A Solution of the P versus NP Problem FRANK VEGA, Joysonic, Serbia P versus NP is a major unsolved problem in computer science. It is considered by many to be the most important open problem in the field. It is one of the seven Millennium Prize Problems selected by the Clay Mathematics Institute. Another major complexity class is coNP. We show a problem that is in coNP. However, we prove this one cannot be solved in polynomial time. Hence, we demonstrate the separation from the classes P and coNP. In addition, this also shows the complexity class P is not equal to NP.

CCS Concepts: • Theory of computation → Complexity classes;

Additional Key Words and Phrases: P, NP, coNP, Maximum, Boolean circuit, Succinct version

OBJECTIVES

We prove coN P is not equal to P. Since P = N P implies that every coN P problem is in P, then we can deduce that P N P [START_REF] Papadimitriou | Computational Complexity[END_REF].

METHODS

The lower bound in finding a maximum into a collection with n positive integers is within n -1 comparisons [START_REF] Thomas | Introduction to Algorithms[END_REF]. We define a problem which is equivalent to this previous one, but the bit-length is exponentially more succinct than n [START_REF] Papadimitriou | Computational Complexity[END_REF]. Consequently, the problem should not be in P. We show this problem is in coN P. In this way, we prove P coN P and thus P N P [START_REF] Papadimitriou | Computational Complexity[END_REF].

FINDINGS

The biggest open question in theoretical computer science concerns the relationship between these classes: Is P equal to N P? In 2002, a poll of 100 researchers showed that 61 believed that the answer was no, 9 believed that the answer was yes, and 22 were unsure; 8 believed the question may be independent of the currently accepted axioms and so impossible to prove or disprove [START_REF] William | The P=?NP poll[END_REF]. All efforts to solve the P versus N P problem have failed [START_REF] Papadimitriou | Computational Complexity[END_REF]. In despite of this continuous effort of several researchers, we prove the complexity class P is not equal to N P.

This proof explains why after decades of studying the N P problems no one has been able to find a polynomial time algorithm for any of more than 300 important known NP-complete problems [START_REF] Goldreich | NP-Completeness: The Basics of Computational Complexity[END_REF]. Indeed, it shows in a formal way that many currently mathematically problems cannot be solved efficiently, so that the attention of researchers can be focused on partial solutions or solutions to other problems.

APPLICATION

Although this demonstration removes the practical computational benefits of a proof that P = N P, it proves that could be safe most of the existing cryptosystems [START_REF] Goldreich | NP-Completeness: The Basics of Computational Complexity[END_REF].

DEFINITIONS

Let Σ be a finite alphabet with at least two elements, and let Σ * be the set of finite strings over Σ [START_REF] Arora | Computational complexity: A modern approach[END_REF]. A Turing machine M has an associated input alphabet Σ [START_REF] Arora | Computational complexity: A modern approach[END_REF]. For each string w in Σ * there is a computation associated with M on input w [START_REF] Arora | Computational complexity: A modern approach[END_REF]. We say that M accepts w if this computation terminates in the accepting state, that is, M(w) = "yes" [START_REF] Arora | Computational complexity: A modern approach[END_REF]. Note that M fails to accept w either if this computation ends in the rejecting state, or if the computation fails to terminate [START_REF] Arora | Computational complexity: A modern approach[END_REF].

The language accepted by a Turing machine M, denoted L(M), has an associated alphabet Σ and is defined by

L(M) = {w ∈ Σ * : M(w) = "yes"}.
We denote by t M (w) the number of steps in the computation of M on input w [START_REF] Arora | Computational complexity: A modern approach[END_REF]. For n ∈ N we denote by T M (n) the worst case running time of M; that is

T M (n) = max {t M (w) : w ∈ Σ n }
where Σ n is the set of all strings over Σ of length n [START_REF] Arora | Computational complexity: A modern approach[END_REF]. We say that M runs in polynomial time if there exists k such that for all n, T M (n) ≤ n k +k [START_REF] Arora | Computational complexity: A modern approach[END_REF]. The notations we use to describe the asymptotic running time of an algorithm are defined in terms of functions whose domains are the set of natural numbers [START_REF] Thomas | Introduction to Algorithms[END_REF]. Such notations are convenient for describing the worst case running time function, which is usually defined only on integer input sizes [START_REF] Thomas | Introduction to Algorithms[END_REF]. For a given function д(n), we denote by

O(д(n)) the set of functions O(д(n)) = { f (n) : There exist positive constants c and n 0 such that 0 ≤ f (n) ≤ c × д(n) for all n ≥ n 0 }
where O-notation provides an asymptotic upper bound [START_REF] Thomas | Introduction to Algorithms[END_REF].

A language L is in class P if L = L(M) for some deterministic Turing machine M which runs in polynomial time [START_REF] Arora | Computational complexity: A modern approach[END_REF]. We state the complexity class N P using the following definition: A verifier for a language L is a deterministic Turing machine M, where L = {w : M(w, c) = "yes" for some string c}.

We measure the time of a verifier only in terms of the length of w, so a polynomial time verifier runs in polynomial time in the length of w [START_REF] Sipser | Introduction to the Theory of Computation[END_REF]. A verifier uses additional information, represented by the symbol c, to verify that a string w is a member of L. This information is called certificate. For polynomial time verifiers, the certificate is polynomially bounded by the length of w, because that is all the verifier can access in its time bound [START_REF] Sipser | Introduction to the Theory of Computation[END_REF]. N P is the class of languages that have polynomial time verifiers [START_REF] Sipser | Introduction to the Theory of Computation[END_REF]. If N P is the class of problems that have succinct certificates, then the complexity class coN P must contain those problems that have succinct disqualifications [START_REF] Papadimitriou | Computational Complexity[END_REF]. That is, a "no" instance of a problem in coN P possesses a short proof of its being a "no" instance [START_REF] Papadimitriou | Computational Complexity[END_REF].

For every n ∈ N a Boolean circuit C with n inputs and outputs, is a directed acyclic graph [START_REF] Arora | Computational complexity: A modern approach[END_REF]. It contains n nodes with no incoming edges; called the input nodes and n nodes with no outgoing edges, called the output nodes [START_REF] Arora | Computational complexity: A modern approach[END_REF]. All other nodes are called gates and are labeled with one of the logical operations OR, AND, and NOT [START_REF] Arora | Computational complexity: A modern approach[END_REF]. The OR and AND nodes have fanin (i.e., number of incoming edges) of 2 and the NOT nodes have fanin 1 [START_REF] Arora | Computational complexity: A modern approach[END_REF]. The size of C is the number of nodes in it [START_REF] Arora | Computational complexity: A modern approach[END_REF].

RESULTS

Definition 6.1. For some natural number n, every integer 1 ≤ i ≤ n could be evaluated by a function h such that h(i, n) is represented as a binary string of bit-length ⌈log n⌉ and h(i, n) and i consist in the same number. For example, for i = 3 and n = 32, then h(i, n) is represented as a binary string of bit-length 5 = ⌈log n⌉ as follows h(3, 32) = 00011: Note that the bit-length of 00011 is equal to 5. Definition 6.2. We define | . . . | as the function that counts the number of bits of any binary string. Note if there is a comma separator or a blank symbol that separates some binary strings, then these symbols are not taking into account in the function | . . . |.

How many comparisons are necessary to determine the maximum of a collection of n elements?

We can easily obtain an upper bound of n -1 comparisons: examine each element of the set in turn and keep track of the biggest element seen so far [START_REF] Thomas | Introduction to Algorithms[END_REF]. In the following Algorithm 1, we assume that the collection resides in the outputs of a Boolean circuit C with ⌈log n⌉ inputs and outputs [START_REF] Papadimitriou | Computational Complexity[END_REF]. This Boolean circuit receives as input some integer i between 1 and n over the binary string representation h(i, n) and outputs the i t h element of the collection on C(h(i, n)). In this work, this would mean for every integer i between 1 and n the evaluation C(h(i, n)) runs in a time bounded by the size of C which is at most ⌈log n⌉ c for a fixed and feasible natural number c. return max 12: end procedure Is this the best we can do? Yes, since we can obtain a lower bound of n -1 comparisons for the problem of determining the maximum [START_REF] Thomas | Introduction to Algorithms[END_REF]. Definition 6.3. SUCCINCT-MAXIMUM INSTANCE: A natural number n, a positive integer x represented as a binary string of bit-length ⌈log n⌉ and a Boolean circuit C with ⌈log n⌉ inputs and outputs such that the size of C is lesser than or equal to ⌈log n⌉ c for a fixed and feasible natural number c. The Boolean circuit C on every input h(i, n), for the integer 1 ≤ i ≤ n, outputs a binary string of bit-length ⌈log n⌉. For example, for i = 3 and n = 32, where h(i, n) is represented as the binary string 00011, then the evaluation of C on h(i, n) could output the binary string y = 00010 (denoted C(h(i, n)) = y) which is the number 2 represented as a binary string of bit-length 5 = ⌈log n⌉. The evaluation of C on every input h(i, n) for the integer 1 ≤ i ≤ n runs in a time bounded by the size of C which is at most ⌈log n⌉ c for the fixed and feasible natural number c.

Algorithm 1 MAX IMU M's Algorithm

QUESTION: Is x the maximum number in the collection of outputs from C with the inputs h(i, n) for each integer 1 ≤ i ≤ n? Theorem 6.4. SUCCINCT-MAXIMUM ∈ coN P.

Proof. Certainly, we can check in polynomial time a disqualification from an instance (n, x, C) of this language, that is a binary string h(i, n) for some integer 1 ≤ i ≤ n. Indeed, we can check in polynomial time whether the evaluation of C on h(i, n) outputs some string y when C(h(i, n)) = y such that y complies with y > x. We can polynomially make the verification when (n, x, C) is a "no" instance of the problem SUCCINCT-MAXIMUM, because the evaluation of C on the disqualification h(i, n) could be done in polynomial time as well. Actually, the evaluation of C on the disqualification h(i, n) could be done in polynomial time, because the size of C should not exceed the amount of ⌈log n⌉ c and the input h(i, n) is a binary string of bit-length ⌈log n⌉ where c is a fixed natural number for all the instances of SUCCINCT-MAXIMUM. In addition, this is a succinct disqualification since h(i, n) is polynomially bounded by the corresponding instance bit-length. Theorem 6.5. SUCCINCT-MAXIMUM P.

Proof. We need to compare the bit-length of the binary string representation of x with ⌈log n⌉. This is one comparison. In general, the number of comparisons that should do every algorithm which decides the language SUCCINCT-MAXIMUM is greater than n -1. The reason is because we need to check that x is the maximum in the collection of the outputs from C with the inputs h(i, n) for each integer 1 ≤ i ≤ n.

Indeed, how many comparisons are necessary to determine whether a positive integer x is the maximum of a collection of n positive integers? We can easily obtain an upper bound of n comparisons: examine each element of the collection in turn and keep track of the biggest element seen so far and finally, we compare the ultimate result with x. In the following Algorithm 2, we describe a simple algorithm that uses the previous Algorithm 1. We can obtain a lower bound of n -1 comparisons for the problem of determining the maximum and one another comparison to check whether this is equal to x [START_REF] Thomas | Introduction to Algorithms[END_REF]. Is this the best amount of comparisons we can do? Yes, think of any algorithm that determines the maximum as a tournament among the elements [START_REF] Thomas | Introduction to Algorithms[END_REF]. Each comparison is a match in the tournament in which the bigger of the two elements wins [START_REF] Thomas | Introduction to Algorithms[END_REF]. The key observation is that every element except the winner must lose at least one match [START_REF] Thomas | Introduction to Algorithms[END_REF]. Finally, we compare the winner with x [START_REF] Thomas | Introduction to Algorithms[END_REF]. Hence, n comparisons are necessary to determine whether x is the maximum of a collection of positive integers, and the algorithm SUCCINCT-MAXIMUM is optimal with respect to the number of comparisons performed to find the maximum [START_REF] Thomas | Introduction to Algorithms[END_REF]. Consequently, SUCCINCT-MAXIMUM cannot be decided in less than n steps, where n is the natural number of the input. Actually, if we sum the total amount of comparisons in Algorithm 2, then this is equal to n + 1. If the instance (n, x, C) belongs to SUCCINCT-MAXIMUM, then the bit-length of the binary representation of (n, x, C) is polynomially bounded by 3 × ⌈log n⌉ c since |n| ≤ ⌈log n⌉, |x | = ⌈log n⌉ and the size of C is lesser than or equal to ⌈log n⌉ c . As we see above, we should use no less than n comparisons to know whether the instance (n, x, C) is an element of SUCCINCT-MAXIMUM. Hence, we cannot always accept every instance (n, x, C) of SUCCINCT-MAXIMUM by the Boolean circuit C in a running time O(|n, x, C | k) for some fixed constant k > 0 that we could choose. The reason is because there is not a fixed constant k > 0 such that |n, x, C | k ≥ n for every value of n, where n is the natural number of the input. Certainly, n is exponentially greater than 3 × ⌈log n⌉ c , therefore there is not a fixed constant k > 0 such that (3 × ⌈log n⌉) c×k ≥ n for every value of the natural number n when c is a fixed and feasible natural number. Hence, SUCCINCT-MAXIMUM P. Theorem 6.6. P N P.

Proof. According to Theorems 6.4 and 6.5, there is a problem in coN P which is not in P. This is sufficient to prove the complexity class coN P is not equal to P. In addition, if P = N P then P = coN P since the class P is closed under complement [START_REF] Papadimitriou | Computational Complexity[END_REF]. By contraposition, we obtain P N P and thus the proof is completed.

1 : 4 :

 14 procedure MAXIMUM(n, C) for i ← 2 to n do 5: /*When the output C(h(i, n)) is greater than max*/ 6: if max < C(h(i, n)) then 7: /*Update the new value of max*/ 8: max ← C(h(i, n))

Algorithm 2

 2 SUCCINCT-MAXIMUM's Algorithm 1: procedure SUCCINCT-MAXIMUM(n, x, C) 2:/*Compare the bit-length of x with ⌈log n⌉*/ the number x is equal to the maximum*

Author's address: Frank Vega, Joysonic, Uzun Mirkova 5, Belgrade, 11000, Serbia, vega.frank@gmail.com.July 2019.