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Abstract

Abstract: A method called iTEKA, which stands for iterative time elastic kernel averaging,
was successfully used for averaging time series. In this paper, we adapt it to GPS trajectories.
The key contribution is a denoising procedure that includes an over-sampling scheme, the de-
tection and removal of outlier trajectories, a kernelized time elastic averaging method, and a
down-sampling as post-processing. The experiment carried out on benchmark datasets showed
that the proposed procedure is effective and outperforms straightforward methods based on
medoid or Euclidean averaging approaches.

1 Introduction

During the last decade, the development of navigational and geolocation systems and appli-
cations has experienced strong growth. For the associated services, such as human behavior
analysis, traffic modelization and prediction, smart city information services, geo-localized and
contextualized recommendation, etc., to be exploitable in urban areas, it is necessary to rely
on an up-to-date cartography. However, maintenance of road and pedestrian network maps re-
quires costly manual editing in time and money. This need has spawned a specific research theme
around the development of automated extraction algorithms of road network maps from GPS
trajectories Shi et al. (2009); Mariescu-Istodor and Fränti (2017, 2018). Global Position Sys-
tems (GPS) trajectories are easily and cheaply collected using consumer embedded equipment,
such as smart-phones. Unfortunately, they are in general noisy, mainly due to the sensitivity
of the GPS tracking system that is used, but also due to the fluctuation, or loss, of the signal
from the satellites. Consequently, in many places, such as in cities or mountain environments,
due to reflections, magnetic interferences or even tropospheric conditions or sun activities, GPS
trajectories can be erroneous (more than 10 m deviations) or characterized with missing data,
making them unsuited for applications without dedicated preprocessing.

When a single trajectory is at hand, Kalman filtering Welch and Bishop (1995) is usually
the classical approach used to clean up this kind of sequential data. When, instead of a single
trajectory, a set of trajectories can be considered, such as the random realization of a similar
path followed by a population of pedestrians or road vehicles, one can consider ensemble filtering
approaches such as ensemble Kalman filtering Evensen and van Leeuwen (2000) or variant of
particle filtering allowing to cope with historical data Panangadan and Talukder (2010).

Both Kalman and ensemble Kalman methods require jointly the estimation of a measurement
model and a dynamical model. However, the inference of these models are difficult to estimate
with accuracy, specifically when the noise is non-Gaussian, and, furthermore, the parameters of
the models may change with time and space, from one segment to the other.

In this article, we address the problem of cleaning sets of pedestrian or vehicle GPS tra-
jectories corresponding to a road segment without making any assumption on the noise or the
nonlinear dynamics underlying the movement of the tracked object. The cleaning procedure
that we present relies on an ensemble filtering algorithm for sets of trajectories mostly based on
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the notion of centroid defined for a subset of time series. It involves five steps, as depicted in
Figure 1:

1. an over-sampling of the trajectories such that they all share a higher sampling rate, namely
they are described with the same higher number of samples (Section 3.1);

2. a first extraction/estimation of a medoid/centroid for a subset of GPS trajectories (Sections
2.4 and 3.2);

3. anomaly (outlier) detection and removal (Section 3.2);

4. a second extraction/estimation of a medoid/centroid for a subset of GPS trajectories (Sec-
tions 2.4 and 3.2); and

5. a final down-sampling to reduce the sampling precision of the trajectories down to the
average sampling precision of the initial set of trajectories (Section 3.3).

Figure 1: Processing pipeline overview: The meta parameters ν (iTEKA averaging method) and
γ (soft-DTW averaging method) are defined, respectively, in Equations (5) and (8). The T meta
parameter is the length of the trajectories when they have been over-resampled during the pre-
processing step and is defined in Section 3.1. The τ parameter is a threshold involved to decide
whether a trajectory is an outlier and is defined in Section 3.2.
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This overall cleaning procedure was used during our experimentation to test comparatively
various methods from the state of the art. We evaluated: (i) four medoid methods based
on the Euclidean distance, the well-known dynamic time warp (DTW) measure Velichko and
Zagoruyko (1970); Sakoe and Chiba (1971), the soft version of DTW (soft-DTW, Cuturi and
Blondel (2017)) or a kernelization version of DTW (Krdtw, Marteau and Gibet (2014)); and (ii)
four centroid based methods, namely the Euclidean centroid Hausner (1965,1998), the DTW
Barycenter Averaging (DBA) centroid according to the method proposed in Petitjean et al.
(2014), the soft-DTW centroid developed by Cuturi and Blondel (2017) and the iterative Time
Elastic Kernelized Averaging proposed (iTEKA) in Marteau (2019).

Section 2 introduces the main concepts that are behind the DTW time elastic measure
and its kernalization. It also introduces the general purpose (iterative Time Elastic Kernel
Averaging (iTEKA) procedure that has been specifically developed to average sets of time
series. Section ?? addresses the averaging of sets of GPS trajectories. It details mostly the
preprocesing and postprocessing steps as well as the trajectory outlier detection and removal
stage. Section 4 presents an experimentation carried out in the context of the “Averaging GPS
segments Competition” (https://cs.uef.fi/sipu/segments/) Fränti and Mariescu-Istodor
(2019) proposed by University of Eastern Finland. A conclusion ends this study.

2 From Dynamic Time Warping to Time Elastic Kernels
Averaging

2.1 Dynamic Time Warping

Dynamic Time Warping (DTW) was introduced in Velichko and Zagoruyko (1970); Sakoe and
Chiba (1971) as a measure of similarity between time series. DTW similarity is the results of an
optimal alignment path π∗ between a pair of time series (originally speech waves) while locally
considering expansion or squeezing of the time line. An alignment path π of length |π| = m
between two time series x and x’ is defined as the sequence of m (max(|x|, |x′|) ≤ m ≤ |x|+ |x′|)
pairs of aligned time stamps:

π = [(π1(0), π2(0)), (π1(1), π2(1)), ..., (π1(m− 1), π2(m− 1))]

where (π1(k), π2(k)) means that xπ1(k) and x′π2(k)
are aligned. π1 and π2 obey the boundary

and monotonicity conditions as:

0 = π1(0) ≤ π1(1) ≤ ... ≤ π1(m− 1) = |x| − 1
0 = π2(0) ≤ π2(1) ≤ ... ≤ π2(m− 1) = |x′| − 1

and, ∀ l ∈ {0, ...,m− 1},

π1(l + 1) ≤ π1(l) + 1 and π2(l + 1) ≤ π2(l) + 1,

(π1(l + 1)− π1(l)) + (π2(l + 1)− π2(l)) ≥ 1

The eligible alignments paths are classically represented in a |x| × |x′| grid, as displayed in
Figure 2.
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Figure 2: Three possible alignments path (green, red, black) between time series x and x’.

Let A be the set of all possible alignments between two time series. The DTW similarity
measure between time series x and x’ is thus defined as:

dtw(x,x’) = min
π∈A

∑
(t,t′)∈π

ϕ(xt, x
′
t′) (1)

where ϕ : R× R→ R+ is a local distance measure (usually the Euclidean norm is used) on the
set of real numbers R.

2.2 Time Elastic Kernels

From the DTW formulation, several attempts have been made to build kernel measures more
suitable for machine learning purpose, in particular in the context of support vector machine.
Distance substituting kernels were first introduced Bahlmann et al. (2002); Shimodaira et al.
(2001), and, although such kernels are not definite positive, they have shown mixed success.

Later, the global alignment kernel was introduced Cuturi et al. (2007), which is, in most
practically encountered conditions, positive definite (Kga), and takes the following form:

Kga(x,x’) =
∑
π∈A

∏
(t,t′)∈π

κ(xt, x
′
t′) (2)

where κ(., .) = exp(−γ · ||., .||2) is a local kernel and A is the set of all admissible alignment
paths.

Marteau and Gibet (2014) proposed a general procedure to construct positive definite time
elastic kernels from general time elastic distances. In particular, Krdtw, based on the design of
a global alignment positive definite kernel for each single alignment path as given in Equation
(3), has been defined such as close to the DTW matching scheme.

Krdtw(x,x’) =
∑

π∈C⊂A
Kπ(x,x’) (3)

where this time C is any symmetric (in the sense that, if C contains an alignment path π, C also
contains the symmetric path of π) subset of the set of all admissible alignment paths A between
two time series, and Kπ(x,x’) is a positive definite kernel associated to the path π and defined
as:

Kπ(xi,xj) =
∏

(t,t′)∈π

κ(xt, x
′
t′) +

∏
(t,t′)∈π

κ(xt′ , x
′
t)

+
∏

(t,t′)∈π

κ(xt, x
′
t) +

∏
(t,t′)∈π

κ(xt′ , x
′
t′)

(4)
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with κ a local kernel on Rd. Typically, we use:

κ(a, b) = e−ν·||a−b||
2

with (a, b) ∈ R2, (5)

where ν is a meta parameter for this method.
Finally, soft-DTW Cuturi and Blondel (2017), written as dtwγ , was proposed to introduced a

fully differentiable formulation from DTW. The essential idea is to replace the “hard” minimum
operator by a “soft” expression that takes the following form with γ ≥ 0 (which is a meta
parameter for this method):

minγ{a1, ..., an} :=

{
mini≤nai, γ = 0,

−γ · log(
∑n
i=1 e

−ai/γ), γ > 0.
(6)

It is easy to show that there exists a direct relation between the global alignment kernel
Kga(., .) and the soft-DTW: dtwγ(., .) = −γ · log(Kga(., .)).

Soft-DTW is considered as a state-of-the-art method for averaging a set of time series. Hence,
in our experimentation, we evaluated it as a baseline method that we plugged into Steps 2 and
4 of our processing pipeline.

2.3 Time Elastic Averaging of a Set of Time Series

The multiple alignments problem has been widely studied in bioinformatics Fasman and L.
(1998). It is known to be a NP-complete problem Wang and Jiang (1994); Just and Just
(1999). Due to the “hardness” of this problem, heuristics have been proposed to provide centroid
estimates in a reasonable time.

Among others, an iterative heuristic approach was initially introduced by Hautamaki et al.
(2008) and popularized by Petitjean et al. (2011) who introduced the DTW Barycenter Aver-
aging (DBA) algorithm. The iterative procedure, which integrates three steps, is first initiated
by selecting a reference time series r, usually the medoid of the set S of time series that is to be
averaged. The best alignments for all the time series in S with r are evaluated during the second
step. In the third step, the reference is updated by averaging all the samples that are aligned
with the same sample of r. The two last steps are iterated until reaching a local minimum of
the summation of the DTW distances between the time series in S and r.

The soft-DTW Cuturi and Blondel (2017), which is fully differentiable in all of its arguments,
has also been used to evaluate a centroid estimate for a set S of time series. Basically, in this
case, the direct optimization problem can be solved using a gradient descent approach:

C = argminx

N∑
i=1

=
λi
mi

dtwγ(x, yi) (7)

where mi is the length of time series yi, λi is a normalized weight associated to yi (
∑
i λi = 1),

and C is the centroid we are seeking for. dtwγ(., .) is constructed by replacing in dtw the min
operator with a softmin operator that introduces the γ meta parameter:

minγ{a1, . . . , an} :=

{
mini≤n ai, γ = 0,

−γ log
∑n
i=1 e

−ai/γ , γ > 0.
(8)

These two time elastic averaging approaches (DBA and soft-DTW) constitute the state of
the art in the context of averaging a set of time series.

2.4 Kernelized Time Elastic Averaging of a Set of Time Series

The averaging algorithm that we used to average a set of GPS trajectories is based on a prob-
abilistic interpretation of the kernel alignment matrix (Equation (3)), as derived in Marteau
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(2019). This method is based on the recursive editing distance kernel, named REDK, which
instantiates as Krdtw when DTW is considered as the editing distance.

The principle behind this interpretation is as follows. If we consider a stochastic alignment
automata that, given two time series x and x’, provides alignment paths, π, according to a
probability distribution Pπ ≈ Kπ, then the cell (i, j) of the kernel alignment matrix (Figure
3, left) corresponds to the sum of the probabilities of the paths that allow aligning the sub
time series x0:i and x’0:j . The kernel alignment matrix can thus be understood as a forward
probability matrix.

Krdtw(x0:i,x’0:j) ≈
∑
π∈A

Pπ(x0:i,x’0:j) (9)

Similarly, if we consider the backward alignment process (Figure 3, right), the cell (i, j)
corresponds to the sum of the probabilities of the paths that allow aligning backwardly the sub
time series x|x|−1:i and x’|x′|−1:j .

Krdtw(x|x|−1:i,x’|x′|−1:j) ≈
∑
π∈A

Pπ(x|x|−1:i,x’|x′|−1:j)

Figure 3: The forward (left) and backward (right) alignment kernel matrices

Finally, if we consider the forward–backward FB alignment matrix, as depicted in Fig-
ure 4, the cell FB(i, j) = Krdtw(x0:i,x’0:j) · Krdtw(x|x|−1:i,x’|x′|−1:j) ≈

∑
π∈A

Pπ(x0:i,x’0:j) ·∑
π∈A

Pπ(x|x|−1:i,x’|x′|−1:j) represents the sum of the probabilities of all the global alignment

paths π that cross cell (i, j).
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Figure 4: The forward–backward alignment kernel matrix

The forward–backward alignment matrix allows for the estimation of the expectation of the
samples of x’ that are aligned with sample xt (given that xt is aligned) as well as the expectation
of time of occurrence, t′ of the samples of x’ that are aligned with xt as follows:

E(x′|xi) ∝
|x′|−1∑
j=0

x′j · FB(i,j)∑
j′ FB(i,j′)

E(t′|xi) ∝
|x′|−1∑
j=0

j · FB(i,j)∑
j′ FB(i,j′)

(10)

The expectation equations (Equation (10)) are at the basis of the procedure for averaging a
set X = {kx0:Tk

}k=1···N of time series.
Let r0:|r|−1 be a reference time series (r0:|r|−1) that can be initially setup as the medoid of

set X. The centroid estimate of X is defined as the pair (C, T ) where C is a time series of length
|r| and T is the sequence of time stamps associated to the samples of C

Ct = 1
N

N∑
k=1

E(kx|rt)

Tt = 1
N

N∑
k=1

E(kt|rt)
(11)

Equations (10) and (11) are at the basis of the iterative agglomerative algorithm, called
iTEKA (iterative Time Elastic Kernel Averaging), that provides a refinement of the centroid
estimation at each iteration until reaching a (local) optimum, as presented in Algorithm 1. This
algorithm was used, among other state-of-the-art averaging algorithms such as Soft-DTW, in
Steps 2 and 4 of the processing pipeline depicted in Figure 1.
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Algorithm 1 Iterative Time Elastic Kernel Averaging (iTEKA) of a set of time series.

1: Let K be a time elastic kernel for time series satisfying a probabilistic interpretation Equation

(9)

2: Let X be a set of time series of d dimensional samples

3: Let C0 be an initial centroid estimate (e.g., the medoid of X) of length n

4: Let T and T0 be two sequences of time stamps of length n initialized with zero values

5: Let MeanK0 = 0 and MeanK be two double values;

6: repeat

7: C = C0, T = T0, MeanK = MeanK0;

8: Evaluate C0 and T0 according to Equation (11) //Average similarity between C0 and elements

of X

9: MeanK0=
1
|X|

∑
x∈XK(C0,x)

10: until MeanK ≤MeanK0

11: (C, T ) is the centroid estimation

12: Finally, uniformly re-sample C using the time stamps T

An early version of iTEKA was first published on Arxiv site in 2015 Marteau (2015).

3 Averaging a Set of GPS Time Series
3.1 Preprocessing the GPS Trajectories

Given a set X of GPS trajectory corresponding all to the same street or road segment, the
averaging procedure presented previously cannot be used directly for several reasons:

• The street segment is not necessarily traveled in a single direction.

• The trajectories are traveled with variable speed, hence the trajectories are possibly not
sampled with the same level of detail or uniformly.

The first preprocessing step (Step 1 in Figure 1) consists in realigning the trajectories such
that they could be considered as being traveled in the same direction. If x0:n ∈ X, we denote
x̃ the reversed trajectory, basically x̃ = xn:0. The kernel defined in Equation (3) is used to
reorganize X.

This is achieved by selecting (randomly) one reference trajectory, x ∈ X and for all x’ ∈ X,
x’ 6= x, if Krdtw(x,x′) ≥ Krdtw(x, x̃’), x will remain unchanged, otherwise, x̃’ will replace x
within set X.

The second preprocessing step is to re-sample uniformly the trajectories in the set X so that
all trajectories contain the same number of samples, T . This is done using a linear interpolation
of the segments that compose the trajectory.

By the end of the preprocessing procedure, all trajectories within set X are supposed to be
traveled in the same direction and contain the same number of samples, T .

8



3.2 Averaging and Outliers Removal

The averaging is obtained using either medoid or centroid approaches, which corresponds to
Steps 2 and 4 in Figure 1. When iTEKA centroid (Algorithm 1) is selected, the medoid according
to the Krdtw measure is used to initiate the reference time series C0.

Once the centroid C of set X is obtained, the mean µC,X, and the variance, σC,X, of Log(Krdtw(C,x))
measure are evaluated, as x samples the elements of X.

For iTEKA approach, when σC,X > τ , the time series x such that

Zscore(x) =
Log(Krdtw(C,x))− µC,X

σC,X
≥ 0 (12)

are removed from the set X, as far as |X| ≥ 3. Here, τ is a threshold that we empirically set to 5.
Basically, all trajectories that are “log-distant” of at least one standard deviation are removed
if σC,X > 5, and are kept otherwise.

For all other methods, the Log(Krdtw) is replaced by the similarity measure that is used
instead. This corresponds to Step 3 of the procedure depicted in Figure 1.

Once the outliers have been removed from set X, if any, a second averaging procedure is
then carried out on the new set X’ initialized with the previous centroid estimation, C0 = C
(Step 4 in Figure 1). The final centroid estimation C associated to the initial set X of GPS
trajectories is finally provided by the averaging procedure depicted in Figure 1.

Figure 5 gives an example of this outlier removal procedure used during Step 3. Note that
this procedure does not guarantee that the centroid estimate would be closer to the ground
truth. Sometimes, once the outlier removal has been applied, the centroid estimate worsens
the assessment measure. However, at least on the training data, it brought on average some
assessment measure improvement.
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Figure 5: iTEKA centroid estimate (in red) before pruning (left) and after pruning (right). The
blue lines represent trained data, i.e. measured GPS trajectories corresponding to a street segment.
The x,y coordinates are latitude and longitude converted in UTM coordinates then normalized in
[0; 1].

3.3 Post-Processing of the Centroid Estimate

The final step (Step 5 of the processing pipeline presented in Figure 1) consists in downsampling
the centroid estimate C such that it contains the average number of samples that characterize
the initial set of trajectories. This is achieved using a polygonal curve approximation procedure,
as described in Marteau and Ménier (2009).
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4 Experimentation

The experimentation was carried out using the training dataset provided by the Averaging GPS
segments competition setup Fränti and Mariescu-Istodor (2019) at University of Eastern Finland
(https://cs.uef.fi/sipu/segments/). It consisted in estimating a cleaned GPS trajectory
segment given a set of GPS trajectories corresponding to the same segment. Only training data
corresponding to a set of road segments were delivered along with ground truth trajectory for
each considered road segments.

It is important to note that the assessment measure used to evaluate the competing ap-
proaches was not explicitly provided. However, on the training data, the challenge site makes
it possible to obtain the average value of the assessment measure obtained by a given method
by submitting the set of solution trajectories produced by this method. We show below that
this unknown assessment measure used to rank the competing methods is not strongly corre-
lated to a RMSE measure between an estimated trajectory and the corresponding ground truth
trajectory. The assessment measure (as we learned once the challenge was closed) is referred
to as HC-SIM, a hierarchical version of the C-SIM measures described in Mariescu-Istodor and
Fränti (2017). The C-SIM measure is based on the notion of grid which partition the 2D space
in contiguous cells of 25 m2. To compare two trajectories, the Jaccard index was evaluated by
performing the ratio of the common cells shared by the two trajectories with the union of the
cells traversed by the two trajectories. To avoid the effect of the discretization of the grid, the
trajectories were slightly dilated, which had the effect of enlarging a bit of the trajectories by
adding some of the adjacent cells. The HC-SIM (H for hierarchical) measurement was derived
from the C-SIM measure by varying the size of the cells and providing a weighted average as
output. The details of this measure have not yet been published by the authors. However, as
mentioned above, an evaluation program allowed producing the results presented below. The
HC-SIM measure gives a percentage of similarity between two trajectories (hence, it varies in
[0, 100%]).

We evaluated eight approaches: (i) four medoid based models, namely Euclidean, DTW,
Krdtw and soft-DTW with medoid; and (ii) four centroid based models, namely Euclidean,
DBA, soft-DTW and iTEKA centroid methods.

All approaches shares the T meta parameter, which defines the size of the resample trajecto-
ries. In addition, Krdtw, iTEKA as well as the soft-DTW medoid and centroid methods require
the set-up of two meta parameters, ν and γ, respectively, the bandwidth of the local kernel
parameter (Equation (4)) and T , the length of the trajectories, once they have been resampled
after the second preprocessing step.

For all methods, these meta parameters were varied for all training sets of trajectories si-
multaneously, such as maximizing the HC-SIM measure obtained by the centroid estimates.

We first selected ν and γ in the discrete set {.1,. 5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20} while T value was selected within {100, 200, 300}.

According to Figure 6, the meta parameters ν and T are correlated for the iTEKA algorithm.
On the training data, a simple grid search led to selecting ν = 6 and T = 200, which allowed
reaching a HC-SIM of 68.5%.

Similarly, according to Figure 7, the meta parameters γ and T are correlated for the soft-
DTW centroid. On the training data, a simple grid search led to selecting γ = 2 and T = 100,
which allowed reaching a HC-SIM score of 67.39%.
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Figure 6: HC-SIM (in %) of the iTEKA centroid estimate relative to the ground truth trajectory
when ν varies for T = 50, T = 100, 200 and 300.
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Figure 7: HC-SIM (in %) of the soft-DTW centroid estimate relative to the ground truth trajectory
when γ varies for T = 50, 100, 200 and 300.

Figures 6 and 7 show that over-sampling has an important impact on the HC-SIM measure
of the estimated centroids.

As stated above, the HC-SIM measure is not strongly correlated to the RMSE measure.
The correlation between RMSE and HC-SIM measures when varying γ parameter for soft-DTW
or ν for iTEKA is, respectively, −61% and +67%. This shows the difficulty of this challenge,
since the ground truth provided on the training data does not directly help to train the models.
Hence, selecting the minimum RMSE value would not lead to the best HC-SIM measure.

Table 1 synthesizes the results obtained by the eight tested methods. It turns out that
centroid based methods are much more accurate than the medoid ones. The averaging scheme
is thus quite important. One can notice that, on this benchmark characterized by small and
simple trajectories, the Euclidean averaging performed quite well, reaching a 67.15% HC-SIM
when outlier removal was considered. This is better than soft-DTW that obtained 66.93%. The
best method on this benchmark is iTEKA that reached 67.63% HC-SIM with outlier removal.
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Table 1: Best HC-SIM (in %) obtained with or without outlier removal for the eight tested methods.
The best obtained HC-SIM value are indicated in bold cases.
Method Without Outlier Removal With Proposed Outlier Removal

Euclidean Medoid Newling and Fleuret (2017) 60.90 60.49
DTW Medoid Annam et al. (2011) 63.16 63.16
Krdtw Medoid Marteau (2015) 61.20 61.20
soft-DTW Medoid Cuturi and Blondel (2017) 61.29 61.29

Euclidean Centroid Liberti et al. (2014) 67.28 67.54
DBA Centroid Petitjean and Gançarski (2012) 66.40 66.40
soft-DTW Centroid Cuturi and Blondel (2017) 67.47 67.39
iTEKA Centroid Marteau (2019) 68.21 68.28

However, with the absence of an analytical knowledge of the HC-SIM measure that is used,
we cannot provide confidence intervals or state whether these results are significant or not.

The final results of the challenge (http://cs.uef.fi/sipu/segments/results.html), as
provided by the organizers, are given in Table 2. When no post-processing was used, iTEKA
method ranks first (Method A), but, as shown in the last two columns of the table, the method
is slow and induces a spurious number of points in the averaged trajectory that is provided.
When reducing the number of points of the centroid trajectory, using the down-sampling post-
processing, the HC-SIM quality measure dropped, as shown for Method E that corresponds to
the processing pipeline presented in Figure 1 when iTEKA was used. The slight differences
in the results apparent in Tables 1 and 2 are probably due to a slight change in the HC-SIM
measure that produces differences in the selection of the meta parameters for the submitted
results.

Table 2: Challenge results as produced by the organizers: ranking of the competing methods
according to the HC-SIM measure (in %). The iTEKA method corresponds to methods A and E.

Rank Train Test Length Points Time

A 68.5% 62.2% 99% 9882% 30 min
B 67.1% 62.0% 99% 89% seconds
C 70.4% 61.8% 101% 83% seconds
D 68.0% 61.8% 99% 83% seconds
E 68.3% 61.7% 99% 145% 30 min
F 66.6% 61.5% 100% 70% seconds
G 67.4% 61.2% 100% 107% 10 min
H 66.6% 61.2% 102% 205% seconds
I 68.1% 60.9% 99% 67% seconds
DTW Medoid 57.3% 55.3% 98% 169% 1 h
CellNet 64.7% 61.2% 96.3% 144% seconds

Finally, Figure 8 presents the elapsed time in a logarithmic scale when T increases (the length
of the re-sampled trajectories) for the centroids approaches. The Euclidean centroid method is
clearly the most efficient one, as expected, followed by the iTEKA method that is significantly
faster than the soft-DTW centroid one. The least efficient method is clearly DBA. Indeed,
although all the tested algorithms were run on the same architecture and operating system,
the observed differences of processing efficiency may be due, at least partly, to difference in
the implementation choices. The medoid-based methods are more costly since their dependence
with the size of the set is quadratic, while it is linear for centroid-based methods.
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Figure 8: Elapsed processing time as the size of the re-sampled trajectories, T , varies (T ∈
{50, 100, 200, 300}).

5 Conclusions

We have described a procedure for cleaning noisy sets of GPS trajectories corresponding to road
segments. This procedure includes, in the first stage, an oversampling of the trajectories, prior
to the calculation of a centroid or the search for a medoid, which composes the second stage
of the procedure. It also includes, as a third stage, the detection and suppression of potential
outliers, which improves on average the HC-SIM measure for almost all centroid based methods.
A down-sampling finalizes the procedure to produce centroid/medoid estimates whose lengths
match the average length of the input trajectories.

The experiment allowed comparomg time elastic and Euclidean averaging approaches with
more straightforward medoid approaches.

Our experimentation showed that: (i) centroid based methods outperform medoid based
methods; (ii) the outlier detection and removal step improves on average the HC-SIM of final
centroid estimation, but not the HC-SIM of the medoid selection; and (iii) over-sampling seems
to also be a valuable step.

With the limited training data, it cannot be guaranteed that the comparative results pre-
sented here are effectively significant. However, it clearly emerged from our experimentation that
centroid-based approaches outperform medoid-based approaches. Furthermore, the algorithmic
complexity is clearly in favor to centroid-based approaches, since it is linear with the size of the
sets of trajectories that are processed, whereas it is quadratic for medoid-based approaches.

As a perspective, to improve the HC-SIM quality of the cleaned trajectory estimation, one
should consider the optimization of the meta parameters (T and τ essentially, as ν or γ may be
considered as a function of T ) on each segment of road (instead on the whole set of segments),
according to its topology. In that line of improvement, one should try first to clusterize the
GPS datasets according to the segment shapes, and then optimize for each cluster the meta
parameters.
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