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We consider a class of non-homogeneous Markov chains, that contains many natural examples. Next, using martingale methods, we establish some deviation and moment inequalities for separately Lipschitz functions of such a chain, under moment conditions on some dominating random variables.

Introduction

Concentration inequalities are essential tools for ensuring the validity of many statistical procedures; let us cite for instance [START_REF] Freund | Generalization bounds for averaged classifiers[END_REF] for classification problems, [START_REF] Massart | Concentration Inequalities and Model Selection[END_REF] for model selection, and [START_REF] Bickel | Simultaneous analysis of lasso and Dantzig selector[END_REF] for high dimensional procedures (see also [START_REF] Alquier | Sparsity considerations for dependent variables[END_REF] and [START_REF] Zhang | Gaussian approximation for high dimensional time series[END_REF] in a dependent framework).

These inequalities are not easy to prove in a dependent context; up to now this has been done under quite restrictive assumptions, and mainly for bounded functionals of the variables in a stationary/homogeneous context. As a non exhaustive list, let us quote [START_REF] Samson | Concentration of measure inequalities for Markov chains an φ-mixing processes[END_REF], [START_REF] Rio | Inégalités de Hoeffding pour les fonctions Lipschitziennes de suites dépendantes[END_REF], [START_REF] Djellout | Transportation cost-information inequalities and applications to random dynamical systems and diffusions[END_REF], [START_REF] Adamczak | A tail inequality for suprema of unbounded empirical processes with applications to Markov chains[END_REF], [START_REF] Dedecker | Deviation inequalities for separately Lipschitz functionals of iterated random functions[END_REF] and [START_REF] Dedecker | Subgaussian concentration inequalities for geometrically ergodic Markov chains[END_REF]. Among these references, the case of unbounded functionals has been investigated in [START_REF] Adamczak | A tail inequality for suprema of unbounded empirical processes with applications to Markov chains[END_REF] for geometrically ergodic Markov chains, and in [START_REF] Dedecker | Deviation inequalities for separately Lipschitz functionals of iterated random functions[END_REF] for iterated random functions satisfying a mean-contraction condition (see condition (2.8) below, with Fn = F ).

In the paper [START_REF] Dedecker | Deviation inequalities for separately Lipschitz functionals of iterated random functions[END_REF], the authors obtained very precise inequalities for Lipschitz functionals of the chain, by assuming moreover a Lipschitz condition on the function that generates the chain (see condition (2.9) below). However, this last condition is in fact quite restrictive, and does not hold for many natural models satisfying the mean-contraction property.

In the present paper we enlarge the class of Markov chains studied in [START_REF] Dedecker | Deviation inequalities for separately Lipschitz functionals of iterated random functions[END_REF], by considering non-homogeneous Markov chains obtained through composition of random functions (see the recursive mechanism (2.7) below), and by making no extra assumptions than the (uniform) meancontraction (2.8). As in [START_REF] Dedecker | Deviation inequalities for separately Lipschitz functionals of iterated random functions[END_REF], we shall use the decomposition of the functional of the chain in terms of martingale differences, as first introduced by Yurinskii [START_REF] Yurinskii | Exponential bounds for large deviations[END_REF]. This method is well adapted to the non-homogeneous Markov context, because it is intrinsically a non-stationary method. Following this approach, we obtain deviation and moment inequalities for separately Lipschitz functionals of the chain that are driven by the distribution of some dominating random variables.

The present article was conceived within the general framework of non stationary time series, which is now widely discussed in the context global warming [START_REF] Cox | Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model[END_REF]. Besides temperatures or ozone concentration, most of the real life phenomena present trends and periodicities. A first excellent view of those questions may be found in [START_REF] Brockwell | Time series: theory and methods[END_REF], but this is a linear view of time series analysis. It appears important to consider cases where the dynamic of the models itself is non time-homogeneous. For instance [START_REF] Dahlhaus | Towards a general theory for non-linear locally stationary processes[END_REF] and [START_REF] Bardet | Non-parametric estimation of time varying AR(1)-processes with local stationarity and periodicity[END_REF] provide different views for a more relevant dynamical approach including local stationarity and non-periodic features. The present paper aims at developing reasonable concentration and probability inequalities for non-homogeneous Markov chains able to model some of the above features.

Before going into further details, let us give a simple class of examples to which our results apply. We consider a generalized R k -valued auto-regressive processes

Xn = AnXn-1 + Bn , (1.1) 
where An is a random k × k matrix and Bn is an R k -valued random variable. Here εn = (An, Bn) are independent random variables, and (εn) n≥2 is independent of the initial random variable X1. 3), but does not fit within the framework of [START_REF] Dedecker | Deviation inequalities for separately Lipschitz functionals of iterated random functions[END_REF]; moreover, it has no reason to be mixing in the sense of Rosenblatt [START_REF] Rosenblatt | A central limit theorem and a strong mixing condition[END_REF] without further assumptions on the distribution of (εn) n≥2 . Recall that the chain Xn is non-homegeneous, since we do not assume here that the variables εn are iid.

Let now f : (R k ) n → R be a separately Lipschitz function, such that

|f (x1, x2, . . . , xn) -f (x 1 , x 2 , . . . , x n )| ≤ |x1 -x 1 | + • • • + |xn -x n | , (1.3) 
and let also

Sn = f (X1, . . . , Xn) -E[f (X1, . . . , Xn)].
For simplicity, let us consider the case where the chain starts at X1 = 0. Assuming that An p p := E[|An| p ] < ∞ and Bn p p := E[|Bn| p ] < ∞ for any n ≥ 2 and some p > 1, we infer from (2.11) (control of the L p -norm of the dominating variables H k (X k-1 , ε k ) defined in (2.10)) and Propositions 5.1 and 5.3 that

Sn p p ≤ C1(p, ρ) n k=3 X k-1 2 p A k 2 p + n k=2 B k 2 p 2 if p ≥ 2,
and

Sn p p ≤ C2(p, ρ) n k=3 X k-1 p p A k p p + n k=2 B k p p if p ∈ (1, 2),
for some constants C1(p, ρ), C2(p, ρ) depending only on (p, ρ). These inequalities are satisfactory, because if Xn = Bn for n ≥ 2 (case An = 0), we recover for p ≥ 2 the usual Marcinkiewicz-Zygmund inequalities (see [START_REF] Rio | Moment inequalities for sums of dependent random variables under projective condition[END_REF]) for Lp-norms of sums of independent random variables, and for p ∈ (1, 2) the usual von Bahr-Esseen inequalities (see [START_REF] Pinelis | Best possible bounds of the von Bahr-Esseen type[END_REF]). Note that, under the stronger condition than (1.2): sup n≥2 An p ≤ ρ (L p -contraction), and if sup n≥2 Bn p < ∞, we obtain that

Sn p = O( √ n) if p ≥ 2 and Sn p = n 1/p if p ∈ (1, 2)
, which is exactly what we could expect for L p -norms of partial sums in a quasi-stationary regime.

Under more restrictive conditions on (An, Bn) n≥2 , one can also obtain some semi-exponential bounds for the deviation of Sn. For the sake of simplicity, let us assume that sup n≥2 An ∞ ≤ ρ (uniform contraction) and that there exist κ > 0, α ∈ (0, 1) such that

sup k≥2 E exp κ|B k | 2α 1-α < ∞ . (1.4)
It is then easy to see that dominating variables H k (X k-1 , ε k ) defined in (2.10) also satisfy the uniform bound (1.4) (for the same α and a different κ, say κ ). Hence, it follows from Proposition 4.2 that

P (|Sn| ≥ nx) ≤ C(x) exp -Kx 2α n α , (1.5) 
for any x > 0, where the positive constant K depends only on (ρ, α, κ ), and

C(x) = 2 + c(α, ρ, κ ) 1 x 2α + 1 x 2 .
In particular, we obtain from (1.5) the following moderate deviation behavior: for any δ ∈ (1/2, 1], there exist a > 0 such that

P |Sn| ≥ n δ = O exp -an α(2δ-1)
.

(1.6)

Note that, for δ = 1, this is in accordance with the best possible rate for large deviation of sums of martingale differences (see Theorem 2.1 in [START_REF] Fan | Large deviation exponential inequalities for supermartingales[END_REF]).

Composition of random functions

Let (Ω, A, P) be a probability space. Let (X , d) and (Y, δ) be two complete separable metric spaces. Let (εi) i≥2 be a sequence of independent Y-valued random variables. Let X1 be a Xvalued random variable independent of (εi) i≥2 . We consider the Markov chain (Xi) i≥1 such that

Xn = Fn(Xn-1, εn), n ≥ 2, (2.7) 
where Fn : X × Y → X is such that

E d Fn(x, εn), Fn(x , εn) ≤ ρ d(x, x ) (2.8) 
for some constant ρ ∈ [0, 1) not depending on n.

In the paper [START_REF] Dedecker | Deviation inequalities for separately Lipschitz functionals of iterated random functions[END_REF], the authors studied a class of homogeneous Markov chains (that is, with Fn = F and (εi) i≥2 a sequence of i.i.d. random variables) satisfying (2.8) and the condition d(F (x, y), F (x, y )) ≤ C δ(y, y ) (2.9)

for some positive constant C. Under this additional constraint, they obtained very precise upper bounds for the deviation of separately Lipschitz functionals of the chain; this is possible, because in that case, the martingales differences M k from McDiarmid's decomposition are bounded by a function of ε k , which is then independent of the past σ-field of the chain. However, condition (2.9) is quite restrictive, and is not satisfied for many natural models (a short list of such models is presented below). In the present paper, we shall not assume that (2.9) is satisfied. In this more general setting, the dominating random variables are

H k (X k-1 , ε k ) where H k (x, y) = d(F k (x, y), F k (x, y ))Pε k (dy )
(2.10) (see Proposition 3.1 below). The main difference with [START_REF] Dedecker | Deviation inequalities for separately Lipschitz functionals of iterated random functions[END_REF] is that these dominating random variables are no longer independent from the past σ-field of the chain. Hence, the deviations bounds that we obtain are not as precise as in [START_REF] Dedecker | Deviation inequalities for separately Lipschitz functionals of iterated random functions[END_REF], but apply to a much larger class of (non homogeneous) Markov chains.

Remark 2.1. Note that if (2.8) holds for the distance d, then, for any α ∈ (0, 1], it also hold for the distance dα(x, y) = (d(x, y)) α with ρ α instead of ρ. This is elementary, but nevertheless important: it means that we can also obtain concentration inequalities for separately Lipschitz functions with respect to dα by controlling the behavior of H k,α (X k-1 , ε k ) (whose definition is as in (2.10) for the distance dα). Note that separately Lipschitz functions with respect to dα are less and less regular as α approaches 0.

Remark 2.2. Let us quote an error in the paper [START_REF] Dedecker | Deviation inequalities for separately Lipschitz functionals of iterated random functions[END_REF]. The inequality (1.4) of that paper gives an upper bound for the quantity E[H(d(Xn, x0))] when H is any increasing function from R + to R + . However this upper bound is not true in general under the assumption (1.2) of [START_REF] Dedecker | Deviation inequalities for separately Lipschitz functionals of iterated random functions[END_REF] (which is similar to our assumption (2.8)), but it holds under the much more restrictive assumption d(F (x, y), F (x , y)) ≤ ρ d(x, x ). The error comes from the fact that the first version of the paper [START_REF] Dedecker | Deviation inequalities for separately Lipschitz functionals of iterated random functions[END_REF] was written under this more restrictive assumption. Note that this wrong inequality was not used at any points in the proofs of the main results in [START_REF] Dedecker | Deviation inequalities for separately Lipschitz functionals of iterated random functions[END_REF], but only in Items 4 of Remarks 3.1 and 3.2 (which are therefore not correct).

Examples

In this subsection, we give a non exhaustive list of models satisfying condition (2.8), and we show how to control the moments of the dominating variables H k (X k-1 , ε k ) defined by (2.10). For the sake of simplicity, we shall only deal with the moments of order p of H k (X k-1 , ε k ), but similar computations may be done for exponential moments. We refer to [START_REF] Doukhan | On weak dependence conditions for Poisson autoregressions[END_REF] and [START_REF] Dahlhaus | Towards a general theory for non-linear locally stationary processes[END_REF] for more examples.

• ARCH-type models. For which

Fn(x, y) = M θn (x, y), with M θ (x, y) = a 2 x 2 + b 2 • y, θ = (a, b) .
Thus the non stationarity appears simply from changes in the parameter θn = (an, bn).

In that case (2.8) is satisfied for d(x, x ) = |x -x | provided sup n≥2 |an|E[|εn|] = ρ for some ρ < 1.
For these models

H k (X k-1 , ε k ) = a 2 k X 2 k-1 + b 2 k |ε k -y|Pε k (dy) ,
and the moments of order p of

H k (X k-1 , ε k ) satisfy H k (X k-1 , ε k ) p p ≤ 2 p-1 E a 2 k X 2 k-1 + b 2 k p/2 ε k p p , p ≥ 1.
Those models are easy to extend in an R k -valued framework. For instance, one can consider Xn = An(Xn-1) εn, where An • Switching models. Many analogous models can be provided with a switching, e.g. for the first ARCH-model, such a parametric model is given with

X = R, Y = R × {0, 1}, a parameter θ = (a, b, a , b ) ∈ R 4 and M θ (x, y) = y2 a 2 x 2 + b 2 • y1 + (1 -y2) a 2 x 2 + b 2 • y1 .
Here (εn) n≥2 is a sequence of independent random variables with values in R × {0, 1}. Using the notation εn = (ε

(1) n , ε (2) 
n ), we see that condition (2.8) is satisfied as soon as

sup n≥2 (1 -E[ε (2) n ])|an| + E[ε (2) n ]|a n | E[|ε (1) n |] = ρ
for some ρ < 1. Now, similar computations as for the first example lead to

H k (X k-1 , ε k ) p p ≤ 4 p-1 E a 2 k X 2 k-1 + b 2 k p/2 ε (1) k ε (2) k p p + 4 p-1 E a 2 k X 2 k-1 + b 2 k p/2 ε (1) k (1 -ε (2) k ) p p , p ≥ 1.
• Generalized R k -valued auto-regressive processes. We consider here the Model (1.1) presented in the introduction. Recall that An is a random k × k matrix and Bn is an R kvalued random variable. Here εn = (An, Bn) are independent random variables, and (εn) n≥2 is independent of the initial random variable X1. Model (1.1) is a composition of random functions as in (2.7), with

Fn(x, y) = F (x, y) = y1x + y2 .
Let | • | be a norm on R k , and let as usual |An| = sup |x|=1 |Anx|. The condition (2.8) is satisfied as soon as (1.2) holds.

For these models

H k (X k-1 , ε k ) ≤ |X k-1 | |A k -y|PA k (dy) + |B k -y|PB k (dy) ,
and the moments of order p of

H k (X k-1 , ε k ) satisfy H k (X k-1 , ε k ) p p ≤ 4 p-1 E [|X k-1 | p ] E [|A k | p ] + 4 p-1 E [|B k | p ] , p ≥ 1.
(2.11)

• INAR(1) type models. In this case, let y = (y0, y1, y2, . . . , yp, . . .) ∈ Y = N N and ε = (ε (0) , ε (1) , . . . , ε (p) , . . .), where (ε (1) , . . . , ε (p) , . . .) is a sequence of i.i.d. integer valued random variables. The function F is then given by

F (x, y) = y0 + 1 {x =0} x k=1 y k .
Here, (εn) n≥2 is an i.i.d. sequence distributed as ε. It is then easy to see that (2.8) is satisfied provided ρ = E[ε (1) ] < 1.

We shall now give some hints to control the moments of the dominating random variables

H k (X k-1 , ε k ).
Let εk be distributed as ε k and independent of (ε k , X k-1 ). We then have that

H k (X k-1 , ε k ) = E d(F k (X k-1 , ε k ), F k (X k-1 , εk )) X k-1 , ε k .
For the INAR(1) model, we have

H k (X k-1 , ε k ) = E (ε (0) k - ε(0) k ) + 1 {X k-1 =0} X k-1 i=1 (ε (i) k - ε(i) k ) X k-1 , ε k
By contraction, we get that

H k (X k-1 , ε k ) p p ≤ (ε (0) k - ε(0) k ) + 1 {X k-1 =0} X k-1 i=1 (ε (i) k - ε(i) k ) p p , p ≥ 1. 
For p ≥ 2, applying the Marcinkiewicz-Zygmund inequality given in [START_REF] Rio | Moment inequalities for sums of dependent random variables under projective condition[END_REF], we get that

H k (X k-1 , ε k ) p p ≤ 2 (p-2)/2 ε (0) -ε(0) p p + (p -1) p/2 2 (p-2)/2 E X p/2 k-1 ε (1) -ε(1) p p .
For p ∈ (1, 2), applying the von-Bahr Essen inequality given in [START_REF] Pinelis | Best possible bounds of the von Bahr-Esseen type[END_REF], we get that

H k (X k-1 , ε k ) p p ≤ ε (0) -ε(0) p p + 2 2-p E [X k-1 ] ε (1) -ε(1) p p .
Note that non-stationary variants of this model can be obtained by considering independent (but non i.i.d.) εn's, with the constraint: sup n≥2 E[ε For these models,

H k (X k-1 , ε k ) = E |ε(f k (X k-1 )) -ε k (f k (X k-1 ))| ε k , X k-1 ,
where ε is a unit Poisson process independent of (X k-1 , ε k ). By contraction, we get that

H k (X k-1 , ε k ) p p ≤ 2 p-1 ε k (f k (X k-1 )) p p = 2 p-1 E [Qp(f k (X k-1 ))] ,
where Qp(t) = ε(t) p p . Note that, when p is an integer, Qp denotes the Stirling polynomial defined through Stirling numbers (see the Lemma A-1 in [START_REF] Doukhan | On weak dependence conditions for Poisson autoregressions[END_REF] from [START_REF] Ferland | Integer-valued GARCH processes[END_REF]). For these models,

H k (X k-1 , ε k ) = aE |ε(f k (X k-1 )) -ε k (f k (X k-1 ))| ε k , X k-1 ,
where ε is a unit Poisson process independent of (X k-1 , ε k ). Hence, the moments of order p of H k (X k-1 , ε k ) can be controlled exactly as in the previous example.

3 Separately Lipschitz functions of X 1 , . . . , X n

Let f : X n → R be a separately Lipschitz function, such that

|f (x1, x2, . . . , xn) -f (x 1 , x 2 , . . . , x n )| ≤ d(x1, x 1 ) + • • • + d(xn, x n ) . (3.1) 
Let

Sn := f (X1, . . . , Xn) -E[f (X1, . . . , Xn)] . (3.2) 
We introduce the natural filtration of the chain, that is F0 = {∅, Ω} and for all k ∈ N * , F k = σ(X1, X2, . . . , X k ). Define

g k (X1, . . . , X k ) = E[f (X1, . . . , Xn)|F k ] (3.3) and M k = g k (X1, . . . , X k ) -g k-1 (X1, . . . , X k-1 ). (3.4) For all k ∈ [1, n -1], let S k := M1 + M2 + • • • + M k ,
and notice that, by the definition of M k 's, the functional Sn introduced in (3.2) satisfies

Sn = M1 + M2 + • • • + Mn.
Thus S k is a martingale adapted to the natural filtration F k . This representation appears in Yurinskii [START_REF] Yurinskii | Exponential bounds for large deviations[END_REF] and in p. 33 of the monograph by Milman and Schechtman [START_REF] Milman | Asymptotic Theory of Finite Dimensional Normed Spaces: Isometric inequalities in Riemaniann manifolds[END_REF]. In the setting of separately Lipschitz functions of independent random variables (i.e. when Xi = εi) it has been used by McDiarmid [START_REF] Mcdiarmid | On the method of bounded differences[END_REF] to get an exponential bound on tail probabilities P(Sn ≥ x), x ≥ 0.

The following Proposition, similar to Proposition 2.1 in [START_REF] Dedecker | Deviation inequalities for separately Lipschitz functionals of iterated random functions[END_REF], collects some interesting properties of the function g k and of the martingale difference M k . Proposition 3.1. For all k ∈ N and any ρ in [0, 1), denote

K k (ρ) = (1 -ρ k+1 )/(1 -ρ) = 1 + ρ + • • • + ρ k . Let (Xi
) i≥1 be a Markov chain satisfying (2.7) for some functions Fn satisfying (2.8). Let g k and M k be defined by (3.3) and (3.4) respectively.

1. The function g k is separately Lipschitz, and satisfies

g k (x1, x2, . . . , x k ) -g k (x 1 , x 2 , . . . , x k ) ≤ d(x1, x 1 ) + • • • + d(x k-1 , x k-1 ) + K n-k (ρ)d(x k , x k ) .
2. Denote by PX 1 and Pε k the distribution of X1 and the distribution of ε k respectively. Let GX 1 and H k be two functions defined as follows

GX 1 (x) = d(x, x )PX 1 (dx ) and H k (x, y) = d(F k (x, y), F k (x, y ))Pε k (dy ) .
Then, the martingale difference M k satisfies for some function C(x) ≥ 0 not depending on n, and let G k be the function defined by

|M1| ≤ Kn-1(ρ)GX 1 (X1) and |M k | ≤ K n-k (ρ)H k (X k-1 , ε k ), k ∈ [2, n].
G k (y) = δ(y, y )Pε k (dy ) for all k ∈ [2, n].
Then H k (x, y) ≤ C(x)G k (y) and, consequently,

|M k | ≤ K n-k (ρ)C(X k-1 )G k (ε k ) for all k ∈ [2, n].
Note that (3.5) is a non-uniform version of (2.9), which is satisfied for many examples (for instance the three first examples of Section 2). However, it seems quite difficult to check for INAR or GLM type models, while the moments of the dominating variables H k (X k-1 , ε k ) are easy to control for such models (see Section 2).

Proof. The first point will be proved by recurrence in the backward sense. For k = n, the result is obvious due to gn = f . Suppose it is true at step k, and let us prove it at step k -1. By definition

g k-1 (X1, . . . , X k-1 ) = E[g k (X1, . . . , X k )|F k-1 ] = g k (X k , . . . , X k-1 , F k (X k-1 , y))Pε k (dy) .
Then it is easy to see that

|g k-1 (x1, x2, . . . , x k-1 ) -g k-1 (x 1 , x 2 , . . . , x k-1 )| ≤ g k (x1, x2, . . . , F k (x k-1 , y)) -g k (x 1 , x 2 , . . . , F k (x k-1 , y)) Pε k (dy) . (3.6)
Now, by assumption and condition (2.8),

g k (x1, x2, . . . , F k (x k-1 , y)) -g k (x 1 , x 2 , . . . , F k (x k-1 , y)) Pε k (dy) ≤ d(x1, x 1 ) + • • • + d(x k-1 , x k-1 ) + K n-k (ρ) d(F k (x k-1 , y), F k (x k-1 , y))Pε k (dy) ≤ d(x1, x 1 ) + • • • + (1 + ρK n-k (ρ))d(x k-1 , x k-1 ) ≤ d(x1, x 1 ) + • • • + K n-k+1 (ρ)d(x k-1 , x k-1 ) . (3.7)
The point 1 follows from (3.6) and (3.7). Next, we prove the point 2. First notice that

|M1| = g1(X1) -g1(x)PX 1 (dx) ≤ Kn-1(ρ) d(X1, x)PX 1 (dx) = Kn-1(ρ)GX 1 (X1) .
Similarly, for all k ≥ 2,

|M k | = g k (X1, • • • , X k ) -E[g k (X1, • • • , X k )|F k-1 ] ≤ g k (X1, • • • , F k (X k-1 , ε k )) -g k (X1, • • • , F k (X k-1 , y)) Pε k (dy) ≤ K n-k (ρ) d(F k (X k-1 , ε k ), F k (X k-1 , y))Pε k (dy) = K n-k (ρ)H k (X k-1 , ε k ) .
This completes the proof of Proposition 3.1.

Deviation inequalities for the functional S n

Let (Xi) i≥1 be a Markov chain satisfying (2.7) for some functions Fn satisfying (2.8). In this section, we apply inequalities for martingales to bound up the deviation of the functional Sn defined by (3.2). Some of these inequalities are direct applications of known inequalities, and some deserve a short proof. Denote by S2,n = Sn -M1, and let an be a sequence of positive numbers. Then, for any x > 0,

P Sn ≥ anx ≤ P M1 ≥ anx/2 + P S2,n ≥ anx/2 ≤ P GX 1 (X1) ≥ anx 2Kn-1(ρ) + P S2,n ≥ anx/2 =: I1(an, x) + I2(an, x) , (4.1) 
and note that the same bound is valid for P(-Sn ≥ anx) by replacing the term I2(an, x) by Ĩ2(an, x) := P(-S2,n ≥ anx/2).

The term I1(an, x) will be most of the time negligible, and represents the direct influence of the initial distribution of the chain. For instance, when the chain starts from a point X1 = x1, then GX 1 (X1) = 0 and I1(an, x) = 0. The main difficulty is to give an upper bound for I2(an, x), which is the purpose of the present paper.

A first exponential bound

Under a sub-Gaussian type condition, we obtain the following proposition. Proposition 4.1. Assume that there exists a positive constant such that, for any integer k ≥ 2,

E H k (X k-1 , ε k ) l ≤ 1 2 l! l-2 (l -1) l/2 E H k (X k-1 , ε k ) 2 for all l ≥ 2. (4.2)
Then, for any x > 0,

P ± Sn ≥ xVn ≤ I1(Vn, x) + exp - (x/2) 2 1 + 1 + x Kn-2(ρ)/σn + x Kn-2(ρ)/2σn (4.3) ≤ I1(Vn, x) + exp - (x/2) 2 2 1 + x Kn-2(ρ)/2σn , (4.4) 
where

V 2 n = n k=2 K 2 n-k (ρ)E H k (X k-1 , ε k ) 2 and σ 2 n = 1 n V 2 n .
Remark 4.1. Let us give some comments on Proposition 4.1.

1. Condition (4.2) is in fact a sub-Gaussian condition. On can check that it is satisfied provided

inf k≥2 E H k (X k-1 , ε k ) 2 > 0 and sup k≥2 E exp c H k (X k-1 , ε k ) 2 < ∞
for some positive constant c not depending on k.

Assume that

E exp c GX 1 (X1) < ∞
for some positive constant c, and that

0 < lim inf n→∞ σn ≤ lim sup n→∞ σn < ∞.
Then, it follows from Proposition 4.1 that

P (±Sn ≥ n) = O exp -C √ n (4.5)
for some positive constant C.

Proof. By Taylor's expansion of e x and the fact that E[S2,n] = 0, we have, for all t ≥ 0,

E exp t S2,n √ n = 1 + ∞ k=2 t k k! E S2,n √ n k . (4.6)
Using Rio's inequality (see Theorem 2.1 of [START_REF] Rio | Moment inequalities for sums of dependent random variables under projective condition[END_REF]): for any p ≥ 2,

E[|S2,n| p ] 2/p ≤ (p -1) n i=2 E[|Mi| p ] 2/p , (4.7) 
we get, for all k ≥ 2,

E[|S2,n| k ] ≤ (k -1) k/2 n i=2 E[|Mi| k ] 2/k k/2 . (4.8)
Hence, by Hölder's inequality, inequality (4.8) implies that, for all k ≥ 2,

E[|S2,n| k ] ≤ (k -1) k/2 n k/2-1 n i=2 E[|Mi| k ]. (4.9)
Applying the last inequality to (4.6), we obtain

E exp t S2,n √ n ≤ 1 + ∞ k=2 t k k! (k -1) k/2 n -1 n i=2 E[|Mi| k ] . (4.10)
By points 2 of Proposition 3.1 and (4.2), we deduce that, for any integer i ≥ 2,

E[|Mi| l ] ≤ E[|Kn-i(ρ)Hi(Xi-1, εi)| l ] ≤ 1 2 l! (Kn-2(ρ) ) l-2 (l -1) l/2 E[(Kn-i(ρ)Hi(Xi-1, εi)) 2 ]
for all l ≥ 2.

Hence condition (4.2) implies that, for all 0 ≤ t < (Kn-2(ρ) ) -1 ,

E exp t S2,n √ n ≤ 1 + ∞ k=2 σ 2 n 2 t k (Kn-2(ρ) ) k-2 = 1 + t 2 σ 2 n 2 (1 -tKn-2(ρ) ) . ( 4 

.11)

By the inequality 1 + x ≤ e x , it follows that, for all 0 ≤ t < (Kn-2(ρ) ) -1 ,

E exp t S2,n √ n ≤ exp t 2 σ 2 n 2 (1 -tKn-2(ρ) ) .
Applying Markov's inequality, it is then easy to see that, for all 0 ≤ t < σn(Kn-2(ρ) ) -1 and x ≥ 0,

P (S2,n ≥ xVn/2) ≤ exp -tx/2 E exp t S2,n
Vn .

Hence

P (S2,n ≥ xVn/2) ≤ inf 0≤t<σn(K n-2 (ρ) ) -1 exp -tx/2 + t 2 2 (1 -t Kn-2(ρ) /σn) = exp - (x/2) 2 1 + 1 + xKn-2(ρ) /σn + xKn-2(ρ) /2σn
, which gives (4.3). Using the inequality 1 + xKn-2(ρ) /σn ≤ 1 + xKn-2(ρ) /2σn, we get (4.4) from (4.3).

Semi-exponential bounds

In the case where the variables H k (X k-1 , ε k ) have semi-exponential moments, the following proposition holds.

Proposition 4.2. Let α ∈ (0, 1). Assume that there exists a constant C1 such that, for any

integer k ≥ 2, E exp H k (X k-1 , ε k ) 2α 1-α ≤ C1. (4.12) 
Then, for any x > 0,

P (±Sn ≥ nx) ≤ I1(n, x) + C(α, x) exp - x 8Kn-2(ρ) 2α n α , (4.13) 
where

C(α, x) = 2 + 35C1 K 2α n-2 (ρ) x 2α 4 2-3α + 4K 2 n-2 (ρ) x 2 3(1 -α) 2α 
1-α α depends on n only through the term Kn-2(ρ).

Remark 4.2. Let us comment on inequality (4.13). Assume moreover that

E exp c GX 1 (X1) α ≤ C2, (4.14) 
for two positive constants c, C2. Then, it follows from (4.13) that

P (±Sn ≥ n) = O (exp {-Cn α }) , (4.15) 
for some positive constant C. This rate is in accordance with the best possible rate for large deviation of partial sums of martingales differences, as proved in Theorem 2.1 of [START_REF] Fan | Large deviation exponential inequalities for supermartingales[END_REF]. For partial sums of independent random variables, the rate (4.15) holds under weaker conditions on exponential moments, see Lanzinger and Stadtmüller [START_REF] Lanzinger | Maxima of increments of partial sums for certain subexponential distributions[END_REF].

Proof. From point 2 of Proposition 3.1 and condition (4.12), it is easy to see that, for any k ∈ [2, n],

E exp |K -1 n-2 (ρ)M k | 2α 1-α ≤ C1. (4.16) 
Applying Theorem 2.1 of Fan et al. [START_REF] Fan | Large deviation exponential inequalities for supermartingales[END_REF] to the martingale sequence (K -1 n-2 (ρ)M k , F k ) k=2,..,n , we get, for any x > 0,

I2(n, x) ≤ C(α, x) exp - x 8Kn-2(ρ) 2α n α . (4.17) 
Combining the inequalities (4.1) and (4.17), we obtain the desired inequality.

For the next proposition, let us introduce the random variables

L k (X k-1 ), where L k (x) = (H k (x, y)) 2 Pε k (dy) , (4.18) 
and note that

L k (X k-1 ) = E (H k (X k-1 , ε k )) 2 X k-1 .
According to Proposition 3.1, for any

k ≥ 2, E[M 2 k |F k-1 ] ≤ K n-k (ρ)L k (X k-1
). Proposition 4.3. Assume (3.5), and let α ∈ (0, 1). Assume that there exist two constants C1 and C2 such that, for any integer k ≥ 2, n ≥ 2,

E exp 1 n n k=2 L k (X k-1 ) α 1-α ≤ C1 (4.19) 
and

E exp H k (X k-1 , ε k ) α 1-α ≤ C2. (4.20) 
Then, for all x > 0, 

P (±Sn ≥ nx) ≤ I1(n, x) + exp - (xK -1 n-2 (ρ)/2) 1+α 2 1 + xK -1 n-2 (ρ)/6 n α + (C1 + nC2) exp -xK -1 n-2 (ρ)/2 α n α . ( 4 
P (±Sn ≥ n) = O (exp {-Cn α }) , (4.22) 
for some positive constant C. This rate is in accordance with the best possible rate for large deviation of partial sums of martingales differences, as proved in Corollary 2.3 of [START_REF] Fan | Large deviation exponential inequalities for supermartingales[END_REF]. Note that if α ∈ [1/2, 1), the condition (4. [START_REF] Fuk | Some probabilitic inequalties for martingales[END_REF]) is true provided that 

sup k≥2 E exp (L k (X k-1 )) α 1-α ≤ C1 . ( 4 
E exp |K -1 n-2 (ρ)M k | α 1-α ≤ C2. For any k ∈ [2, n], E |K -1 n-2 (ρ)M k | 2 F k-1 ≤ E K -1 n-2 (ρ)K n-k (ρ)H k (X k-1 , ε k ) 2 F k-1 ≤ E H k (X k-1 , ε k ) 2 F k-1 . (4.24) 
Thus

n k=2 E |K -1 n-2 (ρ)M k | 2 F k-1 ≤ n k=2 E H k (X k-1 , ε k ) 2 F k-1 = n k=2 L k (X k-1 ).
Using Theorem 2.2 of Fan et al. [START_REF] Fan | Large deviation exponential inequalities for supermartingales[END_REF], we have

P K -1 n-2 (ρ)S2,n ≥ nK -1 n-2 (ρ)x/2 and n k=2 L k (X k-1 ) ≤ nv 2 ≤ exp - (K -1 n-2 (ρ)x/2) 2 2 n α-1 v 2 + 1 3 (K -1 n-2 (ρ)x/2) 2-α n α + nC2 exp - x 2Kn-2(ρ) α n α .
From the last inequality, we deduce that

I2(n, x) ≤ exp - (K -1 n-2 (ρ)x/2) 2 2 n α-1 v 2 + 1 3 (K -1 n-2 (ρ)x/2) 2-α n α + nC2 exp - x 2Kn-2(ρ) α n α + P n k=2 L k (X k-1 ) > nv 2 .
Using the exponential Markov inequality and the condition (4.19), we get, for all v > 0,

P n k=2 L k (X k-1 ) > nv 2 ≤ C1 exp -v 2α 1-α . Taking v 2 = (xnK -1
n-2 (ρ)/2) (1-α)/2 , we have, for all x > 0,

I2(n, x) ≤ exp - (xK -1 n-2 (ρ)/2) 1+α 2 1 + xK -1 n-2 (ρ)/6 n α + (C1 + nC2) exp -xK -1 n-2 (ρ)/2 α n α .
Combining the last inequality and (4.1), we obtain the desired inequality.

Fuk-Nagaev type bound

We now consider the case where the random variables H k (X k-1 , ε k ), k ≥ 2, have only a weak moment of order p > 2. For any real-valued random variable Z and any p ≥ 1, define the weak moment of order p by Z p w,p = sup The following proposition is a Fuk-Nagaev type inequality (cf. Fuk [START_REF] Fuk | Some probabilitic inequalties for martingales[END_REF] and Nagaev [START_REF] Nagaev | Large deviations of sums of independent radom variables[END_REF]; see also Fan et al. [START_REF] Fan | Deviation inequalities for martingales with applications[END_REF] and Rio [START_REF] Rio | About the constant in the Fuk-Nagaev inequalities[END_REF] for martingales).

Proposition 4.4. Let p ≥ 2 and δ > 0, and consider the variables L k (X k-1 ) defined in (4.18).

Assume that there exist two constants C1 and C2 such that, for any integer k ≥ 2,

1 n n k=2 L k (X k-1 ) p+δ w,p+δ ≤ C1 (4.26) and H k (X k-1 , ε k ) p+δ w,p+δ ≤ C2. (4.27)
Then, for all x > 0, 1. If there exists a constant C3 such that

P (±Sn ≥ nx) ≤ I1(n, x) + exp - (K -1 n-2 (ρ)/2) 2 2 n -1/(p+δ) x -1 + 1 6 K -1 n-2 (ρ) (nx) δ/(p+δ) + C1 + C2 n p-1 x p . ( 4 
||GX 1 (X1)|| p-1 w,p-1 ≤ C3, (4.29) 
then, for any x > 0, 

I1(n, x) = P GX 1 (X1) ≥ nx 2Kn-1(ρ) ≤ (2Kn-1(ρ)) p-1 C3 (nx) p-1 . ( 4 
P (±Sn ≥ n) = O 1 n p-1 .
2. Assume moreover that Fn satisfies (3.5). Then, according to Remark 3.1, Proposition 4.4 remains valid when

H k (X k-1 , ε k ) is replaced by C(X k-1 )G k (ε k ). Since C(X k-1
) and G k (ε k ) are independent, we easily see that

L k (X k-1 ) ≤ (C(X k-1 )) 2 E (G k (ε k )) 2 and C(X k-1 )G k (ε k ) p+δ w,p+δ ≤ E C(X k-1 ) p+δ G k (ε k ) p+δ w,p+δ . (4.31) 
Thus 

if E C(X k-1 ) p+δ ≤ C3 and G k (ε k ) p+δ w,
= ξ1 + • • • + ξn and Z n = n k=1 E[ξ 2 k |G k-1 ].
Then, for all x, y, v > 0,

P Zn ≥ x and Z n ≤ v 2 ≤ exp - x 2 2(v 2 + 1 3 xy) + P max 1≤i≤n ξi > y .
By Lemma 4.1 and Markov's inequality, it follows that, for all x, y, v > 0,

P K -1 n-2 (ρ)S2,n ≥ nK -1 n-2 (ρ)x/2 and n k=2 L k (X k-1 ) ≤ nv 2 ≤ exp - (nK -1 n-2 (ρ)x/2) 2 2 nv 2 + 1 6 nK -1 n-2 (ρ)xy + P max 2≤i≤n K -1 n-2 (ρ)Mi ≥ y .
It is easy to see that, for all y > 0,

P max 2≤i≤n K -1 n-2 (ρ)Mi ≥ y ≤ n i=2 P K -1 n-2 (ρ)Mi ≥ y ≤ nC2y -(p+δ) ,
and that, for all v > 0,

P n k=2 L k (X k-1 ) > nv 2 ≤ C1v -2(p+δ) .
Thus, for all x, y, v > 0,

I2(n, x) ≤ exp - (nK -1 n-2 (ρ)x/2) 2 2 nv 2 + 1 6 nK -1 n-2 (ρ)xy + nC2 y p+δ + C1 v 2(p+δ) .
Taking y = (nx) p/(p+δ) and v 2(p+δ) = n p-1 x p in the last inequality, we obtain, for all x > 0,

I2(n, x) ≤ exp - (K -1 n-2 (ρ)/2) 2 2 n -1/(p+δ) x -1 + 1 6 K -1 n-2 (ρ) (nx) δ/(p+δ) + C1 + C2 n p-1 x p .
Combining the last inequality and (4.1), we obtain the desired inequality.

von Bahr-Esseen's inequality, weak form

We now consider the case where the variables GX 1 (X1) and H k (X k-1 , ε k ) have only a weak moment of order p ∈ (1, 2).

Proposition 4.5. Let p ∈ (1, 2). Assume that there exists positive constants A k (p) such that, for

any k ∈ [2, n], H k (X k-1 , ε k ) p w,p ≤ A k (p) . (4.32) 
Then, for any x > 0,

P(|Sn| ≥ x) ≤ 2I1(1, x) + 2 p CpBp(n, ρ) x p , (4.33) 
where 1. Contrary to the previous inequalities of Section 4, this inequality is truly non-stationary, in the sense that it is expressed in terms of the weak moments H k (X k-1 , ε k ) p w,p , without assuming a uniform bound (in k) on these moments. This will also be the case of the moment inequalities of Section 5. 

Cp = 4p p -1 + 8 2 -p and Bp(n, ρ) = n k=2 (K n-k (ρ)) p A k (p) .

Assume moreover that

Moment inequalities

In this section, we shall control the Lp-norm of the functional Sn, for p > 1. The upper bounds will be expressed in terms of the moments of order p of the dominating random variables H k (X k-1 , ε k ).

Let us emphasize that all the inequalities of these section are completely non-stationary, in the sense that we shall not assume a uniform bound (in k) on H k (X k-1 , ε k ) p p .

Marcinkiewicz-Zygmund type inequality

We assume in this subsection that the dominating random variables GX 1 (X1) and H k (X k-1 , ε k ) have a moment of order p ≥ 2. 

n k=2 K n-k (ρ) 2 E H k (X k-1 , ε k ) p 2 p ≤ Kn-1(ρ) 2 E GX 1 (X1) p 2 p + (p -1) n k=2 K n-k (ρ) 2 E H k (X k-1 , ε k ) p 2 p
≤ Ap(n, ρ), which gives the desired inequality.

  (x) is a k × k matrix and εn are R k -valued random variables. Let | • | be a norm on R k , and |A| = sup |x|=1 |Anx| be the associated matrix norm. Now, if |An(x) -An(x )| ≤ an|x -x |, then the condition (2.8) is satisfied as soon as sup n≥2 anE[|εn|] = ρ for some ρ < 1.

•

  GLM-GARCH Poisson models. One can give numerous extensions of the previous model. Keeping the same notations, one can consider fn : R + × N → R + , and Fn(x, y) = (fn(x), y(fn(x)), where x = (λ, z) ∈ R + × N. Let |x| = |λ| + a|z|. Then E[|Fn(x, ε) -Fn(x , εn)|] ≤ (1 + a)||fn(x) -fn(x )| , and (2.8) is true provided that |fn(x) -fn(x )| ≤ Ln|x -x | and sup n≥2 Ln(1 + a) = ρ for some ρ < 1.

Remark 3 . 1 .

 31 Assume moreover that Fn satisfies d(Fn(x, y), Fn(x, y )) ≤ C(x) δ(y, y ) (3.5)

. 28 ) 4 . 4 .

 2844 Remark Let us comment on Proposition 4.4.

Remark 4 . 5 .

 45 Let us comment on Proposition 4.5.

  Fn satisfies(3.5). Then, according to Remark 3.1, Proposition 4.4 remains true if condition (4.32) is replaced byC(X k-1 )G k (ε k ) p w,p ≤ A k (p) . (4.34)In particular, if eitherE [(C(X k-1 )) p ] ≤ A 1,k (p) and G k (ε k ) p w,p ≤ A 2,k (p) or E [(G k (ε k )) p ] ≤ A 1,k (p) and C(X k-1 ) p w,p ≤ A 2,k(p) , hold, then condition (4.34) is satisfied with A k (p) = A 1,k (p)A 2,k (p).

3 .From point 2 of

 32 Assume that GX 1 (X1) w,p-1 < ∞ and that Bp(n, ρ) = O(n), thenP (|Sn| ≥ n) = O 1 n p-1 .Proof. By Proposition 3.3 of Cuny et al.[START_REF] Cuny | Large and moderate deviations for the left random walk on GL d (R). ALEA[END_REF], we have, for any x > 0, P(|S2,n| ≥ x/2) Proposition 3.1 and condition (4.32), it follows that, for any k ∈[2, n], M k p w,p ≤ K n-k (ρ)H k (X k-1 , ε k ) p w,p ≤ (K n-k (ρ)) p A k (p). (4.36) Combining (4.35) and (4.36), we obtain the desired inequality.

Proposition 5 . 1 .Remark 5 . 1 . 2 E

 51512 Let p ≥ 2. Assume that there exist positive constants A k (p) such thatE GX 1 (X1) p ≤ A1(p), and for k ∈ [2, n] E H k (X k-1 , ε k ) p ≤ A k (p).(5.37)Then Sn p ≤ Ap(n, ρ) ,(5.38)where Ap(n, ρ) = Kn-1(ρ) 2 A1(p) 2/p + (p -1) Assume moreover that Fn satisfies (3.5). Then, according to Remark 3.1, inequality (5.38) remains true if the second condition of (5.37) is replaced byE [(C(X k-1 )) p ] E [(G k (ε k )) p ] ≤ A k (p) .(5.39)Proof. Applying Theorem 2.1 of Rio[START_REF] Rio | Moment inequalities for sums of dependent random variables under projective condition[END_REF], we get Sn 2 p ≤ M1 2 p + (p -1) GX 1 (X1)

p 2 p

 2 + (p -1)

  Let | • | be a norm on R k . Then, the Markov chain Xn satisfies the mean contraction condition (2.8) for the norm | • | as soon as

	sup	E[|An|] ≤ ρ for some ρ < 1,	(1.2)
	n≥2		

where as usual |An| = sup |x|=1 |Anx|.

Model (1.1) contains a lot of natural examples (see for instance

[START_REF] Diaconis | Iterated random functions[END_REF]

, Sections 2.2 and 2.

•

  GLM-Poisson models. Besides the standard ARCH-models the simplest case is that of Poisson ARCH-models, where (εn) n≥2 is a sequence of i.i.d. unit Poisson processes. Consider a sequence of functions fn : N → R

+ and set Fn(x, y) = y(fn(x)), where y : R + → N denotes a function. In that case, the condition (2.8) is satisfied if |fn(x) -fn(x )| ≤ ρ|x -x | for any n ≥ 2, any x, x ∈ N, and some ρ < 1.

  p+δ ≤ C4 , then condition (4.27) is satisfied with C2 = C3C4. Of course, the same computations may be done by interchanging C(X k-1 ) and G k (ε k ). Hence, if

	E G k (ε k )	p+δ ≤ C3 and	C(X k-1 ) p+δ w,p+δ ≤ C4 ,
	then condition (4.27) still holds with C2 = C3C4.	

Proof. To prove Proposition 4.4, we need the following inequality whose proof can be found in Fan et al.

[START_REF] Fan | Hoeffding's inequality for supermartingales[END_REF] 

(cf. Corollary 2.3 and Remark 2.1 therein). Lemma 4.1. Assume that (ξi, Gi) i≥1 are square integrable martingale differences, and let Zn

[START_REF] Adamczak | A tail inequality for suprema of unbounded empirical processes with applications to Markov chains[END_REF] n ] < 1.
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Rosenthal's inequality

Under the same assumptions as in the previous subsection, one can prove the following Rosenthaltype inequality. Proposition 5.2. Let p ≥ 2, and consider the variables L k (X k-1 ) defined in (4.18). If (5.37) holds, then there exists a constant Cp depending only on p such that

(5.40) Remark 5.2. Assume that Fn satisfies (3.5). Then, according to Remark 3.1, it follows from the proof of Proposition 5.2 that inequality (5.40) remains true if the second condition of (5.37) is replaced by (5.39). Proof. From point 2 of Proposition 3.1, it is easy to see that

and that

The desired inequality is then a direct consequence of Rosenthal's inequality for martingales (see for instance Theorem 2.12 of Hall and Heyde [START_REF] Hall | Martingale Limit Theory and its Applications[END_REF]).

von Bahr-Esseen's inequality

In this subsection, we assume that the dominating random variables GX 1 (X1) and where

(5.42)

Remark 5.3. Assume that Fn satisfies (3.5). Then, according to Remark 3.1, it follows from the proof of Proposition 5.3 that inequality (5.41) remains true if the second condition of (5.37) is replaced by (5.39) Proof. Using an improvement of the von Bahr-Esseen inequality (see inequality (1.11) in Pinelis [START_REF] Pinelis | Best possible bounds of the von Bahr-Esseen type[END_REF]), we have

where the constant Cp is described in Proposition 1.8 of Pinelis [START_REF] Pinelis | Best possible bounds of the von Bahr-Esseen type[END_REF], and is such that Cp ≤ 2