canonical Wiener space without loss of generality i.e Ω = C0([0, T ],R),W (t, ω) = ω(t). Using
Lévy’s modulus of continuity result,

lim
h→0

sup
0≤t≤T−h

|W (t+ h)−W (t)|√
2h log(1/h)

= 1 almost surely,

so there exists δ, c > 0 and Ω1 ⊂ Ω with P(Ω1) = 1 such that for h < δ we have

∀ω ∈ Ω1, |ω(t+ h)− ω(t)| ≤ c
√
h log(

1

h
).

For any 0 < a < 1/2 we have

∀ω ∈ Ω1, sup
0<h≤δ

|ω(t+ h)− ω(t)|
ha

≤ ch 1
2−a
√

log(
1

h
).

The right hand side is bounded and has a finite maximum Ca on [0, δ] so

∀ω ∈ Ω1, sup
0<h<δ

|ω(t+ h)− ω(t)|
ha

≤ Ca. (12)

Let πn = (0 = tn0 < tn1 .. < tnN(πn) = T ) be a balanced sequence of partitions of [0, T ] satisfying
(11). Then |πn| log n→ 0 so the results of Dudley [13] imply that

P

(∑
πn

|W (tni+1 ∧ t)−W (tni ∧ t)|2
n→∞→ t

)
= 1.

Furthermore P(C
1
2−([0, T ],R)) = 1, so if we set Ω0 = Ω ∩Qπ([0, T ]) ∩ C 1

2−([0, T ],R) ∩ Ω1 then
P (Ω0) = 1 and any ω ∈ Ω0 satisfies [ω]π(t) = t and (12) for any 0 < a < 1/2.
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Let β ∈ (
2

ν
, 1) and C(β, π) be the set of all β-coarsenings of π i.e. sequences of subpartitions

satisfying Definition 2.4, and Cn(β, π) = {An, A ∈ C(β, π)}. Let A = (An) ∈ C(β, π) with

An = (0 = tnp(n,0) < tnp(n,1) < · · · < tnp(n,N(An)) = T ). (13)

Define aii′ =
√

(tni+1 − tni )(tni′+1 − tni′) if p(n, j−1) ≤ i 6= i′ < p(n, j) for some j ∈ {1, 2 · · ·N(An)}
otherwise set aii′ = 0. Let

S(An,W ) =

N(An)∑
j=1

∑
p(n,j−1)≤i6=i′<p(n,j)

(
W (tni+1)−W (tni )

)T (
W (tni′+1)−W (tni′)

)
=

N(πn)∑
i,i′=1

aii′X
n
i X

n
i′

where

Xn
i =

W (tni+1)−W (tni )√
tni+1 − tni

∼ N(0, 1)

are IID variables for i = 0, · · ·N(πn)− 1. Let

Λ2 =
∑

1≤i,i′≤N(πn)

a2
ii′ =

N(An)∑
j=1

∑
p(n,j−1)≤i6=i′<p(n,j)

a2
ii′

≤
N(An)∑
j=1

∑
p(n,j−1)≤i 6=i′<p(n,j)

∆tni ∆tni′ ≤
N(An)∑
j=1

|Anj |2 ≤ |An|
N(An)∑
j=1

|Anj | = |An|T.

The Hanson-Wright inequality [20] then implies that for any δ > 0, there exists constants C1

and C2 such that

∀n ≥ 1, P
(
|S(An,W )| > δ

)
≤ 2 exp(−min{C1

δ√
|An|

, C2
δ2

|An|
})
n→∞
≤ 2 exp

(
−C1

δ√
|An|

)

since |An| � |πn|β → 0. As |πn|β(log n)2 → 0, if we denote εn =
√
|An|(log n) then εn → 0 and

we can rewrite this bound as

P
(
|S(An,W )| > δ

)
≤ 2 exp(−min{C1δ log n

εn
,
C2δ

2 (log n)2

ε2
n

}) ≤ 2C

nC1δ/εn
. (14)

Let β < γ <
1

2
and k ≥ 1. Denote R(n) =

[
L(β, π, k)|πn|β−γ

]
+ 1, where L(β, π, k) is the

constant defined in Lemma 3.5. For i ∈ {1, 2, · · · , R(n)}, we define

Fni (β, π) = {B ∈ G(β, π, k), d(An, Bn) ∈ [(i− 1)|πn|γ , i|πn|γ)} ⊂ C(β, π).

Then by Lemma 3.5 G(β, π, k) = ∪R(n)
i=1 F

n
i (β, π). From Remark 3.7 there exists a N0 ∈ N such

that for all i ∈ {1, 2 · · ·R(n)} and for all n ≥ N0:

∀ω ∈ Ω0, ∀ B,C ∈ Fni (β, π), |[ω]Bn − [ω]Cn | ≤
δ

2
so

∣∣∣∣|S(Bn, ω)| − |S(Cn, ω)|
∣∣∣∣ ≤ δ

2

.

12



So, if there exists C ∈ Fni (β, π) such that |S(Cn,W )| > δ then for any B ∈ Fni (β, π) we have

|S(Bn,W )| > δ

2
, i.e.

∀B ∈ Fni (β, π), P (∃C ∈ Fni (β, π) : |S(Cn,W )| > δ) ≤ P
(
|S(Bn,W )| > δ

2

)
.

Combining this with our previous Hanson-Wright estimate yields

P
(
∃C ∈ Fni (β, π), |S(Cn,W )| > δ

)
≤ 2C

nC1δ/εn
.

So for all n ≥ N0,

P
(
∃B ∈ G(β, π, k), |S(Bn,W )| > δ

)
≤
R(n)∑
i=1

P
(
∃C ∈ Fni (β, π) : |S(Cn,W )| > δ

)

≤ 2C2R(n)

nC1δ/εn
≤

2C2(
[
L(β, π, k)|πn|β−γ

]
+ 1)

nC1δ/εn
≤ 2C2(L(β, π, k)|πn|β−γ + 2)

nC1δ/εn
≤
(

log n

εn

) 2(β−γ)
β C3

nC1δ/εn
.

Therefore

P
(
∃Bn ∈ Cn(β, π), |S(Bn,W )| > δ

)
≤ O

( log n

εn

) 2(β−γ)
β 1

nC1δ/εn

 .

The series
∑
n

(
log n

εn

) 2(β−γ)
β 1

nC1δ/εn
<∞ is absolutely convergent. So we can apply the Borel-

Cantelli lemma to obtain for each δ > 0 a set Ωδ with P(Ωδ) = 1 and Nδ ∈ N such that

∀ω ∈ Ωδ, ∀A ∈ C(β, π), ∀n ≥ Nδ, |S(An,W )(ω)| ≤ δ.

Now if we set

Ωπ = Ω0 ∩
(
∩
k≥1

Ω1/k

)
then P(Ωπ) = 1

and for paths in Ωπ we have S(An, ω)→ 0 simultaneously for all β−coarsenings A ∈ G(β, π, k):

∀ω ∈ Ωπ, ∀A ∈ G(β, π, k), S(An, ω)
n→∞→ 0,

which is true for all k ∈ N. Noting that C(β, π) = ∪k∈NG(β, π, k) allows to conclude

∀ω ∈ Ωπ, ∀A ∈ ∪k∈NG(β, π, k) = C(β, π), S(An, ω)
n→∞→ 0,

therefore P
(
W ∈ Rβπ([0, T ],R)

)
= 1.

�

Combining Theorem 3.8 with Remark 3.2 we obtain the almost-sure convergence of quadratic
variation for Brownian motion simultaneously for all β−coarsenings of π:

Corollary 3.9. Under the assumptions of Theorem 3.8,

P

W ∈ ⋂
τ∈C(β,π)

Qτ ([0, T ],Rd)

 = 1.

Note that the set C(β, π) of β−coarsenings of π is uncountable, so the above result is far from
obvious: metric arguments play a crucial role in Theorem 3.8.
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4 Uniqueness of quadratic variation along balanced parti-
tions

4.1 Main result

The following lemma shows that the quadratic roughness property is a necessary condition for
the stability of quadratic variation with respect to the choice of the partition sequence:

Lemma 4.1. Let 0 < β < 1 and π = (πn)n≥1 be a balanced partition sequence such that
x ∈ Qπ([0, T ],Rd) with [x]π strictly increasing. If x has the same quadratic variation along all
β-coarsenings of π then x has the quadratic roughness property along π:

(∀τ ∈ C(β, π), [x]τ = [x]π ) ⇒ x ∈ Rβπ([0, T ],Rd).

Proof. Let τ ∈ C(β, π) be a β-coarsening of π. Using the same notation as in Def. 3.1,

τn = (0 = tnp(n,0) < tnp(n,1) < · · · < tnp(n,N(πn)) = T ).

From the assumption we have x ∈ Qτ ([0, T ],Rd) and [x]τ = [x]π. So for all t ∈ [0, T ]:

lim
n→∞

[x]πn(t)− [x]τn(t) = 0

= lim
n→∞

N(τn)∑
j=1

∑
p(n,j−1)≤i 6=i′<p(n,j)

(
x(tni+1 ∧ t)− x(tni ∧ t)

)t (
x(tni′+1 ∧ t)− x(tni′ ∧ t)

)
which is the quadratic roughness property, so the result follows. �

We will now show that quadratic roughness is also a sufficient condition for the uniqueness
of quadratic variation along balanced partition sequences. We consider partitions satisfying the
following assumption:

Assumption 1. σ = (σn)n≥1 is a balanced sequence of partitions of [0, T ] with |σn| → 0 and

lim sup
n

|σn|
|σn+1|

<∞, or equivalently lim sup
n

|N(σn+1)|
|N(σn)|

<∞ (15)

The dyadic partition (and any geometric partition) obviously satisfies this assumption.
Our main result is that quadratic roughness along such a sequence implies uniqueness of

pathwise quadratic variation along all balanced partition sequences:

Theorem 4.2. Let σ be a sequence of partitions satisfying Assumption 1 and x ∈ Cα([0, T ],Rd)∩
Rβσ([0, T ],Rd) for some 0 < β ≤ α. Then for any balanced sequence of partitions τ = (τn)n≥1, if
x ∈ Qτ ([0, T ],Rd) then [x]τ = [x]σ.

Proof. We first prove the result in the case where lim sup
n

|τn|
|σn|

< 1. We will then show that the

case lim sup
n

|τn|
|σn|

≥ 1 may be reduced to this one.
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If lim sup
n

|τn|
|σn|

< 1 then from Lemma 2.3(i) if we define

k(n) = inf{k ≥ n, |σk| ≤ |τn|} <∞ since |τk| k→∞→ 0. (16)

then the subsequence (σk(n))n≥1 of σ satisfies

lim sup
n

|τn|
|σk(n)|

≥ 1 and lim sup
n

|τn|
|σk(n)−1|

< 1.

For i = 1..N(τn),

j(i, n) = inf{j ≥ 1, s
k(n)
j ∈ (tni , t

n
i+1]}.

Then we have

s
k(n)
j(i,n)−1 ≤ t

n
k < s

k(n)
j(i,n) < · · · < s

k(n)
j(i+1,n)−1 ≤ t

n
i+1 < s

k(n)
j(i+1,n).

We now show that the size j(i+1, n)−j(i, n) of these clusters is uniformly bounded. Assume that
sup

i=1..N(τn)

j(i+ 1, n)− j(i, n)→∞ as n→∞. Then, from the above definition of k(n) and using

the balanced property of τn and σk(n) we have lim sup
n

|τn|
|σk(n)|

→ ∞. Since lim sup
n

|τn|
|σk(n)−1|

is

bounded from (16) we thus have

lim sup
n

(
|τn|
|σk(n)|

− |τn|
|σk(n)−1|

)
= lim sup

n

|τn|
|σk(n)−1|

(
|σk(n)−1|
|σk(n)|

− 1

)
=∞

which contradicts the assumption that lim sup
j

|σj−1|
|σj |

<∞. Hence the sequence

sup
i=1..N(τn)

j(i+ 1, n)− j(i, n) is bounded as n→∞:

∃M > 0,∀i, n ≥ 1, j(i+ 1, n)− j(i, n) ≤M <∞.

Therefore (σk(n))n≥1 and (τn)n≥1 are (asymptotically) comparable i.e. the sequences

N(σk(n))

N(τn)
and

|σk(n)|
|τn|

(17)

are bounded. Define now

ln = inf{l ≥ n : N(σl) ≥ N(σk(n))1/β}

Then N(σln−1) < N(σk(n))1/β ≤ N(σln). Since the subsequence (σln) is also balanced, there
exists constants c1 and c2 such that c1|σln−1| > |σk(n)|1/β ≥ c2|σln |. The points of the partition
τn are interspersed among those of σln . Define for k = 1 · · ·N(τn):

p(n, k) = inf{m ≥ 1 : slnm ∈ (tnk , t
n
k+1]}.

Then we have

slnp(n,k)−1 ≤ t
n
k < slnp(n,k) < · · · < slnp(n,k+1)−1 ≤ t

n
k+1 < slnp(n,k+1) (18)
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where p(n,N(τn))− 1 = N(σln). We will show that by grouping the points of σln according to
the intervals defined by τn we obtain a β−coarsening of σln and use the quadratic roughness
property of x to conclude that for all t ∈ [0, T ]:

[x]τn(t) =

N(τn)−1∑
k=0

(
x(tnk+1 ∧ t)− x(tnk ∧ t)

)t(
x(tnk+1 ∧ t)− x(tnk ∧ t)

)
and

[x]σln (t) =

N(σln )−1∑
k=0

(
x(slnk+1 ∧ t)− x(slnk ∧ t)

)t(
x(slnk+1 ∧ t)− x(slnk ∧ t)

)
have the same limits. We shall give the proof for t = T ; for t < T we have an additional boundary
term which goes to zero.

Decomposing ∆n
k = x(tnk+1)− x(tnk ) along the partition points of σln , we obtain,

x(tnk+1)− x(tnk )︸ ︷︷ ︸
∆n
k

= (x(tnk+1)− x(slnp(n,k+1)−1)︸ ︷︷ ︸
Dk

− (x(tnk )− x(slnp(n,k)−1))︸ ︷︷ ︸
Bk

+

p(n,k+1)−1∑
i=p(n,k)

(x(slni )− x(slni−1))

︸ ︷︷ ︸
Ck

Grouping together the terms in [x]σln according to (18) yields

[x]τn(T )− [x]σln (T ) =

N(τn)∑
k=1

∆n
k
t∆n

k −
p(n,k+1)−1∑
i=p(n,k)

(
x(slni )− x(slni−1)

)t(
x(slni )− x(slni−1)

)

=

N(τn)∑
k=1

[
∆n
k
t∆n

k − CtkCk
]

+

N(τn)∑
k=1

CtkCk − p(n,k+1)−1∑
i=p(n,k)

(
x(slni )− x(slni−1)

)t(
x(slni )− x(slni−1)

) .
Since

N(τn)∑
k=1

CtkCk =

N(τn)∑
k=1

(∆n
k −Dk +Bk)t(∆n

k −Dk +Bk)

=

N(τn)∑
k=1

∆n
k
t∆n

k +

N(τn)∑
k=1

(Dk −Bk)t(Dk −Bk) +

N(τn)∑
k=1

∆n
k
tBk −

N(τn)∑
k=1

∆n
k
tDk

we finally obtain∣∣∣∣∣∣
N(τn)∑
k=1

[∆n
k
t∆n

k − CtkCk]

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
N(τn)∑
k=1

(Dk −Bk)t(Dk −Bk)

∣∣∣∣∣∣+

∣∣∣∣∣∣
N(τn)∑
k=1

∆n
k
tBk

∣∣∣∣∣∣+

∣∣∣∣∣∣
N(τn)∑
k=1

∆n
k
tDk

∣∣∣∣∣∣ .
Now we will show that as n → ∞,

N(τn)∑
k=1

(∆n
k
t∆n

k − CtkCk) → 0. Since x ∈ Cα([0, T ],Rd) we

have :
∀t ∈ [0, T − h], ∀h > 0, ‖x(t+ h)− x(t)‖ ≤ ‖x‖αhα.

Now,

‖
N(τn)∑
k=1

Dt
kDk‖ ≤

N(τn)∑
i=1

||Dk||2 ≤
N(τn)∑
k=1

‖x‖2α|σln |2α
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≤ ‖x‖2αN(τn)|σln |2α ≤ cN(σk(n))|σk(n)|2α/β n→∞→ 0

since α ≥ β. Similarly we have

N(τn)∑
k=1

BtkBk → 0. Therefore,

N(τn)∑
k=1

|(Dk −Bk)t(Dk −Bk)| ≤ 2

∣∣∣∣∣∣
N(τn)∑
k=1

Dt
kDk

∣∣∣∣∣∣+ 2

∣∣∣∣∣∣
N(τn)∑
k=1

BtkBk

∣∣∣∣∣∣→ 0.

Using the Cauchy-Schwarz inequality,

‖
N(τn)∑
k=1

Dt
k∆n

k‖ ≤
(N(τn)∑
k=1

‖Dk‖2
) 1

2
(N(τn)∑
k=1

‖∆n
k‖2
) 1

2 .

Since the quadratic variation of x along the sequence of partitions τ is finite the sequence
N(τn)∑
k=1

‖∆n
k‖2 is bounded. Combining this wit the estimate above we obtain

N(τn)∑
k=1

Dt
k∆n

k → 0.

Similarly, we have,

N(τn)∑
k=1

Btk∆n
k → 0. Therefore,

N(τn)∑
k=1

[∆n
k
t∆n

k − CtkCk]→ 0. Hence

lim
n→∞

[x]τn(T )−[x]σln (T ) = lim
n→∞

N(τn)∑
k=1

CtkCk − p(n,k+1)−1∑
i=p(n,k)

(
x(slni )− x(slni−1)

)t(
x(slni )− x(slni−1)

) .
The partition points of σln and τn are ordered according to

slnp(n,k)−1 ≤ t
n
k < slnp(n,k) < slnp(n,k)+1 < · · · < slnp(n,k+1)−1 ≤ t

n
k+1 < slnp(n,k+1). (19)

Expanding the term CtkCk we obtain:

N(τn)∑
k=1

CtkCk − p(n,k+1)−1∑
i=p(n,k)

(
x(slni )− x(slni−1)

)t(
x(slni )− x(slni−1)

)

=

N(τn)∑
k=1

[(
x(slnp(n,k+1)−1)− x(slnp(n,k)−1)

)t (
x(slnp(n,k+1)−1)− x(slnp(n,k)−1)

)

−
p(n,k+1)−1∑
i=p(n,k)

(
x(slni )− x(slni−1)

)t(
x(slni )− x(slni−1)

)]

=

N(τn)∑
k=1

p(n,k+1)−1∑
i,j=p(n,k)

i 6=j

(
x(slni )− x(slni−1)

)t(
x(slnj )− x(slnj−1)

)
.
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Since x ∈ Rβσ([0, T ],Rd), by Proposition 3.3(iii) x also has the quadratic roughness property
along the subsequence σl = (σln)n≥1 with the same coarsening index β. We will now show that

An = (0 = sln0 < slnp(n,1)−1 < slnp(n,2)−2 · · · < slnp(n,N(τn))−1 = T )

is a β-coarsening of (σln)n≥1. For large enough n,
1

2
τn ≤ An ≤ |An| ≤ 2|τn| so (An) is a

balanced sequence of partitions. Also,

lim sup
n

|τn|
|σln |β

≤ c3 lim sup
n

|τn|
|σk(n)+1|

≤ c4 lim sup
n

|τn|
|σk(n)|

× |σk(n)|
|σk(n)+1|

<∞.

On the other hand

lim inf
n

|τn|
|σln |β

≥ c5 lim inf
n

|τn|
|σk(n)|

> 0.

Therefore (An, n ≥ 1) is a β-coarsening of (σln)n≥1. The quadratic roughness property of x
along (σln)n≥1 then implies

N(τn)∑
k=1

p(n,k+1)−1∑
i,j=p(n,k)

i 6=j

(
x(slni )− x(slni−1)

)t(
x(slnj )− x(slnj−1)

)
n→∞−−−−→ 0.

Therefore [x]σ − [x]τ = lim
n→∞

[x]τn(T )− [x]σln (T ) = 0.

Let us now examine the case where lim sup
n

|τn|
|σn|

≥ 1. Using Lemma 2.3 (i) there exists a

subsequence (πn)n≥1 = (τk(n))n≥1 of τ such that:

lim sup
n

|σn|
|πn|

≥ 1.

So using the above result [x]π = [x]σ. Since π is a subsequence of τ we have [x]π = [x]σ = [x]τ . �

As an application, we show that the roughness property and the quadratic variation of a path
are invariant under a reparameterization of the path:

Proposition 4.3 (Stability of quadratic variation under reparameterization). Let α > 0 and
g ∈ C1([0, T ],R+) be an increasing function with inf g′ > 0 and π a sequence of partitions
satisfying Assumption 1. Then for x ∈ Cα([0, T ],R)∩Rβπ([0, T ],R), we have x◦g ∈ Qπ([0, T ],R)
and

∀t ∈ [0, T ], [x]π(g(t)) = [x ◦ g]π(t).

Proof. Let πn = (0 = tn1 < tn2 < · · · < tnN(πn) = T ) be a balanced partition. Then g(πn) =
(g(tnk ), k = 0..N(πn)) defines a partition of [g(0), g(T )]. From Proposition 2.2(iii) the sequence
of partitions g(π) = (g(πn))n≥1 is balanced. From the mean value theorem there exists Unk ∈
[tnk , t

n
k+1] such that g(tnk+1)− g(tnk ) = g′(Unk )(tnk+1 − tnk ). Therefore

lim sup
n→∞

supπn(g(tnk+1)− g(tnk ))

supπn+1(g(tn+1
k+1)− g(tn+1

k ))
= lim sup

n→∞

supπn g
′(Unk )(tnk+1 − tnk )

supπn+1 g′(Un+1
k )(tn+1

k+1 − t
n+1
k )

≤ max g′

min g′
lim sup
n→∞

|πn|
|πn+1|

<∞.
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The last inequality follows from Assumption 1 on π. The assumptions on g then imply that
g(π) � π. The sequence of partitions g(πn) then satisfies Assumption 1. Therefore we can apply
theorem 4.2 to conclude that

∀t ∈ [0, T ], [x]π(g(t)) = [x ◦ g]π(t).

�

4.2 Intrinsic definition of quadratic variation

For γ ≥ 0, define Pγ([0, T ]) as the set of balanced partition sequences (σn)n≥1 satisfying As-

sumption 1 such that |σn| = o(| log n|−(γ+ε)) for some ε > 0:

Pγ([0, T ]) = {σ ∈ B([0, T ]), lim sup
n→∞

|σn|
|σn+1|

<∞, ∃ε > 0, (log n)γ+ε|σn| n→∞→ 0}. (20)

Let Q([0, T ],Rd) be the set of paths which are α−Hölder continuous for α < 1/2 and satisfy the
quadratic roughness property along some partition sequence σ ∈ P4([0, T ]):

Q([0, T ],Rd) = C
1
2−([0, T ],Rd) ∩

 ⋃
σ∈P4([0,T ])

R
1
2
σ ([0, T ],Rd)

 . (21)

Lemma 4.4. The class Q([0, T ],Rd) is non-empty and contains all ’typical’ Brownian paths.

Proof. Let W be a Wiener process on a probability space (Ω,F ,P), which we take to be the
canonical Wiener space without loss of generality. For any σ ∈ P4([0, T ]), Theorem 3.8 implies
that

P
(
W ∈ R

1
2
σ ([0, T ],Rd)

)
= 1.

Brownian paths are almost-surely α-Hölder for α <
1

2
[26], so

P
(
W ∈ R

1
2
σ ([0, T ],Rd) ∩ C 1

2−([0, T ],Rd)
)

= 1

and the result follows. �

Based on the results above we can now give an ’intrinsic’ definition of pathwise quadratic
variation for paths in Q([0, T ],Rd) which does not rely on a particular partition sequence:

Proposition 4.5 (Quadratic variation map). There exists a unique map

[ . ] : Q([0, T ],Rd) → C0([0, T ], S+
d )

such that

∀π ∈ B([0, T ]), ∀x ∈ Qπ([0, T ],Rd) ∩Q([0, T ],Rd), ∀t ∈ [0, T ], [x]π(t) = [x](t).

We call [x] the quadratic variation of x.
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Proof. Let π ∈ B([0, T ]). For any x ∈ Qπ([0, T ],Rd) ∩ Q([0, T ],Rd) there exists σ ∈ P4([0, T ])

such that x ∈ R
1
2
σ ([0, T ],Rd)∩C 1

2−([0, T ],Rd). Then Theorem 4.2 implies that for any balanced
partition sequence π ∈ B([0, T ]) we have:

∀t ∈ [0, T ], [x]π(t) = [x]σ(t).

By the same argument the quadratic variation does not depend on the choice of σ ∈ P4([0, T ])

such that x ∈ R
1
2
σ ([0, T ],Rd), so the result follows. �

Remark 4.6. If X is a continuous P-semimartingale then its image [X] under the map defined in
Proposition 4.5 coincides almost-surely with the usual definition of quadratic variation. Building
on [22], Karandikar and Rao [24] construct a (different) quadratic variation map which shares
this property. In contrast to [24], our construction does not rely on specific path-dependent
partitions, identifies explicitly the domain of definition of the map (rather than implicitly in
terms of the support of a probability measure) and does not use any probabilistic tools.

5 Pathwise Itô calculus

5.1 Pathwise integration and the pathwise Itô formula

Theorem 4.2 and Proposition 4.5 allow to give an intrinsic formulation of Föllmer’s pathwise
integration and pathwise Itô calculus, without relying on a specific sequence of partitions.

Theorem 5.1 (Uniqueness of the Föllmer integral). There exists a unique map

I : C2(Rd)×Q([0, T ],Rd) → Q([0, T ],R)

(f, x) → I(f, x) =

∫ .

0

(∇f ◦ x).dx

such that: ∀π ∈ B([0, T ]), ∀x ∈ Qπ([0, T ],Rd) ∩Q([0, T ],Rd), ∀t ∈ [0, T ],

I(f, x)(t) =

∫ t

0

(∇f ◦ x).dπx = lim
n→∞

∑
πn

∇f(x(tni )).(x(tni+1 ∧ t)− x(tni ∧ t)).

We denote I(f, x) =

∫ .

0

(∇f ◦ x)dx. Furthermore

∀f ∈ C2(Rd), ∀π ∈ B([0, T ]), ∀x ∈ Qπ([0, T ],Rd) ∩Q([0, T ],Rd),

f(x(t))− f(x(0)) =

∫ t

0

(∇f ◦ x).dx+
1

2

∫ t

0

< ∇2f(x), d[x] > (22)

and

[∫ .

0

(∇f ◦ x) dx)

]
π

(t) =

∫ t

0

< (∇f ◦ x)t(∇f ◦ x), d[x] > . (23)

Proof. For any balanced partition sequence π ∈ B([0, T ]) if x ∈ Qπ([0, T ],Rd)∩Q([0, T ],Rd) then

there exists σ ∈ P4([0, T ]) such that x ∈ R
1
2
σ ([0, T ],Rd)∩C 1

2−([0, T ],Rd). Then the pathwise Ito
formula [15] implies∫ t

0

(∇f ◦ x).dπx = f(x(t))− f(x(0))− 1

2

∫ t

0

< ∇2f(x), d[x]π >
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and

∫ t

0

(∇f ◦ x).dσx = f(x(t))− f(x(0))− 1

2

∫ t

0

< ∇2f(x), d[x]σ > .

From Theorem 4.2 we have [x]σ = [x]π. So:

∀t ∈ [0, T ],

∫ t

0

(∇f ◦ x).dπx =

∫ t

0

(∇f ◦ x).dσx

i.e. the pathwise integral

∫ t

0

(∇f ◦ x).dπx along a balanced sequence of partitions π does not

depend on choice of π. By the same argument, it does not depend on the choice of σ ∈ P4([0, T ]).
To show I(f, x) ∈ Q([0, T ],R) we first note that by [1, Lemma 4.11] we have I(f, x) ∈

C
1
2−([0, T ],R).

Applying the pathwise isometry formula [2, Theorem 2.1], to the integral

∫ .

0

(∇f ◦x).dπx we

obtain that

∫ .

0

(∇f ◦ x).dπx =

∫ .

0

(∇f ◦ x).dσx ∈ Qπ([0, T ],R) ∩Qσ([0, T ],R) and

[∫ .

0

∇f ◦ x dx
]
π

(t) =

∫ t

0

< (∇f ◦ x)t(∇f ◦ x), d[x]π > .

From Theorem 4.2 we have [x]σ = [x]π, so

[∫ .

0

∇f ◦ x dx
]
π

(t) does not depend on choice of

balanced partition π. As a consequence:[∫ .

0

∇f ◦ x dx
]
σ

(t) =

[∫ .

0

∇f ◦ x dx
]
π

(t) =

∫ t

0

< (∇f ◦ x)t(∇f ◦ x), d[x] > .

Since [x] is strictly increasing by assumption, the right hand side is a strictly increasing function

as soon as ∇f ◦x 6= 0 (otherwise the result trivially holds). Since we can choose any π ∈ C(1

2
, σ)

in the above, we can apply Lemma 4.1 to conclude that I(f, x) has the quadratic roughness
property along σ: I(f, x) ∈ R1/2

σ ([0, T ],R). So finally I(f, x) ∈ Qπ([0, T ],R). �

5.2 Local time

Pathwise analogues of (semimartingale) local time have been considered in [3, 8, 9, 25, 29, 33] in
the context of extension of Föllmer’s pathwise Ito formula to convex functions or functions with
Sobolev regularity. In the aforementioned studies, local time of a path is constructed as a limit
of a sequence of discrete approximations along a sequence of time partitions.

Given a partition sequence σ = (σn)n≥1 and a path x ∈ C0([0, T ],R) ∩ Qσ([0, T ],R), one

defines the function Lσ
n

t : R→ R by

Lσ
n

t (u) := 2
∑

tnj ∈σn∩[0,t]

1[[x(tnj ),x(tnj+1))](u) |x(tnj+1 ∧ t)− u|.

where [[u, v)] := [u, v) if u ≤ v and [[u, v)] := [v, u) if u > v. Lσ
n

t is bounded and zero outside
[minx,maxx].

Following [33, 3, 9, 29] we say that x has (L2-)local time on [0, T ] along σ if the sequence
(Lσ

n

t , n ≥ 1) converges weakly in L2(R) to a limit Lσt for all t ∈ [0, T ]:

∀t ∈ [0, T ], ∀h ∈ L2(R),

∫
Lσ

n

t (u)h(u)du
n→∞→

∫
Lσt (u)h(u)du.
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The local time along π satisfies the occupation time formula [33, 3, 29]: for every Borel set
A ∈ B(R), ∫

A

Lπt (u)du =
1

2

∫ t

0

1A(x)d[x]π

and the following extension of the pathwise Ito formula (22) to functions in the Sobolev space
W 2,2(R) (see e.g.[10, Thm 3.1]):

∀f ∈W 2,2(R), f(x(t))− f(x(0)) =

∫ t

0

(f ′ ◦ x).dπx+
1

2

∫
R
Lπt (u)f ′′(u)du, (24)

where the first integral is a limit of left Riemann sums along π:∫ t

0

(f ′ ◦ x).dπx = lim
n→∞

∑
πn

f ′(x(tni )).(x(tni+1)− x(tni )).

Unlike the intrinsic definition of local time for real functions (see e.g. [18]), the above construction
depends on the choice of the partition sequence π and a natural question is therefore to clarify
the dependence of this local time on choice of the partition sequence. Note that, differently from
[19], Lπt is the density of a weighted occupation measure, weighted by quadratic variation [x]π so
a necessary condition for the uniqueness of Lπt is the uniqueness of [x]π.

We now show that the quadratic roughness property implies an invariance property of the
local time with respect to the sequence of partitions:

Theorem 5.2 (Uniqueness of local time for rough functions). Let σ be a sequence of partitions

satisfying Assumption 1 and x ∈ Cα([0, T ],R) ∩ Rβσ([0, T ],R) with 0 < β ≤ α ≤ 1

2
. Assume x

has local time Lσt on [0, t] along σ. Then if x has local time Lπt on [0, t] along some balanced
partition sequence π ∈ B(0, T ]) then

Lπt (u) = Lσt (u) du− a.e.

This defines a unique element Lt ∈ L2(R) which we call the local time of x on [0, t].

This result shows that for paths satisfying the quadratic roughness property, the (L2-)local
time is an intrinsic object associated with the path x, independent of the (balanced) sequence of
partitions used in the construction.

Proof. From [33, Satz 9] for any Borel set A ∈ B(R) we have the occupation density formula:∫
A

Lσt (u)du =
1

2

∫ t

0

1A(x)d[x]σ.

If π is a balanced sequence of partitions and the local time along π exists, we also have

∀A ∈ B(R),

∫
A

Lπt (u)du =
1

2

∫ t

0

1A(x)d[x]π.

Since π is balanced and lim sup
n

|σn|
|σn+1|

<∞, Theorem 4.2 implies that [x]π = [x]σ. Hence

∀A ∈ B(R),

∫
A

Lπt (u)du =

∫
A

Lσt (u)du,

which implies Lπt = Lσt almost everywhere. �
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An important consequence of this result is the uniqueness of limits of left Riemann sums for
integrands in the Sobolev space W 1,2(R) and a robust version of the pathwise Tanaka formula:

Corollary 5.3 (Uniqueness of Föllmer integral on W 1,2(R) and pathwise Tanaka formula).
Under the assumptions of theorem 5.2 we have:

∀h ∈W 1,2(R),∀t ∈ [0, T ],

∫ t

0

(h ◦ x)dπx =

∫ t

0

(h ◦ x)dσx.

Designating this common value by

∫ t

0

(h ◦ x)dx, we obtain

∀f ∈W 2,2(R),∀t ∈ [0, T ], f(x(t))− f(x(0)) =

∫ t

0

(f ′ ◦ x).dx+
1

2

∫
R
Lt(u)f ′′(u)du, (25)

where the pathwise integral and the local time may be computed with respect to any balanced
partition sequence along which x has local time.
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A Proofs of lemmas

A.1 Proof of Proposition 2.2

(i) For any sequence of partitions π of [0, T ] and for any n ≥ 1:

N(πn)πn ≤ T ≤ N(πn)|πn|.

For proof of (⇒): Using the balanced property, lim inf
n→∞

N(πn)πn = lim inf
n→∞

N(πn)|πn| π
n

|πn|

≥ lim inf
n→∞

1

c
N(πn)|πn| ≥ T

c
> 0.

Similarly, lim inf
n→∞

N(πn)|πn| = lim inf
n→∞

N(πn)πn
|πn|
πn
≤ lim inf

n→∞
cN(πn)πn ≤ cT <∞.

For proof of (⇐): lim sup
n→∞

|πn|
πn

= lim sup
n→∞

N(πn)|πn|
N(πn)πn

=
lim supn→∞N(πn)|πn|
lim supn→∞N(πn)πn

<∞.

(ii) For any sequence of partitions π, and any fixed h > 0 there exists a N0 such that for all
n ≥ N0, |πn| < h. So for all n ≥ N0 and for all t ∈ [0, T − h], N(πn, t, t+ h) ≥ 1. Hence:

πn ≤ h

N(πn, t, t+ h)
≤ |πn|.

So

lim sup
n→∞

supt∈[0,T−h]N(πn, t, t+ h)

inft∈[0,T−h]N(πn, t, t+ h)
≤ lim sup

n→∞

|πn|
h
× h

πn
<∞.

(iii) For any balanced sequence of partitions π of [0, T ] and for any n ≥ 1:

c1N(πn)|πn| ≤ N(πn)πn ≤ T ≤ N(πn)|πn| ≤ c2N(πn)πn.

c1 and c2 are constants > 0. So the equivalence follows.
(iv) Let π = (πn)n≥1 be any balanced sequence of partitions of [0, T ]:

πn = (0 = tn1 < tn2 < · · · < tnN(πn) = T ).

Now, define the new partition g(π) = (g(πn))n≥1 as follows:

g(πn) =
(
g(0) = g(tn1 ) < g(tn2 ) < · · · < g(tnN(πn) = g(T ))

)
.

Now, from mean value theorem there exists unk , v
n
k ∈ [tnk , t

n
k+1] such that,
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∣∣∣∣∣lim sup
n→∞

|g(πn)|
g(πn)

∣∣∣∣∣ =

∣∣∣∣lim sup
n→∞

supπn(g(tnk+1)− g(tnk ))

infπn(g(tnk+1)− g(tnk ))

∣∣∣∣ =

∣∣∣∣lim sup
n→∞

supπn g
′(unk )(tnk+1 − tnk )

infπn g′(vnk )(tnk+1 − tnk )

∣∣∣∣
≤
∣∣∣∣lim sup
n→∞

supπn g
′(unk )

infπn g′(vnk )

∣∣∣∣× ∣∣∣∣lim sup
n→∞

supπn(tnk+1 − tnk )

infπn(tnk+1 − tnk )

∣∣∣∣ ≤ max g′

inf g′
c <∞.

A.2 Proof of Lemma 2.3

Denote the partition points of τn and σn respectively by (tnk , k = 0..N(τn)) and (snl , l =
0..N(σn)).

Proof of (i): From the assumption we have, lim sup
n

|τn|
|σn|

> 1. Then there exists N0 ∈ N such

that for n ≥ N0,
|τn|
|σn|

≥ 1. Since we are only concerned about the limiting behaviour when

n→∞ we will only consider n > N0 throughout the rest of the proof.

If lim sup
n

|τn|
|σn|

<∞ we set k(n) = n; otherwise if lim sup
n

|τn|
|σn|

= +∞ we define:

k(n) = inf{k ≥ n, |τk| ≤ |σn|} <∞ since |τk| k→∞→ 0. (26)

We now consider the subsequence (τk(n))n≥1 of τ . From the definition of k(n):

lim sup
n

|σn|
|τk(n)|

≥ 1.

Proof of (ii): Define k(n) as in (26) for i = 1..N(σn),

j(i, n) = inf{j ≥ 1, t
k(n)
j ∈ (sni , s

n
i+1]}.

Then we have

t
k(n)
j(i,n)−1 ≤ s

n
k < t

k(n)
j(i,n) < · · · < t

k(n)
j(i+1,n)−1 ≤ s

n
i+1 < t

k(n)
j(i+1,n).

If for some i, j(i+1,n)- j(i,n)→ ∞ as n → ∞ then, from the above construction of k(n)

and using the well balanced property of σn and τk(n) we have: lim sup
n

|σn|
|τk(n)|

→ ∞ and

lim sup
n

|σn|
|τk(n)−1|

< 1. Hence, lim sup
n

|σn|
|τk(n)−1|

[
|τk(n)−1|
|τk(n)|

− 1

]
→ ∞ which is a contradiction

because of our assumption. Hence the size j(i+ 1, n)− j(i, n) of clusters is uniformly bounded:

∀k, n ≥ 1, j(i+ 1, n)− j(i, n) ≤M <∞.

So there exists a constant c0 such that

1 ≤ lim sup
n

|σn|
|τk(n)|

≤ c0 <∞. (27)

Therefore (τk(n))n≥1 and (σn)n≥1 are (asymptotically) comparable.

Proof of (iii): If lim sup
n

|σn|
|τn|

< 1 then the set {n ≥ 1,
|σn|
|τn|

≥ 1} is finite and the set,

A = {n ≥ 1,
|σn|
|τn|

< 1}
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is infinite. Now define r : N 7→ N as follows: we set r(n) = n for n /∈ A and

r(n) = inf{k ≥ 1, |σk| > |τn|} <∞ for n ∈ A.

Then

lim sup
n→∞

|σr(n)|
|τn|

= lim sup
n∈A

|σr(n)|
|τn|

≥ 1.

A.3 Proof of Proposition 3.3

The proof of 1 − 3 are direct consequences of Definition 3.1. The proof of 4 is as follows.
LetAn = (0 = tnp(n,0) < tnp(n,1) < · · · < tnp(n,N(An)) = T ) be any β−coarsening of π. Then

|An| � |πn|β . Let Inj = (tp(n,j−1), tp(n,j)] ∩ [0, t]. Then for all t ∈ (0, T ] :

N(An)∑
j=1

∑
tni 6=tni′∈I

n
j

(
(x+ y)(tni+1)− (x+ y)(tni )

)t (
(x+ y)(tni′+1)− (x+ y)(tni′)

)

=

N(An)∑
j=1

∑
tni 6=tni′∈I

n
j

(
x(tni+1)− x(tni )

)t (
x(tni′+1)− x(tni′)

)

+

N(An)∑
j=1

∑
tni 6=tni′∈I

n
j

(
y(tni+1)− y(tni )

)t (
y(tni′+1)− y(tni′)

)

+

N(An)∑
j=1

∑
tni 6=tni′∈I

n
j

(
x(tni+1)− x(tni )

)t (
y(tni′+1)− y(tni′)

)
.

From the quadratic roughness property of x, the first term in the sum goes to zero as n increases.
For the last sum we have

N(An)∑
j=1

∑
tni 6=tni′∈I

n
j

(
x(tni+1)− x(tni )

)t (
y(tni′+1)− y(tni′)

)

=

N(An)∑
j=1

∑
tn
i′∈I

n
j

(
y(tni′+1)− y(tni′)

)t ∑
tni ∈Inj ,tni 6=tni′

(
x(tni+1)− x(tni )

)

≤
N(An)∑
j=1

∑
tn
i′∈I

n
j

∣∣y(tni′+1)− y(tni′)
∣∣t ∣∣∣∣∣∣

∑
tni ∈Inj ,tni 6=tni′

(
x(tni+1)− x(tni )

)∣∣∣∣∣∣
≤
N(An)∑
j=1

∑
tn
i′∈I

n
j

∣∣y(tni′+1)− y(tni′)
∣∣t ∣∣∣∣∣∣

∑
tni ∈Inj

(
x(tni+1)− x(tni )

)∣∣∣∣∣∣+
∣∣(x(tni′+1)− x(tni′)

∣∣
≤

sup
j

∣∣∣∣∣∣
∑
tni ∈Inj

(
x(tni+1)− x(tni )

)∣∣∣∣∣∣+ sup
k

∣∣(x(tnk+1)− x(tnk )
∣∣N(An)∑

j=1

∑
tn
i′∈I

n
j

∣∣y(tni′+1)− y(tni′)
∣∣
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≤

sup
j

∣∣∣∣∣∣
∑
tni ∈Inj

(
x(tni+1)− x(tni )

)∣∣∣∣∣∣+ sup
k

∣∣(x(tnk+1)− x(tnk )
∣∣∑

πn

∣∣y(tni′+1)− y(tni′)
∣∣

Since An is a balanced sequence and N(An)→∞, we have |An| → 0 so by continuity of x, the
first term goes to zero as n → ∞. The second term is bounded as y has bounded variation. So
we have

N(An)∑
j=1

∑
tni 6=tni′∈I

n
j

(
x(tni+1)− x(tni )

)t (
y(tni′+1)− y(tni′)

) n→∞−−−−→ 0.

Similarly,
N(An)∑
j=1

∑
tni 6=tni′∈I

n
j

(
y(tni+1)− y(tni )

)t (
y(tni′+1)− y(tni′)

) n→∞−−−−→ 0.

This completes the proof.
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