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February 22, 2019

Abstract

For each pair ε = (ε1, ε2) of positive parameters, we define a perforated domain Ωε by
making a small hole of size ε1ε2 in an open regular subset Ω of Rn (n ≥ 3). The hole is
situated at distance ε1 from the outer boundary ∂Ω of the domain. Then, when ε→ (0, 0)
both the size of the hole and its distance from ∂Ω tend to zero, but the size shrinks faster
than the distance. In such perforated domain Ωε we consider a Dirichlet problem for the
Laplace equation and we denote by uε its solution. Our aim is to represent the map that
takes ε to uε in term of real analytic functions of ε defined in a neighborhood of (0, 0).
In contrast with previous results valid only for restrictions of uε to suitable subsets of Ωε,
we prove a global representation formula that holds on the whole of Ωε. Such a formula
allows to rigorously justify multi-scale expansions, which we subsequently construct.

Keywords: Dirichlet problem; singularly perturbed perforated domain; Laplace operator;
real analytic continuation in Banach space; multi-scale asymptotic expansion
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1 Introduction

Boundary value problems in domains with small holes are a typical subject of asymptotic
analysis and are usually studied by means of asymptotic expansion methods. The aim of such
methods is to obtain an asymptotic approximation that describes the behavior of the solution
as a small perturbation parameter (which could be the size of the hole) tends to zero. There
are different techniques to obtain such approximations: for example, the method of matching
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outer and inner expansions of Il’in [9, 10], the multi-scale (or compound) expansion method
of Maz’ya, Nazarov, and Plamenevskij [14], and the asymptotic analysis of Green’s kernels of
Maz’ya, Movchan, and Nieves [13].

Recently another method has appeared that takes a different stand point with respect to
asymptotic analysis. This new method is based on the functional analytic approach proposed
by Lanza de Cristoforis (cf. [11, 12]) and the core feature is the description of the solution in
terms of real analytic functions of one or several variables depending on the small parameter
that characterizes the perturbation.

In this paper we show an interaction between the functional analytic approach and the
expansion methods of asymptotic analysis. To do so, we will consider a Dirichlet problem
for the Laplace equation in a domain with a small hole ‘moderately close’ to the boundary.
That is, a hole that approaches the outer boundary of the domain while shrinking its size at
a faster speed.

The same problem has been already considered in [1], where the functional analytic ap-
proach has been used to prove real analytic representation formulas for certain restrictions
of the solution to suitable subsets of the perturbed domain. Here instead, we obtain a rep-
resentation formula in the whole domain of definition of the solution. The advantage of such
a formula is that it can be used to justify multi-scale expansions and to deduce an effective
recursive algorithm for the computation of such expansions.

We now introduce the geometric setting of the problem. For the sake of simplicity, we
confine ourselves to the case where the dimension n ∈ N is greater than or equal to 3 (in
contrast with [1], where the two dimensional case is also treated). Moreover, without loss of
generality, we place the problem in the upper half-space

Rn+ ≡ {x = (x1, . . . , xn) ∈ Rn : xn > 0}.

We note that the boundary ∂Rn+ coincides with the hyperplane xn = 0. Then we fix a domain
Ω that plays the role of the ‘unperturbed’ domain in which we make a hole. We assume that

Ω is an open bounded connected subset of Rn+ of class C 1,α, (H1)

where α ∈]0, 1[ is a regularity parameter. The definition of functions and sets of the usual
Schauder classes C k,α (k = 0, 1) can be found, for example, in Gilbarg and Trudinger [8, §6.2].
In this paper, we assume that a part of the boundary ∂Ω of Ω is flat and that the hole is
approaching it (see Figure 1). To do so, we set

∂0Ω ≡ ∂Ω ∩ ∂Rn+, ∂+Ω ≡ ∂Ω ∩ Rn+,

and we assume that

∂0Ω is an open neighborhood of 0 in ∂Rn+. (H2)

Then we introduce another set ω such that

ω is a bounded open connected subset of Rn of class C 1,α and 0 ∈ ω.

ω plays the role of a reference set for the shape of the perforation. Finally, we fix a point

p = (p1, . . . , pn) ∈ Rn+,
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and define the hole ωε by

ωε ≡ ε1p + ε1ε2ω, ∀ε ≡ (ε1, ε2) ∈ R2.

We adopt the following notation. If ε′ ≡ (ε′1, ε
′
2), ε′′ ≡ (ε′′1, ε

′′
2) ∈ R2, then we write ε′ ≤ ε′′

(respectively, ε′ < ε′′) if and only if ε′j ≤ ε′′j (respectively, ε′j < ε′′j ), for j = 1, 2, and denote by

]ε′, ε′′[ the open rectangular domain of ε ∈ R2 such that ε′ < ε < ε′′. We also set 0 ≡ (0, 0).
Then there exists εad > 0 such that

ωε ⊆ Ω, ∀ε ∈ ]0, εad[.

The rectangular set ]0, εad[ consists of admissible parameters for which we can define the
perforated domain Ωε obtained by removing from the unperturbed domain Ω the closure ωε

of ωε, i.e.,
Ωε ≡ Ω \ ωε, ∀ε ∈ ]0, εad[.

It can be easily verified that for all ε ∈ ]0, εad[, Ωε is a bounded connected open domain of class
C 1,α with boundary ∂Ωε consisting of two connected components: ∂Ω and ∂ωε = ε1p+ε1ε2∂ω.
The parameter ε1 controls the distance of the hole ωε from the boundary ∂Ω; the product
ε1ε2 controls its size. As the pair ε ∈ ]0, εad[ approaches the singular value 0, both the size
of the cavity and its distance from the boundary ∂Ω tend to 0. In particular, the ratio of the
size of the hole to its distance from the boundary tends to 0, and we can say that the size
tends to zero ‘faster’ than the distance. Figure 1 illustrates our geometric setting.

ωε

∂0Ω

∂+Ω Ωε

ε1p
•

0•

Figure 1: Geometric setting.

Now, we fix two functions go ∈ C 1,α(∂Ω) and gi ∈ C 1,α(∂ω) and for each ε ∈ ]0, εad[ we
consider the following Dirichlet problem in the ε-dependent domain Ωε:

∆u(x) = 0, ∀x ∈ Ωε,

u(x) = go(x), ∀x ∈ ∂Ω,

u(x) = gi
(
x−ε1p
ε1ε2

)
, ∀x ∈ ∂ωε.

(1.1)

As is well known, (1.1) has a unique solution in C 1,α(Ωε) (which depends on ε) and we denote
such a solution by uε. Our aim is to understand the behavior of uε when the parameter
ε = (ε1, ε2) approaches the singular value 0 ≡ (0, 0) and study its dependence upon ε. As
mentioned above, we proceed in two steps:
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• First we use the functional analytic approach to describe the dependence of uε upon ε
in terms of real analytic maps of ε defined in a neighborhood of 0. In particular, we
obtain a global representation formula that holds in the whole of Ωε.

• Then we exploit such a formula to deduce a rigorously justified multi-scale iterative
procedure and compute an asymptotic expansion of uε for ε close to 0.

1.1 The Functional Analytic Approach

As we have seen in [1], to apply the functional analytic approach to problem (1.1), it is
necessary to introduce further regularity conditions on the domain Ω (in addition to (H1) and
(H2)) and on the Dirichlet datum go. Namely, we have to ask that

∂+Ω is a compact submanifold with boundary of Rn of class C 1,α, (H3)

and that

there exists r0 > 0 such that the restriction go
|B(0,r0)∩∂0Ω is real analytic. (H4)

Here and in what follows B(0, r0) denotes the ball in Rn of radius r0 and center 0. A con-
sequence of (H3) is that there exist linear and continuous extension operators Ek,α from
C k,α(∂+Ω) to C k,α(∂Ω), for k = 0, 1 (cf. [1, Lemma 2.17]).

Under assumptions (H1)–(H4), we have proven that the restriction of uε to a subset ‘far’
from the hole depends real analytically on the perturbation parameters ε, as the following
theorem states (see [1, Thm. 1.2]).

Theorem 1.1. Let Ω′ be an open subset of Ω such that 0 /∈ Ω′. There are ε′ ∈ ]0, εad[ with
ωε ∩Ω′ = ∅ for all ε ∈ ]− ε′, ε′[ and a real analytic map UΩ′ from ]− ε′, ε′[ to C 1,α(Ω′) such
that

uε|Ω′ = UΩ′ [ε], ∀ε ∈ ]0, ε′[.

Furthermore,
UΩ′ [0] = u0|Ω′ ,

where u0 ∈ C 1,α(Ω) is the unique solution of{
∆u0 = 0 in Ω,

u0 = go on ∂Ω.
(1.2)

The theorem above characterizes the ‘macroscopic’ behavior of the solution ‘far’ from the
hole. A similar result has been proven also for the ‘microscopic’ behavior of uε close to the
perforation, i.e. for the behavior of the rescaled function uε(ε1p + ε1ε2 · ) (see [1, Thm. 3.6]).

Theorem 1.2. Let ω′ be an open bounded subset of Rn \ ω. There are ε′′ ∈ ]0, εad[ with
(ε1p+ ε1ε2ω′) ⊆ B(0, r1) for all ε ∈ ]− ε′′, ε′′[ and a real analytic map Vω′ from ]− ε′′, ε′′[ to
C 1,α(ω′) such that

uε(ε1p + ε1ε2 · )|ω′ = Vω′ [ε], ∀ε ∈ ]0, ε′′[.

Furthermore,
Vω′ [0] = v0|ω′ , (1.3)
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where v0 ∈ C 1,α
loc (Rn \ ω) is the unique solution of

∆v0 = 0 in Rn \ ω,
v0 = gi on ∂ω,
limX→∞ v0(X) = go(0).

(1.4)

1.2 Main results

Theorems 1.1 and 1.2 deal with the ‘local behavior’ of the solution, either ‘far’ from or ‘close’
to the hole. The first aim of this paper is to prove a global representation formula that
holds on the whole of Ωε. In particular, up to the boundary of the hole and up to the outer
boundary.

Such a representation formula is presented in Theorem 1.3 here below. To state it correctly,
we first need to introduce suitable Banach spaces of harmonic functions in Ω and in the exterior
domain Rn \ ω. Then we set

C 1,α
h (Ω) ≡

{
v ∈ C 1,α(Ω) : ∆v = 0 in Ω

}
,

C 1,α
h (Rn \ ω) ≡

{
v ∈ C 1,α

loc (Rn \ ω) : ∆v = 0 in Rn \ ω, and lim
x→∞

v(x) = 0
}
.

We observe that C 1,α
h (Ω) is a closed subspace of C 1,α(Ω), and accordingly it is a Banach

space with the norm induced by C 1,α(Ω). A similar argument does not work for C 1,α
h (Rn \ω),

because C 1,α
loc (Rn \ ω) is not a normed space, but a Fréchet space (cf. Definition 2.2 below).

Then we recall that the solution of a Dirichlet problem in Rn \ ω which decays at infinity
exists and is unique (cf., e.g., Folland [7, Chap. 2], note that here n ≥ 3). Accordingly, the
map which takes a function v to its trace v|∂ω is a linear isomorphism between C 1,α

h (Rn \ ω)

and C 1,α(∂ω) and we can define a norm on C 1,α
h (Rn \ ω) by setting

‖v‖C 1,α
h (Rn\ω)

≡ ‖v|∂ω‖C 1,α(∂ω), ∀v ∈ C 1,α
h (Rn \ ω).

With such a norm C 1,α
h (Rn \ ω) is a Banach space. In addition, exploiting elliptic a priori

estimates, one can verify that the topology generated by ‖ · ‖C 1,α
h (Rn\ω)

is equivalent to the

one induced by the embedding in (the Fréchet space) C 1,α
loc (Rn \ ω).

We can now state our global real analyticity representation theorem.

Theorem 1.3. There exist ε∗ ∈ ]0, εad[ and two univocally identified real analytic maps U
from ]− ε∗, ε∗[ to C 1,α

h (Ω) and V from ]− ε∗, ε∗[ to C 1,α
h (Rn \ ω) such that

uε(x) = U[ε](x) + V[ε]

(
x− ε1p

ε1ε2

)
−V[ε]

(
ς(x)− ε1p

ε1ε2

)
, ∀x ∈ Ωε, ε ∈ ]0, ε∗[, (1.5)

where ς denotes the reflexion with respect to the hyperplane ∂Rn+. That is,

ς(x) ≡ (x1, . . . , xn−1,−xn), ∀x = (x1, . . . , xn) ∈ Rn.

In addition, we have
U[0] = u0 and V[0] = v0 − go(0), (1.6)

with u0 ∈ C 1,α
h (Ω) and v0 ∈ C 1,α

h (Rn \ ω) solutions of (1.2) and (1.4), respectively.
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A consequence of Theorem 1.3 is that there exist ε∗∗ ∈ ]0, ε∗[ and two countable families
of functions {Ui,j}i,j∈N2 ⊆ C 1,α

h (Ω) and {Vi,j}i,j∈N2 ⊆ C 1,α
h (Rn \ ω) such that the series∑

i,j∈N2

εi1ε
j
2 Ui,j and

∑
i,j∈N2

εi1ε
j
2 Vi,j

converge for ε ∈ ]− ε∗∗, ε∗∗[ in C 1,α
h (Ω) and in C 1,α

h (Rn \ ω), respectively, and such that

uε(x) =
∑
i,j∈N2

εi1ε
j
2 Ui,j(x) +

∑
i,j∈N2

εi1ε
j
2 Vi,j

(
x− ε1p

ε1ε2

)
−
∑
i,j∈N2

εi1ε
j
2 Vi,j

(
ς(x)− ε1p

ε1ε2

)
, (1.7)

for all x ∈ Ωε and all ε ∈ ]0, ε∗∗[. Moreover, by the uniqueness of U and V and by the identity
principle for real analytic functions, one verifies that such families {Ui,j}i,j∈N2 and {Vi,j}i,j∈N2

are univocally identified by (1.7).
Another consequence of the representation (1.5) is that we can approximate the solution

uε by means of a sum of slow variable terms (with coefficients evaluated at x), fast variable
terms (with coefficients evaluated at (x− ε1p)/(ε1ε2)), and of what we can call ‘reflected fast
variable terms’ (with coefficients evaluated at (ς(x)− ε1p)/(ε1ε2)). In particular we have the
following.

Corollary 1.4. Let {Ui,j}i,j∈N2 ⊆ C 1,α
h (Ω) and {Vi,j}i,j∈N2 ⊆ C 1,α

h (Rn \ω) be as in (1.7). Let

u0 ∈ C 1,α
h (Ω) and v0 ∈ C 1,α

h (Rn \ ω) be the solutions of (1.2) and (1.4), respectively. Then,
for ε→ 0 the asymptotic approximation

uε(x) = u0(x) + v0

(
x− ε1p

ε1ε2

)
− v0

(
ς(x)− ε1p

ε1ε2

)
+

∑
0<i+j≤N

εi1ε
j
2 Ui,j(x)

+
∑

0<i+j≤N
εi1ε

j
2 Vi,j

(
x− ε1p

ε1ε2

)
−

∑
0<i+j≤N

εi1ε
j
2 Vi,j

(
ς(x)− ε1p

ε1ε2

)
+O

( ∑
i+j=N+1

εi1ε
j
2

)
(1.8)

holds uniformly in x ∈ Ωε.

As we shall see, the coefficients Ui,j and Vi,j are also univocally identified by the approxi-
mation (1.8). Specifically, any approximation in the form of (1.8) where the coefficients Ui,j
and Vi,j are continuous functions and the Vi,j ’s vanish for x→∞, must coincide with the one
that we derive from Theorem 1.3 (cf. Proposition 3.2 below). Moreover, with the exception of
certain particular cases, one can see that there are no asymptotic approximations consisting
solely of slow variable and fast variable terms but no reflected fast variable terms. At least, no
reasonable approximations with a remainder in o(ε1 + ε2) or smaller (cf. Example 3.3 below
and the remarks right after it).

The presence of such reflected fast variable terms is ultimately due to the two parameters
perturbation considered in the paper, which uncouples the size of the hole from its distance
from the boundary. They would not have appeared if one of the parameters, say ε2, was
‘frozen’ and the perturbations for different values of ε1 were locally similar one to another.

We also mention that a global analytic representation was obtained in the paper [3] with
Costabel and Dauge. Such paper deals with a Dirichlet problem for the Poisson equation in a
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plane sector domain and analyzes the effect of a self-similar perturbation close to the vertex.
In such a case, no reflected fast variable terms showed up.

Having proved the existence of asymptotic approximations of uε in the form (1.4), our
second aim in the paper is to deduce a strategy based on the multi-scale expansion method to
compute the coefficients Ui,j and Vi,j up to the solution of certain auxiliary boundary value
problems. To do so, we will deduce from Corollary 1.4 a recursive procedure which produces
at every iteration a better approximation of the solution summing either a slow variable term
or the combination of a fast variable and a reflected fast variable term.

1.3 Structure of the paper

The paper is organized as follows. In Section 2, we present some preliminary results in poten-
tial theory and some technical statements from [1]. In particular, we introduce a fundamental
tool in our analysis: the layer potentials with integral kernels consisting of the Dirichlet
Green’s function of the half-space and of its normal derivative. In Section 3, we prove Theo-
rem 1.3, where we provide a global representation formula in terms of real analytic operators.
Section 4 is devoted to the computation of the asymptotic expansion.

2 Preliminaries

2.1 Preliminary of potential theory

As a first step, we introduce the classical layer potentials for the Laplace equation. We denote
by Sn the fundamental solution of ∆ defined by

Sn(x) ≡ 1

(2− n)sn
|x|2−n, ∀x ∈ Rn \ {0},

where sn is the (n − 1)-dimensional measure of the boundary of the unit ball in Rn. In the
sequel, D is a generic open bounded connected subset of Rn of class C 1,α.

Definition 2.1 (Definition of the layer potentials). For any φ ∈ C 0,α(∂D), we define

vSn [∂D, φ](x) ≡
∫
∂D
φ(y)Sn(x− y) dσy, ∀x ∈ Rn,

where dσ denotes the area element on ∂D.
The restrictions of vSn [∂D, φ] to D and to Rn \ D are denoted viSn [∂D, φ] and veSn [∂D, φ]
respectively (the letter ‘i’ stands for ‘interior’ while the letter ‘e’ stands for ‘exterior’).
For any ψ ∈ C 1,α(∂D), we define

wSn [∂D, ψ](x) ≡ −
∫
∂D
ψ(y) nD(y) · ∇Sn(x− y) dσy, ∀x ∈ Rn,

where nD denotes the outer unit normal to ∂D and the symbol · denotes the scalar product in
Rn.

In Proposition 2.3 here below we recall some classical regularity properties of these layer
potentials. Before doing so, we need to introduce the following definition.
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Definition 2.2. We denote by C 1,α
loc (Rn\D) the space of functions on Rn\D whose restrictions

to O belong to C 1,α(O) for all open bounded subsets O of Rn \ D.

We observe that C 1,α
loc (Rn \D) is a Fréchet space with the family of seminorms ‖ · ‖C 1,α(O),

with O ⊆ Rn \ D open and bounded. Then we have the following.

Proposition 2.3 (Regularity of layer potentials). Let φ ∈ C 0,α(∂D) and ψ ∈ C 1,α(∂D).
Then

• the functions vSn [∂D, φ] and wSn [∂D, φ] are harmonic in Rn \ D;

• the function vSn [∂D, φ] is continuous from Rn to R and the restrictions viSn [∂D, φ] and

veSn [∂D, φ] belong to C 1,α(D) and to C 1,α
loc (Rn \ D), respectively;

• the restriction wSn [∂D, ψ]|D extends to a function wiSn [∂D, ψ] of C 1,α(D) and the re-

striction wSn [∂D, ψ]|Rn\D extends to a function weSn [∂D, ψ] of C 1,α
loc (Rn \ D).

Moreover,

• the map from C 0,α(∂D) to C 1,α(D) which takes φ to viSn [∂D, φ] and the map from

C 0,α(∂D) to C 1,α
loc (Rn \ D) which takes φ to veSn [∂D, φ] are linear and continuous;

• the map from C 1,α(∂D) to C 1,α(D) which takes ψ to wiSn [∂D, φ] and the map from

C 1,α(∂D) to C 1,α
loc (Rn \ D) which takes ψ to weSn [∂D, φ] are linear and continuous.

In [1], a key tool for the analysis of problem (1.1) are layer potentials constructed with
the Dirichlet Green’s function of the upper half-space instead of the classical fundamental
solution Sn. These special layer potentials allow us to transform problem (1.1) into a system
of integral equations with no integral equation on ∂0Ω, which is the part of the boundary of
∂Ω where the inclusion ωε collapses for ε = 0.
Thus we denote by G the Dirichlet Green’s function for the upper half-space Rn+ defined by

G(x, y) ≡ Sn(x− y)− Sn(ς(x)− y), ∀(x, y) ∈ Rn × Rn with y 6= x and y 6= ς(x).

We observe that

G(x, y) = G(y, x), ∀(x, y) ∈ Rn × Rn with y 6= x and y 6= ς(x),

and
G(x, y) = 0, ∀(x, y) ∈ ∂Rn+ × Rn with y 6= x and y 6= ς(x).

If D is a subset of Rn, we find convenient to set ς(D) ≡ {x ∈ Rn | ς(x) ∈ D}. We now
introduce analogs of the classical layer potentials of Definition 2.1 obtained by replacing
Sn by the Green’s function G. In the sequel, D+ denotes an open bounded connected set
contained in Rn+ and of class C 1,α.

Definition 2.4 (Definition of layer potentials derived by G). For any φ ∈ C 0,α(∂D+), we
define

vG[∂D+, φ](x) ≡
∫
∂D+

G(x, y)φ(y) dσy, ∀x ∈ Rn.
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The restrictions of vG[∂D+, φ] to D+ and Rn+ \ D+ are denoted viG[∂D+, φ] and veG[∂D+, φ]
respectively.
For any ψ ∈ C 1,α(∂D+), we define

wG[∂D+, ψ](x) ≡
∫
∂D+

ψ(y) nD+(y) · ∇yG(x, y) dσy, ∀x ∈ Rn.

To describe the regularity properties of these layer potentials, we shall need the following
definition.

Definition 2.5. We denote by C 1,α
loc (Rn+ \ D+) the space of functions on Rn+ \ D+ whose re-

strictions to O belong to C 1,α(O) for all open bounded subsets O of Rn+ \ D+.

Then we have the following regularity properties that can be deduced from the corre-
sponding properties of classical layer potentials (cf. Proposition 2.3).

Proposition 2.6 (Regularity for the layer potentials derived by G). Let φ ∈ C 0,α(∂D+) and
ψ ∈ C 1,α(∂D+). Then

• the functions vG[∂D+, φ] and wG[∂D+, ψ] are harmonic in D+∪ς(D+), and Rn\D+ ∪ ς(D+);

• the function vG[∂D+, φ] is continuous from Rn to R and the restrictions viG[∂D+, φ] and

veG[∂D+, φ] belong to C 1,α(D+) and to C 1,α
loc (Rn+ \ D+), respectively;

• the restriction wG[∂D+, ψ]|Ω extends to a function wiG[∂D+, ψ] of C 1,α(D+) and the

restriction wG[∂D+, ψ]|Rn+\D+
extends to a function weG[∂D+, ψ] of C 1,α

loc (Rn+ \ D+).

Moreover,

• the map from C 0,α(∂D+) to C 1,α(D+) which takes φ to viG[∂D+, φ] and the map from

C 0,α(∂D+) to C 1,α
loc (Rn+ \ D+) which takes φ to veG[∂D+, φ] are linear and continuous;

• the map from C 1,α(∂D+) to C 1,α(D+) which takes ψ to wiG[∂D+, φ] and the map from

C 1,α(∂D+) to C 1,α
loc (Rn \ D+) which takes ψ to weG[∂D+, φ] are linear and continuous.

2.2 Integral representation formulas for uε

In [1], to analyze the ε-dependent boundary value problem (1.1), we have exploited the layer
potentials with kernel derived by G in the case when D = Ωε. Since ∂Ωε = ∂Ω ∪ ∂ωε, we
need to consider layer potentials integrated on ∂Ω and on ∂ωε. As one can easily see, the
single layer potential vG[∂Ω, φ] does not depend on the values of the density φ on ∂0Ω, and
therefore it is convenient to introduce the quotient Banach space

C 0,α
+ (∂Ω) ≡ C 0,α(∂Ω)/{φ ∈ C 0,α(∂Ω) | φ|∂+Ω = 0}.

One of the key steps in the proof of Theorems 1.1 and 1.2 is the following result, where we
prove ‘macroscopic’ and ‘microscopic’ representation formulas in terms of integral operators
with densities which depend real analytically on the perturbation parameter pair ε (see [1,
Thm. 3.3, Remarks 3.4, 3.5]).
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Theorem 2.7. There exist 0 < ε∗ < εad and a real analytic map M ≡ (M1,M2) from
]− ε∗, ε∗[ to C 0,α

+ (∂Ω)× C 0,α(∂ω) such that the following representation formulas hold:

(i) For all ε ∈ ]0, ε∗[, we have

uε(x) =u0(x)− εn−1
1 εn−1

2

∫
∂ω

nω(Y) · (∇yG)(x, ε1p + ε1ε2Y)gi(Y) dσY

−
∫
∂+Ω

G(x, y)M1[ε](y) dσy

+ εn−2
1 εn−2

2

∫
∂ω
G(x, ε1p + ε1ε2Y)M2[ε](Y) dσY, ∀x ∈ Ωε.

(2.1)

(ii) For all X ∈ Rn \ ω and all ε = (ε1, ε2) ∈ ]0, ε∗[ such that ε1p + ε1ε2X ∈ Ωε, we have

uε(ε1p + ε1ε2X) =u0(ε1p + ε1ε2X)− weSn [∂ω, gi](X)

− εn−1
2

∫
∂ω

nω(Y) · ∇Sn(−2pnen + ε2(ς(X)− Y)) gi(Y) dσY

−
∫
∂+Ω

G(ε1p + ε1ε2X, y) M1[ε](y) dσy

+ vSn [∂ω,M2[ε]](X)

− εn−2
2

∫
∂ω
Sn(−2pnen + ε2(ς(X)− Y)) M2[ε](Y) dσY.

(2.2)

Here and in what follows, en is the vector (0, . . . , 0, 1) of Rn.

Moreover, M1[0] = 0 and M2[0] is the unique function in C 0,α(∂ω) such that

vSn [∂ω,M2[0]]|∂ω = −go(0) + wSn [∂ω, gi]|∂ω +
gi

2
.

3 Real analytic continuation in global spaces

3.1 Existence of the expansion. Proof of Theorem 2.7

The integral representations of Theorem 2.7 can be used to prove the local analyticity results
of Theorems 1.1 and 1.2. Instead, to obtain the global analyticity result of Theorem 1.3,
we need to modify such representations and express uε as a sum of single and double layer
potentials. The advantage is that, by virtue of Propositions 2.3 and 2.6, single and double
layer potentials have continuous extensions up to the closure Ωε of Ωε.

Lemma 3.1. Let ε∗ and M ≡ (M1,M2) be as in Theorem 2.7. Then

uε(x) = u0(x)− weSn [∂ω, gi]

(
x− ε1p

ε1ε2

)
+ weSn [∂ω, gi]

(
ς(x)− ε1p

ε1ε2

)
− viG[∂Ω,M1[ε]](x) + veSn [∂ω,M2[ε]]

(
x− ε1p

ε1ε2

)
− veSn [∂ω,M2[ε]]

(
ς(x)− ε1p

ε1ε2

)
,

for all x ∈ Ωε and for all ε ∈ ]0, ε∗[.
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Proof. We observe that

G(ε1p + ε1ε2X, ε1p + ε1ε2Y) = ε2−n
1 ε2−n

2 Sn(X− Y)− ε2−n
1 ε2−n

2 Sn

(
ς(X)− 2pnen

ε2
− Y

)
,

and

(∇yG)(ε1p + ε1ε2X, ε1p + ε1ε2Y)

= ε1−n
1 ε1−n

2 (∇Sn)

(
ς(X)− 2pnen

ε2
− Y

)
− ε1−n

1 ε1−n
2 (∇Sn)(X− Y),

for all X,Y ∈ Rn and all ε > 0 such that ε1p + ε1ε2X 6= ε1p + ε1ε2Y and ς(ε1p + ε1ε2X) 6=
ε1p + ε1ε2Y (or, equivalently, such that X 6= Y and ς(X) 6= 2pnen

ε2
+ Y). Then, taking

x = ε1p + ε1ε2

(
x− ε1p

ε1ε2

)
in (2.1) we deduce that

uε(x) =u0(x) +

∫
∂ω

nω(Y) · (∇Sn)

((
x− ε1p

ε1ε2

)
− Y

)
gi(Y) dσY

−
∫
∂ω

nω(Y) · (∇Sn)

(
ς

(
x− ε1p

ε1ε2

)
− 2pnen

ε2
− Y

)
gi(Y) dσY

−
∫
∂+Ω

G(x, y)M1[ε](y) dσy

+

∫
∂ω
Sn

((
x− ε1p

ε1ε2

)
− Y

)
M2[ε](Y) dσY

−
∫
∂ω
Sn

(
ς

(
x− ε1p

ε1ε2

)
− 2pnen

ε2
− Y

)
M2[ε](Y) dσY

for all ε ∈ ]0, ε∗[ and x ∈ Ωε. By the definitions of single and double layer potentials for Sn
and G (cf. Definitions 2.1 and 2.4) it follows that

uε(x) = u0(x)− wSn [∂ω, gi]

(
x− ε1p

ε1ε2

)
+ wSn [∂ω, gi]

(
ς

(
x− ε1p

ε1ε2

)
− 2pnen

ε2

)
− vG[∂Ω,M1[ε]](x) + vSn [∂ω,M2[ε]]

(
x− ε1p

ε1ε2

)
− vSn [∂ω,M2[ε]]

(
ς

(
x− ε1p

ε1ε2

)
− 2pnen

ε2

)
,

for all ε ∈ ]0, ε∗[ and x ∈ Ωε. Then the statement of the lemma is a consequence of equality

ς

(
x− ε1p

ε1ε2

)
− 2pnen

ε2
=
ς(x)− ε1p

ε1ε2
,

of the membership of uε in C 1,α(Ωε), and of Propositions 2.3 and 2.6.

We are now ready to prove Theorem 1.3.
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Proof of Theorem 1.3. We define

U[ε](x) ≡ u0(x)− viG[∂Ω,M1[ε]](x), ∀x ∈ Ω,

and
V[ε](X) ≡ −weSn [∂ω, gi](X) + veSn [∂ω,M2[ε]](X), ∀X ∈ Rn \ ω,

for all ε ∈ ]− ε∗, ε∗[.
We claim that U and V are real analytic. Indeed, by Proposition 2.3, viG[∂Ω, ·] is linear

and continuous, and therefore real analytic, from C 0,α(∂Ω) to C 1,α
h (Ω) and M1 is real analytic

from ]− ε∗, ε∗[ to C 0,α(∂Ω) by Theorem 2.7. Since the composition of real analytic maps is
real analytic it follows that U is real analytic from ]− ε∗, ε∗[ to C 1,α

h (Ω). To prove that V is
real analytic we first recall that the map which takes a function v to its trace v|∂ω is a linear

isomorphism between C 1,α
h (Rn \ω) and C 1,α(∂ω). Since veSn [∂ω, φ] belongs to C 1,α

h (Rn \ω) for
all φ ∈ C 0,α(∂ω) and the map which takes φ ∈ C 0,α(∂ω) to the trace veSn [∂ω, φ]|∂ω is linear and
continuous (cf. Proposition 2.3), it follows that the map which takes φ to veSn [∂ω, φ] is linear

and continuous, and therefore real analytic, from C 0,α(∂ω) to C 1,α
h (Rn \ ω). Since M2 is real

analytic from ]− ε∗, ε∗[ to C 0,α(∂ω) (cf. Theorem 2.7) and the composition of real analytic
maps is real analytic, we deduce that also V is real analytic from ]− ε∗, ε∗[ to C 1,α

h (Rn \ ω).
The validity of (1.5) follows by Lemma 3.1 and the first equality in (1.6) can be deduced

by Theorem 2.7 and by a straightforward computation. To prove the second equality in (1.6)
we observe that:

V[0] = −weSn [∂ω, gi] + veSn [∂ω,M2[0]], (3.1)

by Theorem 2.7. Then, by Theorem 2.7 and by the jump properties of the double layer
potential (cf., e.g., [1, Prop. 2.4]) we deduce that the right hand side of (3.1) equals gi−go(0)
on ∂ω. The second relation of (1.6) follows by the decaying properties at ∞ of the single
and double layer potentials and by the uniqueness of the solution of the exterior Dirichlet
problem.

Finally, to verify that U and V are unique, we observe that if we have two functions
φ ∈ C 1,α

h (Ω) and ψ ∈ C 1,α
h (Rn \ ω) such that

φ(x) + ψ

(
x− ε1p

ε1ε2

)
− ψ

(
ς(x)− ε1p

ε1ε2

)
= 0, ∀x ∈ Ωε, (3.2)

for some ε ∈ ]0, ε∗[, then

ψ

(
x− ε1p

ε1ε2

)
= −φ(x) + ψ

(
ς(x)− ε1p

ε1ε2

)
, ∀x ∈ Ωε,

and thus ψ
(
· −ε1p
ε1ε2

)
has an harmonic extension on the whole of Rn. Since limx→∞ ψ

(
x−ε1p
ε1ε2

)
=

0, the Liouville theorem for harmonic functions implies that ψ = 0. Then, φ = 0 by (3.2) and
by the identity principle.

3.2 On the uniqueness of such a writing

As we have already observed, Theorem 1.3 implies the validity of an expansion as in (1.8)
for uε. In Proposition 3.2 below, we show a uniqueness result for the coefficients of such an
expansion. In what follows we denote by C (Ω) the space of continuous functions on Ω and
by C0(Rn \ ω) the space of continuous functions on Rn \ ω which vanish at infinity.
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Proposition 3.2. Let N ∈ N. Let ui,j ∈ C (Ω) and vi,j ∈ C0(Rn \ ω) for all (i, j) ∈ N2 with
i+ j ≤ N . We denote by Wε,N the function

Wε,N (x) ≡
∑

i+j≤N
εi1ε

j
2 ui,j(x) +

∑
i+j≤N

εi1ε
j
2 vi,j

(
x− ε1p

ε1ε2

)
−
∑

i+j≤N
εi1ε

j
2 vi,j

(
ς(x)− ε1p

ε1ε2

)

of x ∈ Ωε. If

sup
x∈Ωε

|uε(x)−Wε,N (x)| = o

( ∑
i+j=N

εi1ε
j
2

)
as ε→ 0, (3.3)

then ui,j = Ui,j and vi,j = Vi,j for all (i, j) ∈ N2 with i + j ≤ N , where Ui,j, Vi,j are defined
by (1.7).

Proof. For 0 < η∗ < 1 sufficiently small we consider the curve in ]0, ε∗[ which takes η ∈]0, η∗[
to ε(η) = (ε1(η), ε2(η)) ≡ (η,−1/ log η). Then we observe that εi1(η)εj2(η) = o(εh1(η)εk2(η)) as
η → 0 if and only if either one of the following conditions holds true:

i > h or i = h and j > k. (3.4)

Accordingly, we endow N2 with a total order relation by saying that (i, j) > (h, k) if and only if
(3.4) is verified, and, as usual, (i, j) ≥ (h, k) if (i, j) = (h, k) or (i, j) > (h, k). An elementary
argument shows that every subset of N2 has a minimum with respect to ≥. Therefore, we are
in the position to prove the lemma by an induction argument on (i, j).

We first prove that u0,0 = U0,0. We note that by the membership of vi,j in C0(Rn \ ω) we
have

lim
η→0

vi,j

(
x− ε1(η)p

ε1(η)ε2(η)

)
= 0 and lim

η→0
vi,j

(
ς(x)− ε1(η)p

ε1(η)ε2(η)

)
= 0 ∀x ∈ Ω, (3.5)

for all (i, j) ∈ N2 with i + j ≤ N . Similarly, by the membership of Vi,j in C 1,α
h (Rn \ ω) we

have

lim
η→0

Vi,j

(
x− ε1(η)p

ε1(η)ε2(η)

)
= 0 and lim

η→0
Vi,j

(
ς(x)− ε1(η)p

ε1(η)ε2(η)

)
= 0 ∀x ∈ Ω, (3.6)

for all (i, j) ∈ N2. Then, by (3.5) we compute that

lim
η→0

Wε(η),N (x) = u0,0(x) ∀x ∈ Ω,

and, by (1.7) and (3.6) we also have

lim
η→0

uε(η)(x) = U0,0(x) ∀x ∈ Ω.

By (3.3) it follows that u0,0 = U0,0.
To prove that v0,0 = V0,0, we observe that

lim
η→0

vi,j

(
ς(ε1(η)p + ε1(η)ε2(η)X)− ε1(η)p

ε1(η)ε2(η)

)
= lim

η→0
vi,j

(
ς(X)− 2pnen

ε2(η)

)
= 0 ∀X ∈ Rn \ω,

(3.7)
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for all (i, j) ∈ N2 with i+ j ≤ N , and similarly

lim
η→0

Vi,j

(
ς(ε1(η)p + ε1(η)ε2(η)X)− ε1(η)p

ε1(η)ε2(η)

)
= lim

η→0
Vi,j

(
ς(X)− 2pnen

ε2(η)

)
= 0 ∀X ∈ Rn\ω,

(3.8)
for all (i, j) ∈ N2. It follows that

lim
η→0

Wε(η),N (ε1(η)p + ε1(η)ε2(η)X) = u0,0(0) + v0,0(X) ∀X ∈ Rn \ ω, (3.9)

and that
lim
η→0

uε(ε1(η)p + ε1(η)ε2(η)X) = U0,0(0) + V0,0(X) ∀X ∈ Rn \ ω (3.10)

(see also (1.7)). Then we observe that (3.3) is equivalent to

sup
X∈(Ωε\ω)

|uε(ε1p + ε1ε2 X)−Wε,N (ε1p + ε1ε2 X)| = o

( ∑
i+j=N

εi1ε
j
2

)
as ε→ 0, (3.11)

where Ωε ≡ (Ω− ε1p)/ε1ε2. By (3.9) and (3.10) and by equality u0,0(0) = U0,0(0), it follows
that v0,0 = V0,0.

If N = 0 the proof is complete. We now assume that N > 0 and that ui,j = Ui,j and
vi,j = Vi,j for all (i, j) ≤ (i∗, j∗), where (i∗, j∗) is a multi-index with i∗ + j∗ ≤ N and i∗ < N
(note that (N, 0) is the ‘biggest’ multi-index which appears in the sums of (3.3)). For all
ε ∈ ]0, ε∗[ we denote by Wε,(i∗,j∗) the function of x ∈ Ωε defined by

Wε,(i∗,j∗)(x)

≡
∑

(i,j)≤(i∗,j∗)

εi1ε
j
2 ui,j(x) +

∑
(i,j)≤(i∗,j∗)

εi1ε
j
2 vi,j

(
x− ε1p

ε1ε2

)
−

∑
(i,j)≤(i∗,j∗)

εi1ε
j
2 vi,j

(
ς(x)− ε1p

ε1ε2

)
,

for all x ∈ Ωε. Then we denote by (i∗, j∗) the minimum of the multi-indexes (i, j) with
i+ j ≤ N which are strictly bigger than (i∗, j∗). By (3.5) we compute that

lim
η→0

Wε(η),N (x)−Wε(η),(i∗,j∗)(x)

εi
∗

1 (η)εj
∗

2 (η)
= ui∗,j∗(x) ∀x ∈ Ω,

and by (1.7) and (3.6) we have

lim
η→0

uε(η)(x)−Wε(η),(i∗,j∗)(x)

εi
∗

1 (η)εj
∗

2 (η)
= Ui∗,j∗(x) ∀x ∈ Ω.

Accordingly, (3.3) implies that ui∗,j∗ = Ui∗,j∗ . To show that vi∗,j∗ = Vi∗,j∗ we use (3.7) to
verify that

lim
η→0

Wε(η),N (ε1(η)p + ε1(η)ε2(η)X)−Wε(η),(i∗,j∗)(ε1(η)p + ε1(η)ε2(η)X)

εi
∗

1 (η)εj
∗

2 (η)
= ui∗,j∗(0) + vi∗,j∗(X)

for all X ∈ Rn \ ω. Similarly, by (1.7) and (3.8) we deduce that

lim
η→0

uε(η)(ε1(η)p + ε1(η)ε2(η)X)−Wε(η),(i∗,j∗)(ε1(η)p + ε1(η)ε2(η)X)

εi
∗

1 (η)εj
∗

2 (η)
= Ui∗,j∗(0) + Vi∗,j∗(X)

for all X ∈ Rn \ ω. Then (3.11) and equality ui∗,j∗(0) = Ui∗,j∗(0) imply that vi∗,j∗ = Vi∗,j∗ .
Our proof is now complete.
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3.3 On the necessity of the reflected terms.

Proposition 3.2 shows that the solution uε can be approximated by a finite sum of slow variable
terms, fast variable terms, and reflected fast variable terms. In the following Remark 3.3 we
investigate the possibility of approximating the solution uε by a finite sum of slow variable
and fast variable terms, but no reflected fast variable terms. By means of an example in R3,
we prove that in general this is not possible, at least not if we want the terms in the sum to
be continuous functions.

Example 3.3. Let n = 3 and assume that gi and go are such that v0(X) = 1/|X| for all

X ∈ R3 \ ω (cf. problem (1.4)). Then, there are no functions u#
0,0, u

#
0,1, u

#
1,0 ∈ C (Ω) and

v#
0,0, v

#
0,1, v

#
1,0 ∈ C0(R3 \ ω) such that

sup
x∈Ωε

∣∣∣uε(x)−W#
ε,1(x)

∣∣∣ = o(ε1 + ε2) as ε→ 0, (3.12)

where

W#
ε,1(x)

≡ u#
0,0(x) + v#

0,0

(
x− ε1p

ε1ε2

)
+ ε2 u

#
0,1(x) + ε2 v

#
0,1

(
x− ε1p

ε1ε2

)
+ ε1 u

#
1,0(x) + ε1 v

#
1,0

(
x− ε1p

ε1ε2

)
for all x ∈ Ωε.

Proof. We assume by contradiction that there exist u#
0,0, u

#
0,1, u

#
1,0 ∈ C (Ω) and v#

0,0, v
#
0,1, v

#
1,0 ∈

C0(R3 \ ω) such that (3.12) holds true. As in the proof of Proposition 3.2, we take 0 <
η∗ < 1 small enough and we consider the curve in ]0, ε∗[ which takes η ∈]0, η∗[ to ε(η) =

(ε1(η), ε2(η)) ≡ (η,−1/ log η). By the membership of v#
0,0, v

#
0,1, v

#
1,0 in C0(R3 \ ω) we have

lim
η→0

v#
i,j

(
x− ε1(η)p

ε1(η)ε2(η)

)
= 0 ∀x ∈ Ω, (i, j) ∈ {(0, 0), (0, 1), (1, 0)}. (3.13)

Then, by arguing as we have done in the proof of Proposition 3.2 to show that u0,0 = U0,0

and v0,0 = V0,0, we can verify that u#
0,0 = U0,0 and v#

0,0 = V0,0. In particular, u#
0,0 = u0 and

v#
0,0(X) = v0(X) = 1/|X| for all X ∈ R3 \ ω (cf. Theorem 1.3). Since ε1(η) = o(ε2(η)) as η → 0

the asymptotic relation (3.12) and the limit (3.13) imply that

lim
η→0

1

ε2(η)

(
uε(x)−W#

ε(η),(0,1)(x)
)

= 0 ∀x ∈ Ω, (3.14)

where

W#
ε(η),(0,1)(x) ≡ u0(x) + v0

(
x− ε1(η)p

ε1(η)ε2(η)

)
+ ε2(η)u#

0,1(x) + ε2(η) v#
0,1

(
x− ε1(η)p

ε1(η)ε2(η)

)
,

for all x ∈ Ωε(η). By (3.13) we deduce that

lim
η→0

1

ε2(η)

(
W#

ε(η),(0,1)(x)− u0(x)− v0
(
x− ε1(η)p

ε1(η)ε2(η)

))
= u#

0,1(x) ∀x ∈ Ω. (3.15)
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Then we observe that

lim
η→0

1

ε2(η)
v0

(
ς(x)− ε1(η)p

ε1(η)ε2(η)

)
= lim

η→0

ε1(η)

|ς(x)− ε1(η)p|
= 0 ∀x ∈ Ω \ {0}

(note that we cannot take x = 0 in this limit relation). Therefore we deduce by (1.7) and
(3.6) that

lim
η→0

1

ε2(η)

(
uε(η)(x)− u0(x)− v0

(
x− ε1(η)p

ε1(η)ε2(η)

))
= U0,1(x) ∀x ∈ Ω \ {0}. (3.16)

Now (3.14), (3.15), and (3.16) imply that u#
0,1(x) = U0,1(x) for all x ∈ Ω \ {0}. Since both u#

0,1

and U0,1 are continuous functions on Ω, it follows that

u#
0,1 = U0,1 on the whole of Ω.

Then by (1.7) we compute that

uε(η)(x)−W
#
ε(η),(0,1)(x) =− v0

(
ς(x)− ε1(η)p

ε1(η)ε2(η)

)
− ε2(η)v#

0,1

(
x− ε1(η)p

ε1(η)ε2(η)

)
+

∑
(i,j)>(0,1)

εi1(η)εj2(η)Ui,j(x)

+
∑

(i,j)≥(0,1)

εi1(η)εj2(η)Vi,j

(
x− ε1(η)p

ε1(η)ε2(η)

)

−
∑

(i,j)≥(0,1)

εi1(η)εj2(η)Vi,j

(
ς(x)− ε1(η)p

ε1(η)ε2(η)

)
∀x ∈ Ωε(η).

It follows that for x = 0 we have

uε(η)(0)−W#
ε(η),(0,1)(0) = −v0

(
− p

ε2(η)

)
+ ε2(η)v#

0,1

(
− p

ε2(η)

)
+ o(ε2(η)) as η → 0.

Then, by the membership of v#
0,1 in C0(R3 \ ω) and by equality v0(X) = 1/|X|, we have

lim
η→0

1

ε2(η)

(
uε(η)(0)−W#

ε(η),(0,1)(0)
)

= − 1

|p|
6= 0.

The latter limit relation contradicts (3.14) and the remark is proved.

To have v0(X) = 1/|X| as in Example 3.3 one may for instance consider the case where ω
is the unit ball in R3 and gi is identically equal to 1 and go = 0. However, in Example 3.3 the
condition that v0(X) = 1/|X| can be relaxed and replaced by the assumption that

lim
X→∞

|X|v0(X) 6= 0. (3.17)

One can show that limX→∞ |X|v0(X) = 0 if and only if v0 is given by a double layer potential,
that is

there is ψ ∈ C 1,α(∂ω) such that v0 = weSn [∂ω, ψ],
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or, equivalently, if and only if ∫
∂ω

nω · ∇v0 dσ = 0.

As a consequence, the set of the boundary data (gi, go) for which (3.17) holds is generic in
C 1,α(∂ω) × C 1,α(∂Ω), and, generically, we cannot expect to have approximations without
reflected fast variable terms.

4 The multi-scale asymptotic approach

Taking N = 0 in the approximation (1.8) we have

uε(x) = u0(x) + v0

(
x− ε1p

ε1ε2

)
− v0

(
ς(x)− ε1p

ε1ε2

)
+O(ε1 + ε2) as ε→ 0, (4.1)

and the coefficients u0 and v0 can be computed solving the boundary value problems (1.2)
and (1.4), respectively. Our aim in this section is to show how one can determine the next
coefficients of (1.8). Namely, the Ui,j ’s and Vi,j ’s with i+ j > 0.

One way to do it would be by exploiting the boundary integral form of problem (1.1)
(cf. [1]) to obtain an explicit expansion of the real analytic map M ≡ (M1,M2) and then
pass from integral representation in Lemma 3.1 to deduce the expressions for the Ui,j ’s and
Vi,j ’s. Similar computations have been presented in [6], [3], [4], and [5] in the context of other
perturbation problems.

In the present paper we opt for a different and probably more direct approach: we follow
the ideas of the multi-scale asymptotic expansions method of [2] and we aim at deriving
asymptotic approximations of the solution combining macroscopic scale expansions (that is,
away from the origin of Rn) and microscopic scale expansions (close to the origin of Rn).
Typically, this idea is realized through an iterative process where one corrects a misfit on the
outer boundary by means of a macroscopic term that will produce an error on the inclusion,
then one takes care of the new error on the inclusion adding a fast variable term that in turn
produces a new error on the outer boundary, and so on. If propertly formulated, the process
will produce a better approximation at every iterative step. In our specific problem the
process is complicated by the presence of the reflected fast variable terms (we have observed
in Example 3.3 that such terms cannot in general be omitted). In particular, every time that
we introduce a corrector in the fast variable, we have to add also its reflected counterpart.
Both terms will produce a misfit on the outer boundary, but in addition, the reflected fast
variable term will produce a new error on the inclusion. The resulting algorithm is described
in Subsection 4.2 here below, where we also present some explicit computations in the case
of dimension n = 3. Before that, we introduce in the following Subsection 4.1 some series
expansions that will be later exploited and we introduce the expansion operators EΩ and Eω.

4.1 Preliminary computations and notation

4.1.1 Some useful expansions

Expansions on ∂ωε for functions in C 1,α
h (Ω). If u ∈ C 1,α

h (Ω) has an analytic extension
in the neighborhood of 0 then the map which takes (%1, %2) to the function

∂ω 3 X 7→ u(%1p + %2X)
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is real analytic from a neighborhood of 0 to C 1,α(∂ω) (cf. Valent [15, Thm. 5.2, p. 44]).
Accordingly, there are coefficients uωi,j ∈ C 1,α(∂ω) such that

u(%1p + %2X) =
∑
i,j≥0

%i1%
j
2 u

ω
i,j(X),

where the series converges in C 1,α(∂ω) for %1 and %2 close to 0 (here and in what follows
we omit to indicate the dependence of the expansions’ coefficients on the vector p, that is
considered as fixed). Then, replacing %1 with ε1 and %2 with ε1ε2, we have

u(ε1p + ε1ε2X) =
∑
i,j≥0

εi1(ε1ε2)j uωi,j(X),

and, rearranging the sum, we obtain

u(ε1p + ε1ε2X) =
∑
i≥j≥0

εi1ε
j
2 [u]ωi,j(X). (4.2)

for certain coefficients [u]ωi,j ∈ C 1,α(∂ω). The first ones are:

[u]ω0,0(X) = u(0), [u]ω1,0(X) = ∇u(0) · p, [u]ω1,1(X) = ∇u(0) · X,

[u]ω2,0(X) =
1

2
D2u(0) · (p, p) , [u]ω2,1(X) = D2u(0) · (p,X) , [u]ω2,2(X) =

1

2
D2u(0) · (X,X) .

(4.3)

Expansions on ∂+Ω for rescaled functions in C 1,α
h (Rn \ ω). Now let v ∈ C 1,α

h (Rn \ ω)
and let v∗ denote the Kelvin transform of v, so that

v(X) = |X|2−n v∗
(

X

|X|2

)
∀X ∈ Rn \ ω. (4.4)

Since v is harmonic at infinity, v∗ has an harmonic (and hence analytic) extension in a
neighborhood of 0, which we still denote by v∗ (cf. Folland [7, p. 114]). Moreover, for x ∈ ∂+Ω,
we have

v

(
x− ε1p

ε1ε2

)
= |ε1ε2|n−2|x− ε1p|2−n v∗

(
ε1ε2

x− ε1p

|x− ε1p|2

)
.

Thanks to the fact that x ∈ ∂+Ω stays far away from 0, one can show that the map which
takes (%1, %2) to the function

∂+Ω 3 x 7→ |x− %1p|2−n v∗
(
%2

x− %1p

|x− %1p|2

)
is real analytic from a neighborhood of 0 in R2 to C 1,α(∂+Ω) (cf. Valent [15, Thm. 5.2, p. 44]).
As a consequence, there are coefficients vΩ

i,j ∈ C 1,α(∂+Ω) such that

v

(
x− %1p

%2

)
= %n−2

2

∑
i,j≥0

%i1%
j
2 v

Ω
i,j(x),
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for (%1, %2) > 0 small enough. Here the series converges in C 1,α(∂+Ω) for (%1, %2) in a neigh-
borhood of 0. Then, replacing %1 with ε1 and %2 with ε1ε2 and rearranging the sum, we find
that there are coefficients [v]Ωi,j ∈ C 1,α(∂+Ω) such that

v

(
x− ε1p

ε1ε2

)
=

∑
i≥j≥n−2

εi1ε
j
2 [v]Ωi,j(x), (4.5)

for ε > 0 small enough. Again, the series converges in C 1,α(∂+Ω) for ε in a suitable neigh-
borhood of 0. A similar argument holds with x ∈ ς(∂+Ω) instead of ∂+Ω, the key point of
the computation being that x stays in a compact manifold which does not contain 0. As a

consequence, we can find coefficients [v]
ς(Ω)
i,j ∈ C 1,α(ς(∂+Ω)) such that

v

(
ς(x)− ε1p

ε1ε2

)
=

∑
i≥j≥n−2

εi1ε
j
2 [v]

ς(Ω)
i,j (ς(x)), (4.6)

for ε > 0 small enough. One can also verify that the extension by 0 of the map

∂+Ω 3 x 7→ [v]Ωi,j(x)− [v]
ς(Ω)
i,j (ς(x))

belongs to C 1,α(∂Ω) for all i ≥ j ≥ n− 2.
Finally, we observe that a function v ∈ C 1,α

h (Rn\ω) can be written as the sum of homogeneous
harmonic functions vk of degree −k, for k ≥ n− 2. Namely, we have

v(X) =
∑

k≥n−2

vk(X) ∀X ∈ Rn \ ω. (4.7)

(This can be verified by introducing a sphere ∂B(0, R) in Rn \ ω and by considering the
decomposition of u|∂B(0,R) into spherical harmonics.) Then, we have

v

(
x− ε1p

ε1ε2

)
=
∑

k≥n−2

(ε1ε2)kvk(x− ε1p) ∀x ∈ ∂+Ω. (4.8)

Now, for each k ≥ n − 2 the map from a neighborhood of 0 in R to C 1,α(∂+Ω) which takes
ε1 to the function vk(· − ε1p) is real analytic. Accordingly, there is a sequence of coefficients
[vk]

Ω
h ∈ C 1,α(∂+Ω) such that

vk(x− ε1p) =
∑
h≥0

εh1 [vk]
Ω
h (x).

Then, comparing (4.5) with (4.8) we can express the coefficients [v]Ωi,j in terms of expansions
terms of the homogeneous harmonic functions vk. For example, for the first coefficient of
(4.5) we have

[v]Ωn−2,n−2(x) = vn−2(x) ∀x ∈ ∂+Ω.

A similar computation can be performed also for the coefficients of (4.6). The first one will
be

[v]
ς(Ω)
n−2,n−2(x) = vn−2(ς(x)) ∀x ∈ ∂+Ω.
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Expansions on ∂ωε for reflected rescaled functions in C 1,α
h (Rn\ω). In what follows, we

will also need to consider the expansion on ∂ωε of functions which are harmonic in Rn \ ς(ωε).
Namely, for v ∈ C 1,α

h (Rn \ ω), we consider the expansion of

v

(
ς(ε1p + ε1ε2X)− ε1p

ε1ε2

)
. (4.9)

We observe that
ς(ε1p + ε1ε2X)− ε1p

ε1ε2
=

1

ε2
(ς(p)− p + ε2ς(X)) . (4.10)

As a consequence, the argument of (4.9) depends only on ε2 and not on ε1. Moreover, by
(4.4) and (4.10) we deduce that

v

(
ς(ε1p + ε1ε2X)− ε1p

ε1ε2

)
= |ε2|n−2(ς(p)− p + ε2ς(X))2−n v∗

(
ε2

ς(p)− p + ε2ς(X)

|ς(p)− p + ε2ς(X)|2

)
.

Since v∗ is analytic in a neighborhood of 0 and ς(p)− p = −2pnen 6= 0, one verifies that the
map which takes ε2 to the function

∂ω 3 X 7→ (ς(p)− p + ε2ς(X))2−n v∗
(
ε2

ς(p)− p + ε2ς(X)

|ς(p)− p + ε2ς(X)|2

)
is real analytic from a neighborhood of 0 in R to C 1,α(∂ω). We deduce that there are coeffi-

cients [v]
ω,ς(ω)
j ∈ C 1,α(∂ω) such that

v

(
ς(ε1p + ε1ε2X)− ε1p

ε1ε2

)
=
∑
j≥n−2

εj2 [v]
ω,ς(ω)
j (X), (4.11)

for ε > 0 small enough. As for the [v]Ωi,j ’s and [v]
ς(Ω)
i,j ’s, also for the coefficients [v]

ω,ς(ω)
j we

can find expressions in terms of the homogeneous functions vk. Indeed, by (4.7) and (4.10)
we have

v

(
ς(ε1p + ε1ε2X)− ε1p

ε1ε2

)
=
∑

k≥n−2

εk2 vk(ς(p)− p + ε2ς(X)). (4.12)

Since ς(p) − p 6= 0 and the vk’s are analytic away from 0, we can take their Taylor series at

ς(p)−p and then compare (4.11) with (4.12) to obtain expressions for the [v]
ω,ς(ω)
j ’s. The first

one is
[v]

ω,ς(ω)
n−2 (X) = vn−2(ς(p)− p), ∀X ∈ ∂ω.

4.1.2 Extension operators

We will exploit the extension operators EΩ and Eω defined as follows: EΩ takes a function
φ ∈ C 1,α(∂Ω) to the unique solution u ∈ C 1,α

h (Ω) of the Dirichlet boundary value problem{
∆u = 0 in Ω,

u = φ on ∂Ω,
(4.13)
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and Eω takes a function ψ ∈ C 1,α(∂ω) to the unique solution v ∈ C 1,α
h (Rn \ω) of the exterior

Dirichlet boundary value problem
∆v = 0 in Rn \ ω,
v = ψ on ∂ω,

limX→∞ v(X) = 0.

(4.14)

4.2 The iterative procedure

We now describe an algorithm that produces a better approximation at every iteration. To
do so, we have to decide what we intend by ‘better approximation’. Indeed, when one has
only one perturbation parameter this is immediately evident: an error of order ε3 is better
than an error of order ε. With two parameters ε1 and ε2 the question is more complicated.
If we let the pair (ε1, ε2) tend to (0, 0) along a curve in R2, then a combination of ε1 and ε2

may or may not be smaller than another depending on the specific curve. For example, if we
take both ε1 = ε and ε2 = ε, then an error of order ε3

1ε2 would be better than an error of
order ε1ε

2
2, if instead ε1 = ε and ε2 = ε2, then it is the second error to be preferable. It seems

that there is not a unique canonical way to solve the problem. Then we have to introduce a
suitable convention. In this paper, we decide that an error of order εi1ε

j
2 is preferable to one

of order εk1ε
h
2 if i+ j > h+ k. In other words, we say that

an error in O

( ∑
i+j=M

εi1ε
j
2

)
is smaller than an error in O

( ∑
i+j=N

εi1ε
j
2

)
if M > N . (4.15)

An advantage of condition (4.15) is that the membership of an error in O(
∑

i+j=N ε
i
1ε
j
2)

is independent on the possible parametrization of (ε1, ε2) along a curve. However, for the
purpose of determining the coefficients Ui,j and Vi,j in the expansion, criteria (4.15) is as
good as any other one could take.

The algorithm. Suppose that we have already identified the coefficients of an approxima-
tion with a remainder in O(

∑
i+j=N ε

i
1ε
j
2). To determine the next coefficients we proceed as

follows:

Step 1. We consider the approximation that we have and we use the expansions (4.2), (4.5),
(4.6), and (4.11) to determine the principal parts of the misfits on ∂+Ω and ∂ωε. We note that
our procedure never gives errors on ∂0Ω. In other words, at any step all the approximations
will be exact on ∂0Ω. Then, there might be two different situations:

(a) The errors on ∂+Ω and ∂ωε are equivalent. That is, they are both in O(
∑

i+j=M εi1ε
j
2)

for some M ≥ N and neither one is in O(
∑

i+j=M+1 ε
i
1ε
j
2);

(b) The error on ∂ωε is bigger than the error on ∂+Ω. The error on ∂ωε can be generated
by the slow variable terms, as it happens in the classical applications of the multi-scale
expansion method, but also by the reflected fast variable terms.

In principle one may expect another case, that is, the case where the main error is on ∂+Ω.
However, the application of the present algorithm never generates such a situation (as we
shall also see in the iterations below).
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Step 2. Depending if we have case (a) or (b) in Step 1, we proceed with the following Step
2.(a) or Step 2.(b):

(a) If we have reached the desired precision, we stop here the iterative procedure, otherwise
we correct the main error on ∂+Ω. To do so, first we extend the misfit on ∂+Ω by 0 on
the whole of ∂Ω and then we exploit EΩ to construct a corrector. Adding such corrector
to the approximation that we already have generates a new error on ∂ωε;

(b) We correct the principal part of the error on ∂ωε. We construct correctors extending
the traces on ∂ωε by means of Eω. In view of Remark 3.3, for any new fast variable
term that we add to our approximation we must also add a corresponding reflected fast
variable term. This operation generates new errors on ∂+Ω and ∂ωε, but not on ∂0Ω
because the contribution of the fast variable term and of the reflected fast variable term
cancel one another on that part of the outer boundary.

When Step 2 is completed we go back to Step 1 and start over again, or, if we were in case
(a), we can decide to stop the iterative procedure. If we stop with an approximation that has
remainder in O(

∑
i+j=M εi1ε

j
2), then by Proposition 3.2 the coefficients of such approximation

must coincide with the coefficients Ui,j and Vi,j with i + j ≤ M − 1. As a consequence, we
will be able to identify all the coefficients Ui,j and Vi,j with i+ j ≤ M − 1 as the first terms
of the Taylor’s expansion of solutions of certain boundary value problems.

We now present an explicit computation. For the sake of simplicity in the exposition,
we confine ourselves to the 3-dimensional case (n = 3) and we stop the iteration with a
remainder of order 3, that is, in O(

∑
i+j=3 ε

i
1ε
j
2). Other dimensions can be studied and

further approximations can be obtained by a straightforward modification of what we do here
below.

First iteration

Step 1. In view of (4.1), we start with the approximation

u0,0(x) + v0,0

(
x− ε1p

ε1ε2

)
− v0,0

(
ς(x)− ε1p

ε1ε2

)
∀x ∈ Ωε, (4.16)

where u0,0 = u0 is the unique solution of (1.2) and v0,0 = v0 − go(0), with v0 as in (1.4)
(we modify v0 to have a function v0,0 that is harmonic at infinity). Since u0,0(x) = go(x) for
x ∈ ∂+Ω, the trace of (4.16) on ∂+Ω is given by

go(x) + v0,0

(
x− ε1p

ε1ε2

)
− v0,0

(
ς(x)− ε1p

ε1ε2

)
∀x ∈ ∂+Ω.

Then we have on ∂+Ω a misfit

v0,0

(
x− ε1p

ε1ε2

)
− v0,0

(
ς(x)− ε1p

ε1ε2

)
∀x ∈ ∂+Ω.

Using the expansions (4.5) and (4.6) one verifies that the principal part of the error on ∂+Ω
is given by

ε1ε2 [v0,0]Ω1,1(x)− ε1ε2 [v0,0]
ς(Ω)
1,1 (ς(x)) ∀x ∈ ∂+Ω. (4.17)
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We now pass to consider the error on ∂ωε. Since v0 = v0,0 + go(0) solves the boundary value
problem (1.4), the trace of (4.16) on ∂ωε is given by

u0,0(ε1p + ε1ε2X) + gi(X)− go(0) + v0,0

(
ς(ε1p + ε1ε2X)− ε1p

ε1ε2

)
∀X ∈ ∂ω.

Accordingly, we have on ∂ωε a misfit

u0,0(ε1p + ε1ε2X)− go(0) + v0,0

(
ς(ε1p + ε1ε2X)− ε1p

ε1ε2

)
∀X ∈ ∂ω.

By the expansion (4.2) the main contribution of u0,0(ε1p+ ε1ε2X) for ε1 and ε2 small is given
by [u0,0]ω0,0(X) = u0,0(0) = go(0) (see also (4.3)) and thus it is corrected by the term −go(0)
produced by v0,0(X). Then, one can exploit the expansions (4.2) and (4.11) to show that the
principal part of the error that remains on ∂ωε is given by

ε1 [u0,0]ω1,0(X)− ε2 [v0,0]
ω,ς(ω)
1 (X) ∀X ∈ ∂ω.

As one can see, the error on ∂ωε is bigger than the one on ∂+Ω computed in (4.17): we are
in case (b).

Step 2.(b). We proceed to correct the misfits on ∂ωε. To do so, we introduce the functions

v1,0(X) = −Eω
(
[u0,0]ω1,0

)
(X) and v0,1(X) = Eω

(
[v0,0]

ω,ς(ω)
1

)
(X) ∀X ∈ R3 \ ω. (4.18)

With these our next approximation is

u0,0(x) + v0,0

(
x− ε1p

ε1ε2

)
− v0,0

(
ς(x)− ε1p

ε1ε2

)
+ ε1v1,0

(
x− ε1p

ε1ε2

)
− ε1v1,0

(
ς(x)− ε1p

ε1ε2

)
+ ε2v0,1

(
x− ε1p

ε1ε2

)
− ε2v0,1

(
ς(x)− ε1p

ε1ε2

)
∀x ∈ Ωε. (4.19)

Second iteration

Step 1. With the approximation (4.19) the main error on ∂+Ω remains (4.17). Indeed,
one can exploit the expansions (4.5) and (4.6) to verify that the misfit produced on ∂+Ω by
the new correctors are in O(

∑
i+j=3 ε

i
1ε
j
2) and thus they are smaller than (4.17). Then, we

consider the trace of (4.19) on ∂ωε and exploit (4.2) and (4.11) to compute the principal part
of the misfit (the computation is similar to the one described in Step 1 of the first iteration).
We obtain

ε2
1 [u0,0]ω2,0(X)+ε1ε2 [u0,0]ω1,1(X)−ε2

2 [v0,0]
ω,ς(ω)
2 (X)−ε1ε2 [v1,0]

ω,ς(ω)
1 (X)−ε2

2 [v0,1]
ω,ς(ω)
1 (X) (4.20)

with X ∈ ∂ω. As one can see, the errors on ∂+Ω and ∂ωε are now equivalent. So, we are in
case (a).
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Step 2.(a). We can decide to stop here the iteration and content ourselves with a remainder
in O(

∑
i+j=2 ε

i
1ε
j
2), or we can proceed to correct the misfit (4.17) on ∂+Ω. We opt for the

second choice and we introduce the corrector

u1,1(x) = −EΩ

(
[v0,0]Ω1,1(·)− [v0,0]

ς(Ω)
1,1 (ς(·))

)
(x) (4.21)

where we understand that [v0,0]Ω1,1(·)− [v0,0]
ς(Ω)
1,1 (ς(·)) is extended by 0 on ∂0Ω. With this, our

next approximation is

u0,0(x) + ε1ε2 u1,1(x) + v0,0

(
x− ε1p

ε1ε2

)
− v0,0

(
ς(x)− ε1p

ε1ε2

)
+ ε1 v1,0

(
x− ε1p

ε1ε2

)
− ε1 v1,0

(
ς(x)− ε1p

ε1ε2

)
+ ε2 v0,1

(
x− ε1p

ε1ε2

)
− ε2 v0,1

(
ς(x)− ε1p

ε1ε2

)
∀x ∈ Ωε. (4.22)

Third iteration

Step 1. We now consider the trace of the approximation on ∂+Ω and use the expansions
(4.5) and (4.6) to compute the principal part of the misfit (see Step 1 of the first iteration).
Doing so, we verify that the main part of the error of (4.22) on ∂+Ω is given by

ε2
1ε2 [v0,0]Ω2,1(x) + ε2

1ε2 [v0,0]
ς(Ω)
2,1 (ς(x)) + ε2

1ε2 [v1,0]Ω1,1(x)

− ε2
1ε2 [v1,0]

ς(Ω)
1,1 (ς(x)) + ε1ε

2
2 [v0,1]Ω1,1(x)− ε1ε

2
2 [v0,1]

ς(Ω)
1,1 (ς(x)) ∀x ∈ ∂+Ω.

(4.23)

Instead, the main part of the error on ∂ωε is still given by (4.20). Indeed, u1,1(0) = 0 and
thus [u1,1]ω0,0 = 0. In view of the expansion (4.2), it follows that the main contribution of

ε1ε2 u1,1 on ∂ωε is ε2
1ε2[u1,1]ω1,0 which is smaller than (4.20). Then, we observe that the misfit

(4.20) on ∂ωε is bigger than the misfit (4.23) on ∂+Ω: we deduce that we are in case (b).

Step 2.(b). Accordingly, the next correctors will be

v2,0(X) = −Eω
(
[u0,0]ω2,0

)
(X),

v1,1(X) = −Eω
(

[u0,0]ω1,1 − [v1,0]
ω,ς(ω)
1

)
(X),

v0,2(X) = Eω

(
[v0,0]

ω,ς(ω)
2 + [v0,1]

ω,ς(ω)
1

)
(X)

(4.24)
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for X ∈ R3 \ ω, which yield the approximation

u0,0(x) + ε1ε2 u1,1(x) + v0,0

(
x− ε1p

ε1ε2

)
− v0,0

(
ς(x)− ε1p

ε1ε2

)
+ ε1 v1,0

(
x− ε1p

ε1ε2

)
− ε1 v1,0

(
ς(x)− ε1p

ε1ε2

)
+ ε2 v0,1

(
x− ε1p

ε1ε2

)
− ε2 v0,1

(
ς(x)− ε1p

ε1ε2

)
+ ε2

1 v2,0

(
x− ε1p

ε1ε2

)
− ε2

1 v2,0

(
ς(x)− ε1p

ε1ε2

)
+ ε1ε2 v1,1

(
x− ε1p

ε1ε2

)
− ε1ε2 v1,1

(
ς(x)− ε1p

ε1ε2

)
+ ε2

2 v0,2

(
x− ε1p

ε1ε2

)
− ε2

2 v0,2

(
ς(x)− ε1p

ε1ε2

)
∀x ∈ Ωε.

(4.25)

Fourth (and last) iteration

Step 1. With the approximation (4.25) the main error left on ∂+Ω is still given by (4.23), the
misfit produced on ∂+Ω by the corrector added in the third round is indeed in O(

∑
i+j=4 ε

i
1ε
j
2)

and it is smaller than (4.23). The main error on ∂ωε can be computed as in the previous
iterations and it is

ε3
1 [u0,0]ω3,0(X) + ε2

1ε2 [u0,0]ω2,1(X) + ε2
1ε2 [u1,1]ω1,0(X)− ε3

2 [v0,0]
ω,ς(ω)
3 (X)− ε1ε

2
2 [v1,0]

ω,ς(ω)
2 (X)

− ε3
2 [v0,1]

ω,ς(ω)
2 (X)− ε2

1ε2 [v2,0]
ω,ς(ω)
1 (X)− ε1ε

2
2 [v1,1]

ω,ς(ω)
1 (X)− ε3

2 [v0,2]
ω,ς(ω)
1 (X) ∀X ∈ ∂ωε.

Both the error on ∂+Ω and the one on ∂ωε are in O(
∑

i+j=3 ε
i
1ε
j
2) and we are in case (a).

Step 2.(a). We can decide to stop here the iterative procedure. We have obtained an ap-
proximation with a remainder in O(

∑
i+j=3 ε

i
1ε
j
2) and accordingly we can write and expression

for all the coefficients Ui,j and Vi,j with i+ j ≤ 2 (cf. Proposition 3.2). In particular, it holds
U1,0 = U0,1 = U2,0 = U0,2 = 0 and for all others we have Ui,j = ui,j and Vi,j = vi,j . Moreover,
since computing the extension operators EΩ on a function φ ∈ C 1,α(∂Ω) and Eω on a function
ψ ∈ C 1,α(∂ω) is equivalent to the solution of problems (4.13) and (4.14), respectively, the
computation of such coefficients Ui,j and Vi,j is reduced to the solution of the boundary value
problems corresponding to (4.18), (4.21), and (4.24).
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