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In this paper, we consider the feedback stabilization problem for N -level quantum angular momentum systems undergoing continuous-time measurements. By using stochastic and geometric control tools, we provide sufficient conditions on the feedback control law ensuring almost sure exponential convergence to a predetermined pure state corresponding to an eigenvector of the measurement operator. In order to achieve these results, we establish general features of quantum trajectories which are of interest by themselves. We illustrate the results by designing a class of feedback control laws satisfying the above-mentioned conditions and finally we demonstrate the effectiveness of our methodology through numerical simulations for three-level quantum angular momentum systems.

1. Introduction. The evolution of an open quantum system undergoing indirect continuous-time measurements is described by the so-called quantum stochastic master equation, which has been derived by Belavkin in quantum filtering theory [START_REF] Belavkin | Nondemolition measurements, nonlinear filtering and dynamic programming of quantum stochastic processes[END_REF]. The quantum filtering theory, relying on quantum stochastic calculus and quantum probability theory (developed by Hudson and Parthasarathy [START_REF] Hudson | Quantum Ito's formula and stochastic evolutions[END_REF]) plays an important role in quantum optics and computation. The initial concepts of quantum filtering have been developed in the 1960s by Davies [START_REF] Davies | Quantum stochastic processes[END_REF][START_REF] Davies | Quantum theory of open systems[END_REF] and extended by Belavkin in the 1980s [START_REF] Belavkin | On the theory of controlling observable quantum systems[END_REF][START_REF] Belavkin | Nondemolition measurements, nonlinear filtering and dynamic programming of quantum stochastic processes[END_REF][START_REF] Belavkin | Quantum filtering of markov signals with white quantum noise[END_REF][START_REF] Belavkin | Quantum stochastic calculus and quantum nonlinear filtering[END_REF]. For a modern treatment of quantum filtering, we refer to [START_REF] Bouten | An introduction to quantum filtering[END_REF].

A quantum stochastic master equation (or quantum filtering equation) is composed of a deterministic part and a stochastic part. The deterministic part, which corresponds to the average dynamics, is given by the well known Lindblad operator. The stochastic part represents the back-action effect of continuous-time measurements. The solutions of this equation are called quantum trajectories and their properties have been studied in [START_REF] Mirrahimi | Stabilizing feedback controls for quantum systems[END_REF][START_REF] Pellegrini | Existence, uniqueness and approximation of a stochastic schrödinger equation: the diffusive case[END_REF].

Quantum measurement-based feedback control, as a branch of stochastic control has been first developed by Belavkin in [START_REF] Belavkin | On the theory of controlling observable quantum systems[END_REF]. This field has attracted the interest of many theoretical and experimental researchers mainly starting from the early 2000s, yielding fundamental results [START_REF] Van Handel | Feedback control of quantum state reduction[END_REF][START_REF] Armen | Adaptive homodyne measurement of optical phase[END_REF][START_REF] Mirrahimi | Stabilizing feedback controls for quantum systems[END_REF][START_REF] Tsumura | Global stabilization at arbitrary eigenstates of n-dimensional quantum spin systems via continuous feedback[END_REF][START_REF] Ahn | Continuous quantum error correction via quantum feedback control[END_REF][START_REF] Yamamoto | Feedback control of quantum entanglement in a two-spin system[END_REF][START_REF] Mabuchi | Principles and applications of control in quantum systems[END_REF]. In particular, theoretical studies carried out in [START_REF] Mirrahimi | Stabilizing feedback controls for quantum systems[END_REF][START_REF] Dotsenko | Quantum feedback by discrete quantum nondemolition measurements: Towards on-demand generation of photon-number states[END_REF][START_REF] Mirrahimi | Feedback generation of quantum fock states by discrete qnd measures[END_REF][START_REF] Amini | Design of strict control-lyapunov functions for quantum systems with QND measurements[END_REF][START_REF] Amini | Feedback stabilization of discrete-time quantum systems subject to non-demolition measurements with imperfections and delays[END_REF] lead to the first experimental implementation of realtime quantum measurement-based feedback control in [START_REF] Sayrin | Real-time quantum feedback prepares and stabilizes photon number states[END_REF].

In [START_REF] Bouten | On the separation principle in quantum control[END_REF], the authors established a quantum separation principle. Similarly to the classical separation principle, this result allows to interpret the control problem * Submitted to the editors DATE.

Funding: This work was financially supported in part by the Agence Nationale de la Recherche project QUACO ANR-17-CE40-0007.

† Laboratoire des signaux et systèmes (L2S), CNRS-CentraleSupélec-Université Paris-Sud, Université Paris-Saclay, 3, rue Joliot Curie, 91190 Gif-sur-Yvette, France (weichao.liang@l2s.centralesupelec.fr).

‡ Laboratoire des signaux et systèmes (L2S), CNRS-CentraleSupélec-Université Paris-Sud, Université Paris-Saclay, 3, rue Joliot Curie, 91190 Gif-sur-Yvette, France (nina.amini@l2s.centralesupelec.fr).

§ Laboratoire des signaux et systèmes (L2S), CNRS-CentraleSupélec-Université Paris-Sud, Université Paris-Saclay, 3, rue Joliot Curie, 91190 Gif-sur-Yvette, France (paolo.mason@l2s.centralesupelec.fr). 1 as a state-based feedback control problem for the filter (the best estimate, i.e., the conditional state), without caring of the actual quantum state. This motivates the state-based feedback design for the quantum filtering equation based on the knowledge of the initial state. In this context, stabilization of quantum filters towards pure states (i.e., the preparation of pure states) has major impact in developing new quantum technologies. According to [START_REF] Abe | Analysis on behaviors of controlled quantum systems via quantum entropy[END_REF], the stochastic part of the quantum filtering equation, unlike the deterministic one, contributes to increase the purity of the quantum state. Moreover, if we turn off the control acting on the quantum system, the measurement induces a collapse of the quantum state towards a pure state corresponding to either one of eigenvectors of the measurement operator, a phenomenon known as quantum state reduction [START_REF] Adler | Martingale models for quantum state reduction[END_REF][START_REF] Van Handel | Feedback control of quantum state reduction[END_REF][START_REF] Mirrahimi | Stabilizing feedback controls for quantum systems[END_REF][START_REF] Sarlette | Deterministic submanifolds and analytic solution of the quantum stochastic differential master equation describing a monitored qubit[END_REF]. Thus, combining the continuous measurement with the feedback control may provide an effective strategy for preparing a selected target state in practice.

In [START_REF] Van Handel | Feedback control of quantum state reduction[END_REF], the authors design for the first time a quantum feedback controller that globally stabilizes a quantum spin- 1 2 system (which is a special case of quantum angular momentum systems) towards a pure state corresponding to an eigenvector of σ z in the presence of imperfect measurement. This feedback controller has been designed by looking numerically for an appropriate global Lyapunov function. Then, in [START_REF] Mirrahimi | Stabilizing feedback controls for quantum systems[END_REF], by analyzing the stochastic flow and by using the stochastic LaSalle theorem, the authors constructed a switching feedback controller which globally stabilizes the N -level quantum angular momentum system, in the presence of imperfect measurement, to the target eigenstate. A continuous version of this feedback controller has been proposed in [START_REF] Tsumura | Global stabilization at arbitrary eigenstates of n-dimensional quantum spin systems via continuous feedback[END_REF]. The essential ideas in [START_REF] Van Handel | Feedback control of quantum state reduction[END_REF][START_REF] Tsumura | Global stabilization at arbitrary eigenstates of n-dimensional quantum spin systems via continuous feedback[END_REF] for constructing the continuous feedback controller remain the same: the controllers consist of two parts, the first one contributing to the local convergence to the target state, and the second one driving the system away from the antipodal states. Also, in [START_REF] Cardona | Exponential stochastic stabilization of a twolevel quantum system via strict lyapunov control[END_REF], the authors have proven by simple Lyapunov arguments the exponential stabilizability for spin-1 2 systems by applying a proportional output feedback. For the same model, and as a preliminary step for this paper, we showed in [START_REF] Liang | On exponential stabilization of spin-1 2 systems[END_REF] the exponential stabilizability by state feedback. In [START_REF] Benoist | Exponential stability of subspaces for quantum stochastic master equations[END_REF], the authors discussed the exponential stability of subspaces of the Hilbert space for general uncontrolled systems driven by Wiener and Poisson processes. They followed the approach established in [START_REF] Ticozzi | Stabilization of stochastic quantum dynamics via open-and closed-loop control[END_REF] combining open-loop control and feedback design.

The main contribution of this paper is the derivation of some general conditions on the feedback law enforcing the exponential convergence towards the target state. These conditions are obtained mainly by studying the asymptotic behavior of quantum trajectories. Roughly speaking, under such conditions, and making use of the support theorem and other classical stochastic tools, we show that any neighborhood of the target state may be approached with probability one starting from any initial state (Lemma 6.1). This result allows to show the exponential convergence towards the target state by applying local Lyapunov-type arguments (Theorem 6.3). To show the convergence towards the target state, previous works applied stochastic LaSalle theorem (see e.g., [START_REF] Mirrahimi | Stabilizing feedback controls for quantum systems[END_REF][START_REF] Van Handel | Feedback control of quantum state reduction[END_REF][START_REF] Ticozzi | Stabilization of stochastic quantum dynamics via open-and closed-loop control[END_REF][START_REF] Tsumura | Global stabilization at arbitrary eigenstates of n-dimensional quantum spin systems via continuous feedback[END_REF]) which, unlike Lyapunov-type arguments, does not guarantee exponential stability and does not provide any information on the convergence rate. As demonstration of the general result, explicit parametrized stabilizing feedback laws are exhibited (Theorem 6.4 and Theorem 6.5). In addition to the main result, in Theorem 5.1, we show the exponential convergence of the system with zero control towards the set of pure states corresponding to eigenvectors of the measurement operator (quantum state reduction with exponential rate). Note that to obtain our main results, some preliminary results on the asymptotic behavior of quantum trajectories associated with the considered system were needed, see Section 4. We believe that these results are significant by themselves.

Notations. The imaginary unit is denoted by i. We take 1 as the indicator function. We denote the conjugate transpose of a matrix A by A * . The function Tr(A) corresponds to the trace of a square matrix A. The commutator of two square matrices A and B is denoted by [A, B] := AB -BA.

2. System description. Consider a filtered probability space (Ω, F, (F t ), P). Let W t be the one-dimensional standard Wiener process and assume that F t is the natural filtration of the process W t . The dynamics of a N -level quantum angular momentum system is given by the following matrix-valued stochastic differential equation [START_REF] Belavkin | Nondemolition measurements, nonlinear filtering and dynamic programming of quantum stochastic processes[END_REF][START_REF] Bouten | An introduction to quantum filtering[END_REF][START_REF] Van Handel | Feedback control of quantum state reduction[END_REF]:

(2.1) dρ t = F (ρ t )dt + √ ηG(ρ t )dW t ,
where

• the quantum state is described by the density operator ρ, which belongs to the compact space

S := {ρ ∈ C N ×N | ρ = ρ * , Tr(ρ) = 1, ρ ≥ 0},
• the drift term is given by

F (ρ) := -iω[J z , ρ] + M J z ρJ z - 1 2 J 2 z ρ - 1 2 ρJ 2 z -iu(ρ)[J y , ρ],
and the diffusion term is given by G(ρ

) := √ M (J z ρ + ρJ z -2Tr(J z ρ)ρ),
• the function u : S → R denotes the feedback law, • J z is the (self-adjoint) angular momentum along the axis z, and it is defined by

J z e n = (J -n)e n , n ∈ {0, . . . , 2J},
where J = N -1 2 represents the fixed angular momentum and {e 0 , . . . , e 2J } corresponds to an orthonormal basis of C N . With respect to this basis, the matrix form of J z is given by

J z =        J J -1 . . . -J + 1 -J        ,
• J y is the (self-adjoint) angular momentum along the axis y, and it is defined by

J y e n = -ic n e n-1 + ic n+1 e n+1 , n ∈ {0, . . . , 2J},
where

c m = 1 2 (2J + 1 -m)m.
The matrix form of J y is given by

J y =        0 -ic 1 ic 1 0 -ic 2 . . . . . . . . . ic 2J-1 0 -ic 2J ic 2J 0        ,
• η ∈ (0, 1] measures the efficiency of the detectors, M > 0 is the strength of the interaction between the light and the atoms, and ω ≥ 0 is a parameter characterizing the free Hamiltonian. If the feedback u is in C 1 (S, R), the existence and uniqueness of the solution of (2.1) as well as the strong Markov property of the solution are ensured by the results established in [START_REF] Mirrahimi | Stabilizing feedback controls for quantum systems[END_REF].

3. Basic stochastic tools. In this section, we will introduce some basic definitions and classical results which are fundamental for the rest of the paper.

Infinitesimal generator and Itô formula. Given a stochastic differential equation dq t = f (q t )dt + g(q t )dW t , where q t takes values in Q ⊂ R p , the infinitesimal generator is the operator L acting on twice continuously differentiable functions V : Q×R + → R in the following way

L V (q, t) := ∂V (q, t) ∂t + p i=1 ∂V (q, t) ∂q i f i (q) + 1 2 p i,j=1
∂ 2 V (q, t) ∂q i ∂q j g i (q)g j (q).

Itô formula describes the variation of the function V along solutions of the stochastic differential equation and is given as follows

dV (q, t) = L V (q, t)dt + p i=1
∂V (q, t) ∂q i g i (q)dW t .

From now on, the operator L is associated with the Equation (2.1). Stochastic stability. We introduce some notions of stochastic stability needed throughout the paper by adapting classical notions (see e.g., [START_REF] Mao | Stochastic differential equations and applications[END_REF][START_REF] Khasminskii | Stochastic stability of differential equations[END_REF]) to our setting. In order to provide them, we first present the definition of Bures distance [START_REF] Bengtsson | Geometry of quantum states: an introduction to quantum entanglement[END_REF].

Definition 3.1. The Bures distance between two quantum states ρ a and ρ b in S is defined as

d B (ρ a , ρ b ) := 2 -2Tr √ ρ b ρ a √ ρ b .
In particular, the Bures distance between a quantum state ρ a ∈ S and a pure state ρ n := e n e * n with n ∈ {0, . . . , 2J}, is given by

d B (ρ a , ρ n ) = 2 -2 Tr(ρ a ρ n ).
Also, the Bures distance between a quantum state ρ a and a set E ⊆ S is defined as

d B (ρ a , E) = min ρ∈E d B (ρ a , ρ).
Given E ⊆ S and r > 0, we define the neighborhood B r (E) of E as

B r (E) = {ρ ∈ S| d B (ρ, E) < r}.
Definition 3.2. Let Ē be an invariant set of system (2.1), then Ē is said to be 1. locally stable in probability, if for every ε ∈ (0, 1) and for every r > 0, there exists δ = δ(ε, r) such that,

P ρ t ∈ B r ( Ē) for t ≥ 0 ≥ 1 -ε,
whenever ρ 0 ∈ B δ ( Ē). 2. exponentially stable in mean, if for some positive constants α and β, Note that any equilibrium ρ of (2.1), that is any quantum state satisfying F (ρ) = G(ρ) = 0, is a special case of invariant set.

E(d B (ρ t , Ē)) ≤ α d B (ρ 0 , Ē)e -
Stratonovich equation and Support theorem.

Any stochastic differential equation in Itô form in R K dx t = X 0 (x t )dt + n k=1 X k (x t )dW k t , x 0 = x,
can be written in the following Stratonovich form [START_REF] Rogers | Diffusions, Markov processes and martingales[END_REF] 

dx t = X 0 (x t )dt + n k=1 X k (x t ) • dW k t , x 0 = x, where X 0 (x) = X 0 (x)-1 2 K l=1 n k=1 ∂ X k ∂x l (x)( X k ) l (x), ( X k ) l denoting the component l of the vector X k , and X k (x) = X k (x) for k = 0.
The following classical theorem relates the solutions of a stochastic differential equation with those of an associated deterministic one.

Theorem 3.3 (Support theorem [START_REF] Stroock | On the support of diffusion processes with applications to the strong maximum principle[END_REF]). Let X 0 (t, x) be a bounded measurable function, uniformly Lipschitz continuous in x and X k (t, x) be continuously differentiable in t and twice continuously differentiable in x, with bounded derivatives, for k = 0. Consider the Stratonovich equation

dx t = X 0 (t, x t )dt + n k=1 X k (t, x t ) • dW k t , x 0 = x.
Let P x be the probability law of the solution x t starting at x. Consider in addition the associated deterministic control system

d dt x v (t) = X 0 (t, x v (t)) + n k=1 X k (t, x v (t))v k (t), x v (0) = x.
with v k ∈ V, where V is the set of all piecewise constant functions from R + to R. Now we define W x as the set of all continuous paths from R + to R K starting at x, equipped with the topology of uniform convergence on compact sets, and I x as the smallest closed subset of W x such that P x (x • ∈ I x ) = 1. Then,

I x = {x v (•) ∈ W x | v ∈ V n } ⊂ W x .
4. Preliminary results. Our aim here is to establish some basic properties of the quantum trajectories corresponding to Equation (2.1). This section is instrumental in order to prove our main results. In particular, the following lemmas are useful to identify invariant subsets of the state space S. This allows to apply Itô formula to the Lyapunov functions considered in Section 5 and Section 6 which are C 2 only on such invariant subsets. Moreover, Proposition 4.5 provides sufficient conditions on the feedback law which suppress the invariant subsets of the boundary (in the case u ≡ 0) for the case η < 1. In addition, Corollary 4.6 ensures that, under the assumptions of Proposition 4.5, the trajectories lying on the boundary converge to the target state.

Denote the projection of ρ onto the eigenstate ρ k as ρ k,k := Tr(ρρ k ). In the following we state two lemmas inspired by analogous results established in [START_REF] Khasminskii | Stochastic stability of differential equations[END_REF][START_REF] Mao | Stochastic differential equations and applications[END_REF].

Lemma 4.1. Assume u ≡ 0. If ρ k,k (0) = 0 for some k ∈ {0, . . . , 2J}, then P(ρ k,k (t) = 0, ∀ t ≥ 0) = 1, i.e., the set {ρ ∈ S| ρ k,k = 0} is a.s. invariant for Equation (2.1). Otherwise, if the initial state satisfies ρ k,k (0) = 0, then P(ρ k,k (t) = 0, ∀ t ≥ 0) = 1.
Proof. For u ≡ 0, the dynamics of ρ k,k is given by

dρ k,k (t) = √ η(G(ρ t )) k,k dW t = 2 ηM (J -k -Tr(J z ρ t ))ρ k,k (t)dW t . In particular | √ η(G(ρ t )) k,k | ≤ Rρ k,k (t)
, for some R > 0, yielding the first part of the lemma.

Let us now prove the second part of the lemma. Assume that ρ k,k (0) > 0 and P(ρ k,k (t) = 0, ∀ t ≥ 0) < 1. In particular P(τ < ∞) > 0, where τ := inf{t ≥ 0| ρ k,k (t) = 0}. Let T be sufficiently large so that P(τ ≤ T ) > 0. Now, let ε ∈ (0, ρ k,k (0)), and consider any C 2 function V defined on S such that

V (ρ) = 1 ρ k,k , if ρ k,k > ε. Then we have L V (ρ) = ρ -3 k,k ( √ ηG(ρ)) 2 k,k ≤ R 2 V (ρ) if ρ k,k > ε. We further define the time-dependent function f (ρ, t) = e -R 2 t V (ρ), whose infinitesimal generator is given by L f (ρ, t) = e -R 2 t -R 2 V (ρ) + L V (ρ) ≤ 0 if ρ k,k > ε. Now, define the stopping time τ ε := inf{t ≥ 0| ρ k,k (t) / ∈ (ε, 1)}. By Itô formula, we have E(f (ρ τε∧T , τ ε ∧ T )) = V 0 + E τε∧T 0 L f (ρ s , s)ds ≤ V 0 = 1 ρ k,k (0) . Since τ ≥ τ ε we deduce that, conditioning to the event {τ ≤ T }, f (ρ τε∧T , τ ε ∧ T ) = f (ρ τε , τ ε ) = e -R 2 T ε -1 , which implies E e -R 2 T ε -1 1 {τ ≤T } = E f (ρ τε , τ ε )1 {τ ≤T } ≤ E(f (ρ τε∧T , τ ε ∧ T )) ≤ 1 ρ k,k (0)
.

Thus, P(τ ≤ T ) = E 1 {τ ≤T } ≤ εe R 2 T /ρ k,k (0) 
. Letting ε tend to 0, we get P(τ ≤ T ) = 0 which gives a contradiction. The proof is then complete.

Lemma 4.2. Let n ∈ {0, . . . , 2J}. Assume that u ∈ C 1 (S, R) and u(ρ n ) = 0. If the initial state satisfies ρ 0 = ρ n , then P(ρ t = ρ n , ∀ t ≥ 0) = 1.
Proof. Given ε > 0, we consider any C 2 function on S such that

V (ρ) = 1 1 -ρ n,n , if ρ n,n < 1 -ε.
We find

L V (ρ) = - u(ρ)Tr(i[J y , ρ]ρ n ) (1 -ρ n,n ) 2 + 4ηM [(J -n -Tr(J z ρ))ρ n,n ] 2 (1 -ρ n,n ) 3 , whenever ρ n,n < 1 -ε. By applying the assumptions u ∈ C 1 (S, R) and u(ρ n ) = 0, we deduce that |u(ρ)| = |u(ρ) -u(ρ n )| ≤ C ρ -ρ n ≤ √ 2C 1 -ρ n,n
, where as matrix norm we have used the Hilbert-Schmidt norm, A := Tr(AA * ) 1/2 . Then by

Tr(i[J y , ρ]ρ n ) = 2c n+1 Re{ρ n,n+1 } -2c n Re{ρ n,n-1 } ≤ 2(c n+1 + c n ) ρ n,n (1 -ρ n,n ), we have |u(ρ)Tr(i[J y , ρ]ρ n )| ≤ 2C(c n+1 + c n )(1 -ρ n,n ). Also, as we have |J -n - Tr(J z ρ)| ≤ 2J(1-ρ n,n ), we get L V (ρ) ≤ KV (ρ), with K = 2C(c n+1 +c n )+16J 2 ηM.
To conclude the proof, one just applies the same arguments as in the previous lemma.

Consider the observation process of the system y t , whose dynamics satisfies dy t = dW t + 2 √ ηM Tr(J z ρ t )dt. By Girsanov theorem [START_REF] Protter | Stochastic integration and differential equations[END_REF], the process y t is a standard Wiener process under a new probability measure Q equivalent to P. Denote by F y t := σ(y s , 0 ≤ s ≤ t) the σ-field generated by the observation process up to time t. Then u t := u(ρ t ) is a bounded real càdlàg process adapted to F y t . By applying the classical stochastic filtering theory [START_REF] Xiong | An introduction to stochastic filtering theory[END_REF], the Zakai equation associated with Equation (2.1) takes the following linear form (4.1)

dρ t = F (ρ t )dt + √ η G(ρ t )dy t ,
where ρt = ρ * t ≥ 0, F (ρ) is defined as in (2.1), and G(ρ) := √ M (J z ρt + ρt J z ). The equation (4.1) has a unique strong solution [START_REF] Xiong | An introduction to stochastic filtering theory[END_REF][START_REF] Protter | Stochastic integration and differential equations[END_REF], and the solutions of the equations (2.1) and (4.1) satisfy the relation

(4.2) ρ t = ρt /Tr( ρt ),
which can be verified easily by applying Itô formula. In the following lemma, we adapt [27, Lemma 3.2] to the case of positive-definite matrices.

Lemma 4.3. Assume u ∈ C 1 (S, R). The set of positive-definite matrices is a.s. invariant for (2.1). More in general, the rank of ρ t is a.s. non-decreasing.

Proof. The initial state of (4.1) with respect to the basis of its eigenstates is given by ρ0 = i λi ψi ψ * i , where ρ0 ψi = λi ψi for i ∈ {0, . . . , 2J}. If ρ 0 > 0, due to the relation (4.2), we have ρ0 > 0, thus λi > 0 for all i. Extend the probability space by defining F y, W t := σ(y s , W s , 0 ≤ s ≤ t), where W t is a Brownian motion independent of y t . Set B t := √ ηy t + √ 1 -η W t , whose quadratic variation satisfies B t , B t = t. Following [27, Lemma 3.2], we consider the equations

dρ i t = F (ρ i t )dt + G(ρ i t ) √ ηdy t + G(ρ i t ) 1 -η d W t , ρ i 0 = ψi ψ * i , d ψi (t) = (iωJ z -iu t J y -M/2J 2 z ) ψi (t)dt + √ M J z ψi (t)dB t , ψi (0) = ψi ,
where ψi (t) ∈ C N . The solutions of the equations above satisfy ρ i t = ψi (t) ψ * i (t) by Itô formula. In virtue of [START_REF] Protter | Stochastic integration and differential equations[END_REF]Theorem 5.48], for all t ≥ 0, there exists an almost surely invertible random matrix U t such that ψi (t) = U t ψi .

Let ρ t = i λi ρ i t , so that in particular ρ 0 = ρ0 and ρ t = U t ρ0 U * t . Due to the linearity of F (•) and G(•), the stochastic Fubini theorem [START_REF] Xiong | An introduction to stochastic filtering theory[END_REF]Lemma 5.4] and the Itô isometry,

E(ρ t |F y t ) = ρ 0 + t 0 F (E(ρ s |F y t ))ds + t 0 G(E(ρ s |F y t )) √ ηdy s .
By the uniqueness in law [30, Proposition 9.1.4] of the solution of the equation (4.1), the laws of ρt and E(ρ t |F y t ) = E(U t ρ0 U * t |F y t ) are equal for all t ≥ 0. By what precedes ρ 0 > 0 implies ρ t > 0 a.s. which in turn yields ρ t = ρt /Tr( ρt ) > 0 a.s. We have thus proved that the set of positive-definite matrices is a.s. invariant for (2.1).

Let us now consider the general case in which ρ 0 is not necessarily full rank. We have

(4.3) rank(ρ t ) = rank(U t ρ0 U * t ) = rank(ρ 0 ) = rank(ρ 0 ), a.s.
Note that the kernel of any positive semi-definite matrix ρ ∈ C N ×N coincides with the space {ψ ∈ C N |ψ * ρψ = 0}, and that for almost every path ρ t (ω)

{ψ ∈ C N |E(ψ * ρ t ψ|F y t ) = 0} ⊆ {ψ ∈ C N |ψ * ρ t (ω)ψ = 0}.
This implies rank(ρ t ) ≥ rank(ρ t ) = rank(ρ 0 ) for any t ≥ 0 almost surely, which concludes the proof. Proof. Based on the proof of Lemma 4.3, if η = 1, we have B t = y t which implies ρt = ρ t . Then by applying the relation (4.3), we get the conclusion.

The Stratonovich form of Equation (2.1) is given by (4.4)

dρ t = F (ρ t )dt + √ ηG(ρ t ) • dW t ,
where

F (ρ) := -iω[J z , ρ] + M (1 -η)J z ρJ z - 1 + η 2 (J 2 z ρ + ρJ 2 z ) + 2ηTr(J 2 z ρ)ρ + 2ηM Tr(J z ρ)(J z ρ + ρJ z -2Tr[J z ρ]ρ) -iu(ρ)[J y , ρ],
and G is defined as in (2.1). The corresponding deterministic control system is given by

(4.5) ρv (t) = F (ρ v (t)) + √ ηG(ρ v (t))v(t), ρ v (0) = ρ 0 ,
where v(t) ∈ V. By the support theorem (Theorem 3.3), the set S is positively invariant for Equation (4.5).

In the following, we state some preliminary results that will be applied to our stabilization problem in the following sections. For this purpose, we fix a target state ρ n for some n ∈ {0, . . . , 2J}. Proposition 4.5. Suppose that η ∈ (0, 1), u ∈ C1 (S, R) and u(ρ n) = 0. Assume that ∇u • G(ρ 0 ) = 0 or ∇u • F (ρ 0 ) = 0 for any ρ 0 ∈ {ρ ∈ S \ ρ n| ρ k,k = 0 for some k, and u(ρ) = 0}. Then for any initial condition ρ 0 ∈ {ρ ∈ S \ ρ n| ρ k,k = 0 for some k} and ε > 0, there exists at most one trajectory ρ v (t) of (4.5) starting from ρ 0 which lies in ∂S for t in [0, ε]. For any other initial state ρ 0 ∈ ∂S \ ρ n and v ∈ V, ρ v (t) > 0 for t > 0.

Proof. Define Z 1 (t) := Span{e k | (ρ v (t)) k,k = 0}
and Z 2 (t) the eigenspace corresponding to the eigenvalue 0 of ρ v (t). By definition, Z 1 (t) ⊆ Z 2 (t) for all t ≥ 0. Since all the subspaces which are invariant by J z take the form Span{e k1 , . . . , e k h } for {k 1 , . . . , k h } ⊆ {0, . . . , 2J}, we deduce that Z 1 (t) is the largest subspace of Z 2 (t) invariant by J z .

Denote by λ k (t) and ψ k (t) for k ∈ {0, . . . , 2J} the eigenvalues and eigenvectors of ρ v (t), where, without loss of generality, we assume λ k (t) ∈ C 1 since ρ v (t) ∈ C 1 ([21, Theorem 2.6.8]). In addition, we suppose that the eigenvectors ψ k (t) form an orthonormal basis of C N .

Let

ψ k (t) ∈ Z 2 (t) for t ∈ [0, ε].
In order to provide an expression of the derivative for the eigenvalue λ k along the path, we observe that

1 t (λ k (t + δ) -λ k (t)) = 1 ψ * k (t + δ)ψ k (t) ψ * k (t + δ) ρ v (t + δ) -ρ v (t) t ψ k (t) . (4.6)
Since ψ k is a unit vector, then by compactness, we can extract a sequence δ n 0 such that ψ k (t + δ n ) converges to an eigenvector ψ k (t) of ρ v (t). By passing to the limit on the left-hand and right-hand sides of Equation (4.6), we get λk (t

) = ψ * k (t) ρv (t)ψ k (t) = M (1 -η)ψ * k (t)J z ρ v (t)J z ψ k (t). If ψ k (t) / ∈ Z 1 (t) then J z ψ k (t) / ∈ Z 2 (t), since otherwise Z 1 (t)
would not be the largest subspace invariant by J z contained in Z 2 (t). Thus λk (t) > 0, which implies λ k (s) > 0 for any s -t > 0 sufficiently small. We deduce that dim Z 2 (s) ≤ dim Z 1 (t). Moreover, by continuity of ρ v (t), we have Z 1 (s) ⊆ Z 1 (t), for any s -t > 0 sufficiently small. Now we consider the case where Z 1 (t) = 0 for t ≥ 0. In this case, we have two possibilities: either u(ρ v (•)) ≡ 0 on [0, ε] for some ε > 0; or u(ρ v (t)) = 0 for arbitrarily small t > 0. Note that under the assumptions of the proposition there exists at most one v such that u(ρ v (•)) ≡ 0. It is therefore enough to show that, for the second possibility, ρ v (t) belongs to the interior of S for all t > 0. For this purpose, we first show that for all t > 0 such that u(ρ v (t)) = 0 and Z 1 (t) = 0, there exists s -t > 0 arbitrarily small such that u(ρ v (s)) = 0 and Z 1 (s) Z 1 (t).

Let us pick k such that e k ∈ Z 1 (t), and at least one between e k-1 and e k+1 is not contained in Z 1 (t) 1 . We now show by contradiction that e k / ∈ Z 1 (s) for some s -t > 0 arbitrarily small. We assume that e k ∈ Z 1 (τ ) for τ ∈ [t, t + ε], with ε > 0. By setting q n (τ ) := ρ v (τ )e n , for n ∈ {0, . . . , 2J} and τ ≥ 0, the condition (ρ v (τ )) n,n = 0 is equivalent to q n (τ ) = 0. In particular, by assumption, q k (τ ) = 0 for τ ∈ [t, t + ε]. On this interval we have

qk (τ ) = iu(ρ v (τ ))ρ v (τ )J y e k = u(ρ v (τ ))ρ v (τ )ψ = 0,
where ψ := c k e k-1 -c k+1 e k+1 . By taking ε small enough we may assume u(ρ v (τ )) = 0 and therefore the previous equality implies ρ v (τ )ψ = 0. This means that ψ ∈ Z 2 (τ ) and, since ψ / ∈ Z 1 (τ ), by the above argument we have J z ψ / ∈ Z 2 (τ ) and

ψ * ρv (τ )ψ = M (1 -η)ψ * J z ρ v (τ )J z ψ > 0,
leading to a contradiction. Hence, there exists s -t > 0 arbitrarily small such that Z 1 (s) Z 1 (t) and, by continuity of u, u(ρ v (s)) = 0. Thus, by repeating the arguments for a finite number of steps, we can show that there exists s -t > 0 arbitrary small such that Z 1 (s) = 0. As t may also be chosen arbitrarily small, this means that there exists an arbitrarily small s > 0 such that ρ v (s) > 0.

To conclude the proof, we show that if ρ v (t 0 ) > 0 for some t 0 ≥ 0, then ρ v (t) > 0 for all t > t 0 . This can be done by considering the flow Φ t,v : S → S of Equation (4.5) which associates with each ρ 0 , the value ρ v (t). Since Φ t,v is a diffeomorphism, if ρ ∈ S \ ∂S, there is an open neighborhood U of the state ρ such that Φ t,v U ⊂ S is also an open neighborhood of Φ t,v ρ. Thus, Φ t,v ρ ∈ S \ ∂S. The proof is then complete.

Corollary 4.6. Suppose that the assumptions of Proposition 4.5 are satisfied. Then for all ρ 0 ∈ ∂S \ ρ n, either ρ t stays on the boundary of ∂S and converges to ρ n as t goes to infinity or it exits the boundary in finite time and stays in the interior of S afterwards, almost surely.

Proof. By the support theorem, Theorem 3.3, and Proposition 4.5, we have P(ρ ν > 0) > 0 for all ν > 0 independently of the initial state ρ 0 ∈ S \ ρ n. Define the set S ≤ζ := {ρ ∈ S| det(ρ) ≤ ζ} \ B r (ρ n) for any r arbitrary small and the stopping time τ ζ := inf{t ≥ 0| ρ t / ∈ S ≤ζ }. Now by compactness of S ≤ζ and the Feller continuity of ρ t ([27, Lemma 4.5]), it is easy to see that for any ν > 0 and ζ > 0 small enough, there exists ε > 0 such that P ρ0 (τ ζ < ν) > ε,2 independently of ρ 0 ∈ S ≤ζ . Then we can conclude that sup ρ0∈S ≤ζ P ρ0 (τ ζ ≥ ν) ≤ 1 -ε. By Dynkin inequality [START_REF] Dynkin | Markov processes[END_REF],

sup ρ0∈S ≤ζ E ρ0 (τ ζ ) ≤ ν 1 -sup ρ0∈S ≤ζ P ρ0 (τ ζ ≥ ν) ≤ ν ε < ∞.
By Markov inequality, for all ρ 0 ∈ S ≤ζ , we have

P ρ0 (τ ζ = ∞) = lim n→∞ P ρ0 (τ ζ ≥ n) ≤ lim n→∞ E ρ0 (τ ζ )/n = 0.
By arbitrariness of r we deduce that, either ρ t > 0 for some positive time t or ρ t converges to ρ n as t tends to infinity while staying in ∂S, almost surely. In addition, by the strong Markov property of ρ t and Lemma 4.3, once ρ t exits the boundary and enters the interior of S, it stays in the interior afterwards. The proof is hence complete.

Quantum State Reduction.

In this section, we study the dynamics of the N -level quantum angular momentum system (2.1) with the feedback u ≡ 0. First, we can easily show, by Cauchy-Schwarz inequality, that in this case the equilibria of system (2.1) are exactly the eigenstates ρ n , i.e., F (ρ n ) = G(ρ n ) = 0 with n ∈ {0, . . . , 2J}.

The following theorem shows that the quantum state reduction for the system (2.1) towards the invariant set Ē := {ρ 0 , . . . , ρ 2J } occurs with exponential velocity. Note that in [START_REF] Mirrahimi | Stabilizing feedback controls for quantum systems[END_REF], the authors showed the almost sure asymptotic stability of the invariant set Ē. Also, in the recent paper [START_REF] Cardona | Exponential stochastic stabilization of a twolevel quantum system via strict lyapunov control[END_REF] the exponential stability in mean and the exact value of convergence probability have been shown in parallel to our results. Theorem 5.1 (N -level quantum state reduction). For system (2.1), with u ≡ 0 and ρ 0 ∈ S, the set Ē is exponentially stable in mean and a.s. with average and sample Lyapunov exponent less or equal than -ηM/2. Moreover, the probability of convergence to ρ n ∈ Ē is Tr(ρ 0 ρ n ) for n ∈ {0, . . . , 2J}. 

V (ρ) = 1 2 2J n,m=0 n =m Tr(ρρ n )Tr(ρρ m ) = 1 2 2J n,m=0 n =m √ ρ n,n ρ m,m ≥ 0
as a candidate Lyapunov function. Note that V (ρ) = 0 if and only if ρ ∈ Ē. As S I is invariant for (2.1) with u ≡ 0 and V is twice continuously differentiable when restricted to S I , we can compute L V (ρ) ≤ -ηM 2 V (ρ). By Itô formula, for all ρ 0 ∈ S, we have

E(V (ρ t )) = V (ρ 0 ) + t 0 E(L V (ρ s ))ds ≤ V (ρ 0 ) - ηM 2 t 0 E(V (ρ s ))ds.
In virtue of Grönwall inequality, we have E(V (ρ t )) ≤ V (ρ 0 )e -ηM 2 t . Next, we show that the candidate Lyapunov function is bounded by the Bures distance from Ē. Firstly, we have

V (ρ) = 1 2 2J n=0   √ ρ n,n m =n √ ρ m,m   ≥ 1 2 2J n=0 ρ n,n (1 -ρ n,n ) ≥ d B (ρ, Ē) 2 2J n=0 √ ρ n,n .
Combining with

2J n=0 √ ρ n,n ≥ 2J n=0 ρ n,n = 1, we have 1 2 d B (ρ, Ē) ≤ V (ρ). Let us now prove the converse inequality. Assume that d B (ρ, Ē) = 2 -2 √ ρ n,n for some index n, then √ ρ m,m ≤ 1 -ρ n,n ≤ d B (ρ, Ē) for m = n.
In particular each addend in V (ρ) is less or equal than d B (ρ, Ē), and V (ρ) ≤ J(2J + 1)d B (ρ, Ē). Thus, we have

(5.2) C 1 d B (ρ, Ē) ≤ V (ρ) ≤ C 2 d B (ρ, Ē),
where

C 1 = 1/2, C 2 = J(2J + 1). It implies, E(d B (ρ t , Ē)) ≤ C 2 C 1 d B (ρ 0 , Ē)e -ηM 2 t , ∀ρ 0 ∈ S.
which means that the set Ē is exponentially stable in mean with average Lyapunov exponent less or equal than -ηM/2. Now we consider the stochastic process Q(ρ t , t) = e ηM 2 t V (ρ t ) ≥ 0 whose infinitesimal generator is given by L Q(ρ, t) = e ηM 2 t (ηM/2 V (ρ) + L V (ρ)) ≤ 0. Hence, the process Q(ρ t , t) is a positive supermartingale. Due to Doob martingale convergence theorem [START_REF] Revuz | Continuous martingales and Brownian motion[END_REF], the process Q(ρ t , t) converges almost surely to a finite limit as t tends to infinity. Consequently, Q(ρ t , t) is almost surely bounded, that is sup t≥0 Q(ρ t , t) = A, for some a.s. finite random variable A. This implies sup t≥0 V (ρ t ) = Ae -ηM 2 t a.s. Letting t goes to infinity, we obtain lim sup t→∞ 1 t log V (ρ t ) ≤ -ηM 2 a.s. By the inequality (5.2), (5.3) lim sup

t→∞ 1 t log d B (ρ t , Ē) ≤ - ηM 2 , a.s.
which means that the set Ē is a.s. exponentially stable with sample Lyapunov exponent less or equal than -ηM/2.

In order to calculate the probability of convergence towards ρ n ∈ Ē, we follow an approach inspired by [START_REF] Amini | Feedback stabilization of discrete-time quantum systems subject to non-demolition measurements with imperfections and delays[END_REF][START_REF] Adler | Martingale models for quantum state reduction[END_REF]. According to the first part of the theorem, the process Tr(ρ t ρ n ) converges a.s. to 1 {ρt→ρ n } . Therefore, by applying the dominated convergence theorem, Tr(ρ t ρ n ) converges to 1 {ρt→ρ n } in mean. As L Tr(ρ t ρ n ) = 0, then Tr(ρ t ρ n ) is a positive martingale. Hence,

P(ρ t → ρ n ) = lim t→∞ E(Tr(ρ t ρ n )) = Tr(ρ 0 ρ n ),
and the proof is complete.

Exponential stabilization by continuous feedback.

In this section, we study the exponential stabilization of system (2.1) towards a selected target state ρ n with n ∈ {0, . . . , 2J}. Firstly, we establish a general result ensuring the exponential convergence towards ρ n under some assumptions on the feedback control law and an additional local Lyapunov type condition. Next, we design a parametrized family of feedback control laws satisfying such conditions. 6.1. Almost sure global exponential stabilization. Inspired by [START_REF] Tsumura | Global stabilization at arbitrary eigenstates of n-dimensional quantum spin systems via continuous feedback[END_REF]Lemma 3.4] and [START_REF] Revuz | Continuous martingales and Brownian motion[END_REF]Proposition 3.1], in the following lemma we show that, wherever the initial state is, the trajectory ρ t enters in B r (ρ n) with r > 0 in finite time almost surely.

Before stating the result, we define P n := {ρ ∈ S| J -n -Tr(J z ρ) = 0} and the "variance function" V (ρ) := Tr(J 2 z ρ) -Tr(J z ρ) 2 of J z .

Lemma 6.1. Assume that u ∈ C 1 (S, R) and u(ρ n) = 0. Suppose that for any ρ 0 ∈ {ρ ∈ S| ρ n,n = 0}, there exists a control v(t) ∈ V such that for all t ∈ (0, ε), with ε sufficiently small, u(ρ v (t)) = 0, for some solution ρ v (t) of Equation (4.5). Assume moreover that (6.1)

∀ρ ∈ P n \ ρ n, 2ηM V (ρ)ρ n,n > u(ρ)Tr(i[J y , ρ]ρ n).
Then for all r > 0 and any given initial state ρ 0 ∈ S, P(τ r < ∞) = 1, where τ r := inf{t ≥ 0| ρ t ∈ B r (ρ n)} and ρ t corresponds to the solution of system (2.1).

Proof. The lemma holds trivially for ρ 0 ∈ B r (ρ n), as in that case τ r = 0. Let us thus suppose that ρ 0 ∈ S \ B r (ρ n). We show that there exists T ∈ (0, ∞) and ζ ∈ (0, 1) such that P ρ0 (τ r < T ) > ζ. For this purpose, we make use of the support theorem. Therefore, we consider the differential equation

(6.2) ( ρv (t)) n,n = ∆ n(ρ v (t)) + 2 ηM P n(ρ v (t))(ρ v (t)) n,n v(t),
where v(t) ∈ V is the control input, and

∆ n(ρ) := 2ηM Tr(J 2 z ρ) -(J -n) 2 ρ n,n -u(ρ)Tr(i[J y , ρ]ρ n) + 4ηM P n(ρ)Tr(J z ρ)ρ n,n , P n(ρ) := J -n -Tr(J z ρ).
Consider the special case in which ρ n,n (0) = 0. By applying similar arguments as in the proof of Proposition 4.5, there exists a control input v ∈ V such that (ρ v (t)) n,n > 0 for all t > 0. Thus, without loss the generality, we suppose ρ n,n (0) > 0. Then we show that there exist a control input v and a time T ∈ (0, ∞) such that ρ v (t) ∈ B r (ρ n) for t ≤ T in the two following separate cases.

1. Let n ∈ {0, 2J}. We have 

P n = ρ n. Since S \ B r (ρ n) is compact, ∆ n(ρ
v (t) ∈ B r (ρ n) for t ≤ T with T < ∞ if ρ n,n (0) > 0. 2. Now suppose n ∈ {1, • • • , 2J -1}. Due to the compactness of P n \ B r (ρ n)
and the condition (6.1), we have

m : = min ρ∈Pn\Br(ρ n ) ∆ n(ρ) = min ρ∈Pn\Br(ρ n ) 2ηM V (ρ)ρ n,n -u(ρ)Tr(i[J y , ρ]ρ n) > 0.
Then we define an open set containing

P n \ B r (ρ n), P n \ B r (ρ n) ⊆ U := {ρ ∈ S| ∆ n(ρ) > m/2} ⊆ S.
Thus, setting v(t) = 0 whenever ρ v (t) ∈ U, we have

( ρv (t)) n,n = ∆ n(ρ v (t)) > m/2 on U.
Moreover, (S \B r (ρ n))\U is compact, then ∆ n(ρ) is bounded from above and |P n(ρ)| is bounded from below in this domain. For all ρ v (t) ∈ {ρ ∈ S| ρ n,n > 0}, we can take the feedback v = KP n(ρ)/ρ n,n with K > 0 sufficiently large, so that ( ρv (t)) n,n is bounded from below on (S

\ B r (ρ n)) \ U. The proposed input v guarantees that ρ v (t) ∈ B r (ρ n) for t ≤ T with T < ∞ if ρ n,n (0) 
> 0. Therefore, there exists T ∈ (0, ∞) such that, for all ρ 0 ∈ S \ B r (ρ n), there exists v(t) steering the system from ρ 0 to B r (ρ n) by time T. By compactness of S \ B r (ρ n) and the Feller continuity of ρ t , we have sup ρ0∈S\Br(ρ

n ) P ρ0 (τ r ≥ T ) ≤ 1 -ζ < 1, for some ζ > 0. By Dynkin inequality [19], sup ρ0∈S\Br(ρ n ) E ρ0 (τ r ) ≤ T 1 -sup ρ0∈S\Br(ρ n ) P ρ0 (τ r ≥ T ) ≤ T ζ < ∞.
Then by Markov inequality, for all ρ 0 ∈ S \ B r (ρ n), we have

P ρ0 (τ r = ∞) = lim n→∞ P ρ0 (τ r ≥ n) ≤ lim n→∞ E ρ0 (τ r )/n = 0, which implies P ρ0 (τ r < ∞) = 1.
The proof is complete.

Remark 6.2. In Step 1 and Step 2 of the proof of [27, Theorem 4.2], the authors showed, by using similar techniques, that if u(ρ) = 1, then there exists a γ ∈ (0, 1) such that for all ρ 0 ∈ {ρ ∈ S| ρ n,n ≤ γ}, P(τ γ < ∞) = 1 with τγ := inf{t > 0| ρ n,n > γ}. On the other hand, our result is stronger than that of [START_REF] Mirrahimi | Stabilizing feedback controls for quantum systems[END_REF] as ρ t can enter in an arbitrarily small neighborhood of ρ n in finite time almost surely. This will allow to localize the Lyapunov stability analysis around the target state. Note that the method developed to show Step 1 of the proof of [START_REF] Mirrahimi | Stabilizing feedback controls for quantum systems[END_REF]Theorem 4.2] strongly relies on the fact that the feedback control is constant, while our method works for C 1 controls.

In the following, we state our general result concerning the exponential stabilization of N -level quantum angular momentum systems. Theorem 6.3. Assume that the feedback control law satisfies the assumptions of Lemma 6.1. Additionally, suppose that there exists a positive-definite function V (ρ) such that V (ρ) = 0 if and only if ρ = ρ n, and V is continuous on S and twice continuously differentiable on the set S\ρ n. Moreover, suppose that there exist positive constants C, C 1 and C 2 such that (i)

C 1 d B (ρ, ρ n) ≤ V (ρ) ≤ C 2 d B (ρ, ρ n),
for all ρ ∈ S, and (ii) lim sup ρ→ρ n L V (ρ) V (ρ) = -C. Then, ρ n is a.s. exponentially stable for the system (2.1) with sample Lyapunov exponent less or equal than -C -K 2 , where K := lim inf ρ→ρ n g 2 (ρ) and g(ρ

) := √ η ∂V (ρ) ∂ρ G(ρ) V (ρ) .
Proof. The proof proceeds in three steps:

1. First we show that ρ n is locally stable in probability; 2. Next we show that for any fixed r > 0 and almost all sample paths, there exists T < ∞ such that for all t ≥ T , ρ t ∈ B r (ρ n); 3. Finally, we prove that ρ n is a.s. exponentially stable with sample Lyapunov exponent less or equal than -C -K 2 .

Step 1: By the condition (ii), we can choose r > 0 sufficiently small such that L V (ρ) ≤ -C(r)V (ρ) for ρ ∈ B r (ρ n) \ ρ n, for some C(r) > 0. Let ε ∈ (0, 1) be arbitrary. By the continuity of V (ρ) and the fact that V (ρ) = 0 if and only if d B (ρ, ρ n) = 0, we can find δ = δ(ε, r) > 0 such that

(6.3) 1/ε sup ρ0∈B δ (ρ n) V (ρ 0 ) ≤ C 1 r.
Assume that ρ 0 ∈ B δ (ρ n) and let τ be the first exit time of ρ t from B r (ρ n). By Itô formula, we have

E(V (ρ t∧τ )) ≤ V (ρ 0 ) -C(r) E t∧τ 0 V (ρ s )ds ≤ V (ρ 0 ). For all t ≥ τ , d B (ρ t∧τ , ρ n) = d B (ρ τ , ρ n) = r.
Hence, by the condition (i),

E(V (ρ t∧τ )) ≥ E(1 {τ ≤t} V (ρ τ )) ≥ E(1 {τ ≤t} C 1 d B (ρ τ , ρ n)) = C 1 r P(τ ≤ t).
Combining with the inequality (6.3), we have

P(τ ≤ t) ≤ E(V (ρ t∧τ )) C 1 r ≤ V (ρ 0 ) C 1 r ≤ ε.
Letting t tend to infinity, we get P(τ < ∞) ≤ ε which implies

P(d B (ρ t , ρ n) < r for t ≥ 0) ≥ 1 -ε.
Step 2: Since u(ρ) = 0 in Ē if and only if ρ = ρ n by Lemma 6.1 we obtain, for all ρ 0 ∈ S, P(τ δ < ∞) = 1, where τ δ := inf{t ≥ 0| ρ t ∈ B δ (ρ n)}. It implies that ρ t enters B δ (ρ n) in a finite time almost surely. Due to Step 1, for all ρ 0 ∈ B δ (ρ n), P(σ r < ∞) ≤ ε, where σ r := inf{t ≥ 0| ρ t / ∈ B r (ρ n)}. We define two sequences of stopping times {σ k r } k≥0 and {τ k δ } k≥1 such that σ 0 r = 0,

τ k+1 δ = inf{t ≥ σ k r | ρ t ∈ B δ (ρ n)} and σ k+1 r = inf{t ≥ τ k+1 δ | ρ t / ∈ B r (ρ n)}.
By the strong Markov property, we find

P ρ0 (σ m r < ∞) = P ρ0 (τ 1 δ < ∞, σ 1 r < ∞, . . . , σ m r < ∞) = P ρ τ 1 δ (σ r < ∞) • • • P ρ τ m δ (σ r < ∞) ≤ ε m .
Thus, for all ρ 0 ∈ S, we have P(σ m r < ∞, ∀m > 0) = 0. We deduce that, for almost all sample paths, there exists T < ∞ such that, for all t ≥ T , ρ t ∈ B r (ρ n), which concludes Step 2.

Step 3: In this step, we obtain an upper bound of the sample Lyapunov exponent by employing an argument inspired by [START_REF] Mao | Stochastic differential equations and applications[END_REF]Theorem 4.3.3]

. For ρ = ρ n, L log V (ρ) = L V (ρ) V (ρ) -g 2 (ρ)
2 . Due to Lemma 4.2, ρ n cannot be attained in finite time almost surely, then by Itô formula, we have

log V (ρ t ) = log V (ρ 0 ) + t 0 L V (ρ s ) V (ρ s ) ds + t 0 g(ρ s )dW s - 1 2 t 0 g 2 (ρ s )ds.
Let m ∈ Z >0 and take arbitrarily ε ∈ (0, 1). By the exponential martingale inequality (see e.g. [25, Theorem 1.7.4]), we have

P sup 0≤t≤m t 0 g(ρ s )dW s - ε 2 t 0 g 2 (ρ s )ds > 2 ε log m ≤ 1 m 2 .

Since

∞ m=1 1 m 2 < ∞, by Borel-Cantelli lemma we have that for almost all sample paths there exists m 0 such that, if m > m 0 , then

sup 0≤t≤m t 0 g(ρ s )dW s - ε 2 t 0 g 2 (ρ s )ds ≤ 2 ε log m.
Thus, for 0 ≤ t ≤ m and m > m 0 ,

t 0 g(ρ s )dW s ≤ 2 ε log m + ε 2 t 0 g 2 (ρ s )ds, a.s. We have log V (ρ t ) ≤ log V (ρ 0 ) + t 0 L V (ρ s ) V (ρ s ) ds + 2 ε log m - 1 -ε 2 t 0 g 2 (ρ s )ds, a.s.
It gives lim sup

t→∞ 1 t log V (ρ t ) ≤ lim sup t→∞ 1 t t 0 L V (ρ s ) V (ρ s ) ds - 1 -ε 2 t 0 g 2 (ρ s )ds a.s.
Letting ε tend to zero, we have lim sup

t→∞ 1 t log V (ρ t ) ≤ lim sup t→∞ 1 t t 0 L V (ρ s ) V (ρ s ) ds - 1 2 t 0 g 2 (ρ s )ds a.s.
For every fixed T > 0 consider the event

Ω T = {ρ t ∈ B r (ρ n) for all t ≥ T }.
Due to the condition (ii), for almost all ω ∈ Ω T , lim sup

t→∞ 1 t t 0 L V (ρ s ) V (ρ s ) ds - 1 2 t 0 g 2 (ρ s )ds ≤ lim sup t→∞ 1 t t T L V (ρ s ) V (ρ s ) ds - 1 2 t T g 2 (ρ s )ds ≤ -C(r) - inf ρ∈Br(ρ n )\ρ n g 2 (ρ) 2 .
Since T can be taken arbitrarily large and Step 2 implies that lim T →∞ P(Ω T ) = 1, we can conclude that lim sup

t→∞ 1 t log V (ρ t ) ≤ -C(r) - inf ρ∈Br(ρ n )\ρ n g 2 (ρ) 2 , a.s.
Finally, due to the condition (i) and since r can be taken arbitrarily small, we have lim sup

t→∞ 1 t log d B (ρ t , ρ n) ≤ -C - K 2 , a.s.
which yields the result.

6.2. Feedback controller design. The purpose of this subsection is to design parametrized feedback laws which stabilize exponentially the system (2.1) almost surely towards a target state ρ n. For the choice of target state, we consider first the particular case n ∈ {0, 2J} and then the general case n ∈ {0, • • • , 2J}.

In the following theorem, we consider the case n ∈ {0, 2J}. Before stating the result, we note that we can describe the set B r(λ) (ρ n) \ ρ n as follows

D λ (ρ n) := {ρ ∈ S| 0 < λ < ρ n,n < 1} = B r(λ) (ρ n) \ ρ n, where r(λ) = 2 -2 √ λ.
Theorem 6.4. Consider system (2.1) with ρ 0 ∈ S and assume η ∈ (0, 1). Let ρ n ∈ {ρ 0 , ρ 2J } be the target eigenstate and define the feedback controller

(6.4) u n(ρ) = α(1 -Tr(ρρ n)) β -γ Tr(i[J y , ρ]ρ n),
where γ ≥ 0, β ≥ 1 and α > 0. Then the feedback controller (6.4) exponentially stabilizes system (2.1) almost surely to the equilibrium ρ n with sample Lyapunov exponent less or equal than -ηM .

Proof. To prove the theorem, we show that we can apply Theorem 6.3 with the Lyapunov function V n(ρ) = 1 -Tr(ρρ n) for n = 0 and n = 2J. First, it is easy to see that u n satisfies the assumptions of Lemma 6.1 and Lemma 4.2. Then, we need to show that the conditions (i) and (ii) of Theorem 6.3 hold true. Note that

√ 2 2 d B (ρ, ρ n) ≤ V n(ρ) ≤ d B (ρ, ρ n)
, so that the condition (i) is shown. We are left to check the condition (ii). The infinitesimal generator L V n takes the following form

L V n(ρ) = u n 2 Tr(i[J y , ρ]ρ n) V n(ρ) - ηM 2 (J -n -Tr(J z ρ)) 2 Tr(ρρ n) 2 V 3 n (ρ) . (6.5) V n(ρ) ≤ √ 2J 1 -ρ n,n . Then we get √ 2 2 d B (ρ, ρ n) ≤ V n(ρ) ≤ √ 2Jd B (ρ, ρ n),
hence the condition (i) is shown. In order to verify the condition (ii), we write the infinitesimal generator of the Lyapunov function which has the following form

L V n(ρ) = - u n 2 k =n Tr(i[J y , ρ]ρ k ) √ ρ k,k - ηM 2 k =n (P k (ρ)) 2 √ ρ k,k . (6.8) We find |Tr(i[J y , ρ]ρ k )| √ ρ k,k = |c k Re{ρ k,k-1 } -c k+1 Re{ρ k,k+1 }| √ ρ k,k ≤ c k |ρ k,k-1 | + c k+1 |ρ k,k+1 | √ ρ k,k ≤ c k √ ρ k-1,k-1 + c k+1 √ ρ k+1,k+1 ≤ c k + c k+1 .
For k = n and for all ρ ∈ D λ (ρ n) with λ > 1 -1/Υ, we have

|J -k -Tr(J z ρ)| ≥ |n -k| -|P n(ρ)| ≥ 1 -Υ(1 -ρ n,n ) ≥ 1 -Υ(1 -λ) > 0.
Thus, for all ρ ∈ D λ (ρ n),

L V n(ρ) ≤ - ηM (1 -Υ(1 -λ)) 2 2 -αΓΥ β (1 -λ) β-1/2 V n(ρ) ≤ -C n,λ V n(ρ),
where Γ :

= k =n (c k + c k+1 ) and C n,λ := ηM (1-Υ(1-λ)) 2 2 -αΓΥ β (1 -λ) β-1/2
. Furthermore, for n ∈ {0, 2J}, we have g 2 (ρ) ≥ ηM λ 2 , for all ρ ∈ D λ (ρ n). Since C n,λ and ηM λ 2 converge respectively to ηM 2 and ηM as λ tends to one, by employing the same arguments used earlier in the proof of Theorem 6.3, we find that the sample Lyapunov exponent is less or equal than -C -K/2 where C = ηM 2 for n ∈ {0, . . . , 2J}, K = ηM for n ∈ {0, 2J} and K = 0 for n ∈ {1, . . . , 2J -1}. Remark 6.6. Locally around the target state ρ n, the asymptotic behavior of the Lyapunov function (6.7) is the same as the one of the Lyapunov function (5.1). This is related to the fact that, under the assumptions on u n, the behavior of the system around the target state is similar to the case u ≡ 0. In particular, without feedback and conditioning to the event {∃t ≥ 0| ρ t ∈ B r (ρ n), ∀t ≥ t }, one can show that the trajectories converge a.s. to ρ n with sample Lyapunov exponent equal to the one in Theorem 6.5. Remark 6.7. Note that the feedback controller satisfies the assumptions of Proposition 4.5, that is k ∂Pn(ρ) ∂ρ k,k (G(ρ)) k,k = 0 when u n(ρ) = 0 and ρ = ρ n (this can be easily shown by applying Cauchy-Schwarz inequality). If η ∈ (0, 1), Theorem 6.5 and Corollary 4.6 guarantee the convergence of almost all trajectories to the target state even if the initial state ρ 0 lies in the boundary of S (the argument is no more valid if η = 1 because of Lemma 4.4). Unfortunately, these results do not ensure the almost sure exponential convergence towards the target state whenever ρ 0 lies in ∂S \ ρ n. However, we believe that under the assumptions imposed on the feedback, we can still guarantee such convergence property. This is suggested by the following arguments.

Set the event Ω >0 = t>0 {ρ t > 0} which is F 0+ -measurable. By the strong Markov property of ρ t , and by applying Blumenthal zero-one law [START_REF] Rogers | Diffusions, Markov processes and martingales[END_REF], we have that either P(Ω >0 ) = 0 or P(Ω >0 ) = 1. In order to conclude that P(Ω >0 ) = 1, it would be enough to show that P(Ω >0 ) > 0, i.e., ρ t exits the boundary and enters the interior of S immediately with non-zero probability. Proposition 4.5 provides some intuitions about the validity of this property, as it proves that the majority of the trajectories of the associated deterministic equation (4.5) enter the interior of S immediately. It is then tempting to conjecture that under the assumption of Proposition 4.5, for all ρ 0 ∈ ∂S \ ρ n, ρ t > 0 for all t > 0 almost surely. If this conjecture is correct, we can generalize Theorem 6.5 to the case ρ 0 ∈ S. 7. Simulations. In this section, we illustrate our results by numerical simulations in the case of a three-level quantum angular momentum system. First, we consider the case u ≡ 0 (Theorem 5.1). Then, we illustrate the convergence towards the target states ρ 0 and ρ 1 by applying feedback laws of the form (6.4) and (6.6), respectively.

The simulations in the case u ≡ 0 are shown in Figure 1. In particular, we observe that the expectation of the Lyapunov function E(V (ρ t )) is bounded by the exponential function V (ρ 0 )e - target eigenstate; the corresponding simulations with a feedback law of the form (6.4) and initial condition ρ 2 are shown in Figure 2. For this case, we note that a larger α can speed up the exit of the trajectories from a neighborhood of the antipodal state ρ 2 . Similarly, a larger γ may speed up the accessibility of a neighborhood of the target state ρ 0 . Finally, a larger β can weaken the role of the first term in the feedback law (6.4) on neighborhoods of the target state (a more detailed discussion for the two-level case may be found in [START_REF] Liang | On exponential stabilization of spin-1 2 systems[END_REF]).

Then, we set ρ 1 as the target eigenstate; the simulations with a feedback law of the form (6.6) and initial condition diag(0.3, 0.4, 0.3) (in the interior of S) are shown in Figure 3. Finally, we repeat the last simulations for the case where the initial condition is ρ 2 . As simulations show, the trajectories enter immediately in the interior of S and converge exponentially towards the target state (see Figure 4).

Conclusion and perspectives.

In this paper, we have studied the asymptotic behavior of trajectories associated with quantum angular momentum systems for the cases with and without feedback law. Firstly, for the system with zero control, we have shown the exponential convergence towards the set of pure states corresponding to eigenvectors of the measurement operator J z (quantum state reduction with exponential rate ηM/2). We next proved the exponential convergence of N -level quantum angular momentum systems towards an arbitrary predetermined target state under some general conditions on the feedback law. This was obtained by applying stochastic Lyapunov techniques and analyzing the asymptotic behavior of quantum trajectories. For illustration, we have provided a parametrized feedback law satisfying our general conditions to stabilize the system exponentially towards the target state.

Further research lines will address the possibility of extending our results in presence of delays, or for exponential stabilization of entangled states with applications in quantum computing. In particular, alternative choices of the measurement operator may be investigated to prepare predetermined entangled target states, such as Dicke or GHZ states.
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 44 Assume u ∈ C 1 (S, R). If η = 1, then the boundary of the state space ∂S := {ρ ∈ S| det(ρ) = 0} is a.s. invariant for (2.1).

  Proof. Let I := {k| ρ k,k (0) = 0} and S I := {ρ ∈ S| ρ k,k = 0 if and only if k ∈ I}. Then by Lemma 4.1, S I is a.s. invariant for (2.1). Consider the function (5.1)

ηM 2 t

 2 , and the expectation of the Bures distance E(d B (ρ t , Ē)) is always below the exponential function C 2 /C 1 d B (ρ 0 , Ē)e -ηM 2 t , with C 1 = 1/2 and C 2 = 3 (see Equation (5.2)) in accordance with the results of Section 5. Next, we set ρ 0 as the

Fig. 1 .

 1 Fig. 1. Quantum state reduction of a three-level quantum angular momentum system with u ≡ 0 starting at diag(0.3, 0.4, 0.3) when ω = 0, η = 0.3 and M = 1: the black curve represents the mean value of 10 arbitrary sample trajectories, the gray curve represents the exponential reference with exponent -ηM/2. The figures at the bottom are the semi-log versions of the ones at the top.

Fig. 2 .

 2 Fig. 2. Exponential stabilization of a three-level quantum angular momentum system towards ρ 0 with the feedback law (6.4)starting at ρ 2 with ω = 0, η = 0.3, M = 1, α = 10, β = 5 and γ = 10: the black curve represents the mean value of 10 arbitrary sample trajectories, the light gray and dark gray curves represent the exponential references with exponents -ηM/2 and -ηM respectively. The figures at the bottom are the semi-log versions of the ones at the top.

Fig. 3 .

 3 Fig. 3. Exponential stabilization of a three-level quantum angular momentum system towards ρ 1 with the feedback law (6.6) starting at diag(0.3, 0.4, 0.3) with ω = 0, η = 0.3, M = 1, α = 0.3, β = 10: the black curve represents the mean value of 10 arbitrary sample trajectories, the gray curve represents the exponential reference with exponent -ηM/2. The figures at the bottom are the semi-log versions of the ones at the top.

Fig. 4 .

 4 Fig. 4. Exponential stabilization of a three-level quantum angular momentum system towards ρ 1 with the feedback law (6.6) starting at ρ 2 with ω = 0, η = 0.3, M = 1, α = 0.3, β = 10: the black curve represents the mean value of 10 arbitrary sample trajectories, the gray curve represents the exponential reference with exponent -ηM/2. The figures at the bottom are the semi-log versions of the ones at the top.

  ) is bounded from above in this domain and |P n(ρ)| is bounded from below. Then by choosing the control input v = KP n(ρ)/ρ n,n , with K > 0 sufficiently large, we can guarantee that ρ

If k = 0, the condition is replaced by e 1 / ∈ Z 1 (t) while if k =

2J, we assume e 2J-1 / ∈ Z 1 (t).

Recall that Pρ 0 corresponds to the probability law of ρt starting at ρ 0 ; the associated expectation is denoted by Eρ 0 .

If n = 0, and ρ ∈ D λ (ρ 0 ), we find

since |Tr(i[J y , ρ]ρ 0 )| = 2c 1 |Re{ρ 0,1 }| ≤ 2c 1 |ρ 0,1 | ≤ 2c 1 V 0 (ρ). Moreover, we have

Thus, for all ρ

2 . The case n = 2J may be treated similarly. In particular, for all ρ ∈ D λ (ρ 2J ), one gets

Hence, we can apply Theorem 6.3 for n ∈ {0, 2J}, with C = ηM 2 and K = ηM. The proof is complete.

In the following theorem, we consider the general case n ∈ {0, . . . , 2J}. Theorem 6.5. Consider system (2.1) with ρ 0 ∈ S \ ∂S. Let ρ n ∈ Ē be the target state and define the feedback

where β ≥ 1 and α > 0. Then the feedback (6.6) Tr(ρρ k ).

Due to Lemma 4.3, all diagonal elements of ρ t remain strictly positive for all t ≥ 0 almost surely. Since V n(ρ) is C 2 in S \ ∂S, we can make use of similar arguments as those in Theorem 6.3. First, we show that the following conditions are satisfied.

Roughly speaking, by Lemma 6.1, C.1 provides a sufficient condition guaranteeing the accessibility of any arbitrary small neighborhood of ρ n. C.2 is helpful to obtain a bound of the type L V n ≤ -CV n on D λ (ρ n).

We now show that these conditions are satisfied. The property C.1 follows from the fact that, for all ρ ∈ P n \ ρ n, we have u n(ρ) = 0 and V (ρ) > 0.

Next, we can show that the property C.2 holds true, because

where Υ := max{n, 2J -n}. Then, for all ρ ∈ D λ (ρ n),

Consider the Lyapunov function (6.7). In the following, we verify the conditions (i) and (ii) of Theorem 6.3. First note that by Jensen inequality, we have