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Abstract

High mountain lakes are a network of sentinels, sensitive to any events occurring within their

waterbodies, their surrounding catchment and their airshed. In this paper, we investigate how

catchments impact the taxonomic and functional composition of phytoplankton communities

in high mountain lakes, and how this impact  varies according to the atmospheric nutrient

deposition  regime.  For  two  years,  we  sampled  the  post  snow-melt  and  the  late  summer

phytoplankton, with a set of biotic and abiotic parameters, in six French alpine lakes with

differing catchments (size and vegetation cover) and contrasting nitrogen (N) and phosphorus

(P) deposition regimes. Whatever the nutrient deposition regime, we found that the lakes with

the  smallest  rocky  catchments  showed  the  lowest  functional  richness  of  phytoplankton

communities.  The  lakes  with  larger  vegetated  catchments  were  characterized  by  the

coexistence  of  phytoplankton  taxa  with  more  diverse  strategies  in  the  acquisition  and

utilization  of  nutrient  resources.  The nutrient  deposition  regime  appeared  to  interact  with

catchment  characteristics  in  determining  which  functional  groups  ultimately  developed  in

lakes.  Photoautotroph  taxa  dominated  the  phytoplankton  assemblages  under  high  NP

deposition regime while mixotroph taxa were even more favored in lakes with large vegetated

catchments under low NP deposition regime. Phytoplankton functional changes were likely
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related to the leaching of terrestrial organic matter from catchments evidenced by analyses of

carbon  (δ13C) and nitrogen (δ15N) stable isotope ratios  in seston and zooplankton. Plankton

δ15N values indicated greater water–soil interaction in lakes with larger vegetated catchments,

while δ13C values indicated the effective mineralization of the organic matter in lakes. There

is even more reason to consider the role played by catchments when seeking to determine the

vulnerability of high altitude lakes to future changes, as catchments’ own properties will vary

under changes related to climate and airborne contaminants.
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1. Introduction

High altitude lakes are a network of sentinels, sensitive to any events occurring within

their  waterbodies,  their  surrounding  catchment  and  their  airshed  (Adrian et  al.,  2009;

Williamson et  al.,  2009).  Elevation  prevents  high mountain  lakes  from being exposed to

strong human pressure but increases their exposure to global anthropogenic changes. Over

most parts of Europe, 21st century climate change could considerably depend on elevation,

with warming amplified at high elevations as a result of decreasing snow-albedo feedback

(Kotlarski et al., 2012). Airborne contaminants emitted by human activities, such as nutrients,

metals  and  persistent  organic  pollutants,  have  been  found  to  be  transported  over  long

distances, intercepted by mountain ranges and finally drained to remote lakes  (Battarbee et

al., 2009). 

Predicting  ecological  trajectories  under  future changes  is  a  key challenge  for  both

scientists  and  conservation  managers.  Blenckner  (2005)  has  introduced  the  concept  of

environmental  filters,  according  to  which  each  lake  should  be  characterized  by  a  set  of

“Landscape filters” (e.g. geographic position; catchment characteristics; morphometry) and

“Internal  lake  filters”  (e.g. biotic  and  abiotic  interaction)  whose  interplay  determines  the

quality  and the strength of  the  climatic  signal  reaching the  lake.  If  predictions  are  to  be

refined,  it  is  vital  to  better  understand  how  characteristics  of  lakes  influence  biological

functioning of lakes and mediate their response to environmental changes. 

Phytoplankton  is  a  key  biological  compartment  in  lakes,  which  sustains

biogeochemical cycles and fuels the trophic webs. Catchments of lakes determine both the

quality and quantity of nutrients lakes receive, as catchments can be a source of terrestrial
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elements and can partially retain and transform the elements deposited from the atmosphere.

A large stable carbon pool in catchments usually increases the nitrogen (N) retention capacity

(Burns, 2004; Curtis et al., 2011; Kopacek et al., 2005) but decreases the phosphorus (P)

retention capacity due to the increased leaching of terrestrial organic matter (Kopacek et al.,

2011).  Phytoplankton composition  was shown to vary with catchment  characteristics  over

large geographical scale in the Alps (Tolotti et al., 2006; Tolotti et al., 2003). In these studies,

the vegetation cover interacted with N-atmospheric deposition and lake morphology (depth)

in  regulating  the  nutrient  conditions  and  the  taxonomic  composition  of  phytoplankton  in

lakes. However, the precise influence of catchments are far to be well understood in these

poorly allochtonous systems above the tree line (Rose et al., 2015). Furthermore, during the

last century, emissions of N and P related to human activity and/or to climate change greatly

altered  the modalities  of nutrient  limitation  in lakes.  Stronger N deposition rates led to a

switch  from  N-  to  P-limitation  of  phytoplankton  growth,  an  increase  in  phytoplankton

biomass, and a shift in phytoplankton composition toward more mesotrophic species in most

remote lakes of the northern hemisphere  (Bergstrom & Jansson, 2006; Elser et  al.,  2009;

Wolfe et al., 2003). Stronger P deposition rates coupled with warming was shown to affect

the trophic relationship between bacterioplankton and phytoplankton, the number of trophic

links toward higher trophic levels,  and thus the transfer of matter and energy through the

plankton food web (Camarero & Catalan, 2012; González-Olalla et al., 2018). As catchment

properties will continue to vary under global anthropogenic changes, it would be valuable to

better understand the underlying processes of catchment influence that drive phytoplankton

composition under different contexts of nutrient deposition regime. 

Under  climate  change,  phytoplankton  composition  should  be  more  predictable  in

terms of functional composition than taxonomic composition (Litchman et al., 2012). Ability

to grow, perennation mechanisms, and capacity to sustain biomass loss processes all depend

4



on  species-specific  functional  traits  under  selection  of  environmental  filters  and  species

interactions (McGill et al., 2006; Violle et al., 2007). Phytoplankton deploy diverse strategies

to gather and to exploit nutrient resources, involving trade-offs in morphological (e.g. size,

surface-to-volume ratios,  flagella)  and physiological  traits  (e.g. specific  growth rate,  half-

saturation constant, mixotrophy)  (Litchman & Klausmeier,  2008; Naselli-Flores & Barone,

2011; Reynolds, 1988). Functional classifications address the high diversity of potential traits

by  grouping  species  according  to  the  traits  that  best  determine  ecological  performance

(Salmaso et  al.,  2015).  The  phytosociological  work  by  Reynolds  set  a  milestone  in  the

application  of  functional  approaches  to  phytoplankton.  His  functional  groups (FG) define

species assembly with similar morphological and physiological traits, characterized by robust

ecological  affinities  (Reynolds et  al.,  2002).  Kruk et  al. (2011) developed a morphology-

based  functional  classification  (MBFC)  whose  effectiveness  in  capturing  phytoplankton

ecology is increasingly recognized (Kruk & Segura, 2012). More recently, Mitra et al. (2016)

proposed  an  interesting  revision  of  the  functional  classification  of  aquatic  protists  that

acknowledges  the  importance  of  mixotrophy.  The  study  of  phytoplankton  functionality

provides  valuable  insights  into  the  mechanisms  driving  the  structuring  of  phytoplankton

communities  in lakes.  Multiple  functional  classifications  can be used in a  complementary

approach, to explore how environmental conditions, including nutrient conditions, influence

phytoplankton communities in lakes.

In this  study, we investigate  how catchments  impact  the taxonomic and functional

composition  of  phytoplankton communities  in  high  mountain  lakes,  and how this  impact

varies according to the nutrient deposition regime. For two years, we sampled the post snow-

melt and the late summer phytoplankton with a set of biotic and abiotic parameters, in six

French alpine lakes with differing catchments (size and vegetation cover) and contrasting N

and P deposition regimes. As an increase in size and vegetation cover should increase the
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nutrient supply in lakes, our main hypothesis was that a larger catchment area would lead to a

shift in phytoplankton functional groups, with best competitors at a lower nutrient level in

lakes with small rocky catchments replaced by best competitors at a higher nutrient level in

lakes with large vegetated catchments. The objective was to compare such changes under both

nutrient deposition regime contexts, and to investigate the environmental parameters related

to  these  changes.  Ultimately,  our  study  provides  input  for  the  analysis  of  phytoplankton

ecology in high mountain lakes, shedding light on how catchment area may be a factor in

their vulnerability to global changes.

2. Material and methods

2.1. Study area, sampling, and data collection

The French Alps contains a wide range of glacially-formed waterbodies, with almost

130 lakes as defined by Rivier (1996) in the protected areas of Ecrins national park, Queyras

regional nature park and Mercantour national park, above the tree-line (1800 m < altitude <

2800 m). From the North-West to the South-East, the six French alpine lakes studied were

lake Pisses (PIS) in the Champsaur valley,  lake Cordes (COR) in the Fonts de Cervières

valley,  lake Egorgéou (EGO) in the Queyras  valley,  lake  Lauzanier  (LAU) in the Ubaye

valley, and lakes Fremamorte (FRE) and Trécolpas (TRE), both in the Vésubie valley (Fig.

1). 

The characteristics of these lakes are summarized in Table 1, divided geographically

into two areas with contrasting nutrient  deposition regimes.  Indeed, according to the data

from the European Monitoring and Evaluation Programme (EMEP) (Fagerli et al., 2015), the
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more northerly lakes PIS, COR, LAU and EGO were exposed to a lower average nitrogen

deposition rate (Area 1: 435 ± 14 to 666 ± 29 kg N km–2 yr–1) than the more southerly lakes

FRE and TRE (Area 2: 1123 ± 40 kg N km–2 yr–1) over the period 2000-2013. Furthermore,

lakes FRE and TRE are on the trajectory of enriched P-dust emitted from the Sahara Desert

and the semi-arid Sahelian region, conveyed at altitudes of between 1500 and 4000 m above

sea level (Moulin & Chiapello, 2004).

Within each area,  the lakes mainly differ in terms of catchment area,  which varies

from small rocky watersheds (21 ha in area 1 and 75 ha in area 2) to large watersheds with

more developed soils and meadows (686 ha in area 1 and 170 ha in area 2). Soil cover is

proportional to catchment area, and pasture practices are proportional to the soil cover. The

dominant lithology of the catchments differs according to valley: Sandstone, Shale, Schist,

Granite  and  Gneiss.  In  other  respects,  the  lakes  were  chosen  for  the  similarity  of  their

environmental and morphological characteristics.  All six lakes are situated at intermediary

elevations ranging from 2150 to 2500 m and are ice-covered from November to June. The

lakes are all small, with depth comprised between 7 and 9 m and lake area between 0.8 and 4

ha, and host fish populations.

The lakes were sampled twice over the ice-free periods in 2015 and 2016, after the

snowmelt (early summer = late June or early July) and at the end of the growing season (late

summer = September). The phytoplankton was sampled concurrently with a set of biotic and

abiotic  parameters  to  investigate  the  relationship  among  catchments,  lakes  properties  and

phytoplankton composition (physicochemical parameters,  chl a, nutrients,  and zooplankton

analyses). Two supplementary parameters were monitored for one year to further characterize

the  lakes  functioning  (C  and N  isotopic  analyses  and  heterotrophic  prokaryotic  plankton

analyses).   
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The samplings were made at the deepest point in the lakes. The depth of the aphotic

layer was estimated using a Secchi disk. Profiles of pH, temperature, dissolved oxygen (O2),

turbidity, conductivity and chl a were performed using an Exo2 multiparameter probe (YSI,

United  States).  Phytoplankton  and other  water  samples  were collected  using a  horizontal

sampler (Niskin Bottle) at 1 m above the bottom. Zooplankton samples were collected using a

plankton net of 50 µm mesh towed vertically from bottom to surface. All the samples were

processed in triplicate and were filtered,  fixed, and stored in appropriate containers in the

field, depending on the analyses to be performed in the laboratory. 

2.2. Phytoplankton analyses

Samples of phytoplankton were fixed in alkaline lugol solution (0.5 %) and stored in

250 mL HDPE bottles  at  + 4 °C. Phytoplankton was counted according to  the  Utermöhl

(1958) method  at  40-fold  magnification  under  an  inverted  microscope  (Olympus  IX  70)

(Lund, 1981). Phytoplankton abundances were calculated in algae units (unicell,  colony or

filament) per unit of volume (L). 

Phytoplankton  taxa  were  identified  at  100-fold  magnification  using  appropriate

taxonomic guides. They were classified in four ways: into taxonomic groups (TAX) based on

their main phylogenetic affiliations, into protist functional groups (PFG) based on their eco-

physiology,  i.e. photoautotrophs  lacking  phagotrophic  capacity  (PA)  and  constitutive

mixotrophs  (CM)  (Mitra et  al.,  2016),  into  morphology-based functional  groups (MBFG)

based on their morphological traits (Kruk et al., 2010), and into functional groups (FG) based

on their morphological, physiological, and ecological features (Padisak et al., 2009; Reynolds

et al., 2002). Where there was uncertainty concerning the assignment of FG groups (some

diatoms), we labeled the taxa as “unclassified” in the FG classification (UN group). 
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Two  α-diversity  indices  were  used  to  characterize  the  functional  structure  of

phytoplankton assemblages. For TAX, MBFG, and FG classifications, the richness index (S)

measured the number of groups identified, and the  Pielou (1974) index (J’) measured how

evenly algae units were distributed among the groups. 
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2.3. Biotic and abiotic parameters

2.3.1. Physicochemical parameters

Average physical and chemical properties of the water at 1 m above the lakes bottom

were extracted from the multiparameter profiles. Water temperature data were retrieved from

data loggers (HOBO, United States) already positioned at 1 m above the bottom in lakes,

measuring temperature hourly. Two metrics were calculated from these data: the temperature

averaged over a period of one week before the date of sampling (T) and the temperature

averaged over the summer (Ts, from June to September).

2.3.2. Chlorophyll a

Water samples for chl a analyses were filtered (1 L) through glass filters (Whatman

GF/C, 47 mm, 1.2 µm). The filters were placed in glass tubes filled with 10 mL of acetone

solution (90 %) for 24 h at + 4 °C, for Chla extraction. Chla concentration was measured

spectrophotometrically (Jasco, V-630) by the  Lorenzen (1967) method, with correction for

pheophytin interference by acidification. 

2.3.3. Nutrients (C, N, P, and Si)

Water samples for nutrient analyses were filtered (1 L) through precombusted (+ 450

°C, 4 h) glass filters (Whatman GF/F, 25 mm, 0.7 μm). The first filtered fraction was stored inm). The first filtered fraction was stored in

125 mL HDPE bottles and frozen (- 18 °C) for later analysis of dissolved inorganic nitrogen

(DIN = NH4
+ + NO2

- + NO3
-), soluble reactive phosphorus (SRP = PO4

3-) and silica (SiO2)

10



concentrations  by  ionic  chromatography  (Metrohm,  930  Compact  IC  Flex).  The  second

filtered fraction was stored in 24 mL precombusted (+ 450 °C, 4h) glass tubes (Wheaton

equipped with Teflon/silicone septa) and preserved with 25 µL of Sodium Azide solution (1

M NaN3)  at  +  4 °C for  later  analysis  of dissolved inorganic  carbon (DIC) and dissolved

organic  carbon  (DOC)  concentrations  using  a  TOC-VCSH  analyzer  (Shimadzu,  TOC-V)

(Louis et al., 2009). The GF/F filters were dried to constant weight at + 60 °C and exposed to

HCl fumes for 4 h to remove the inorganic carbon (Lorrain et al., 2003). The organic carbon

and total nitrogen contents were quantified by high temperature catalytic oxidation with an

Elemental Analyzer (EA) (ThermoScientific, Flash EA 1112). The C and N values obtained

were used to calculate the C/N ratio of the suspended particulate organic matter (POM) in the

water sampled. 

2.3.4. Zooplankton

Samples of zooplankton were fixed in a formaldehyde solution (4 %) and stored in 250

mL HDPE bottles.  Zooplankton taxa were counted in a closed counting chamber under a

binocular microscope at 40-fold magnification. Zooplankton abundances were expressed in

individuals per unit of volume (m3) and organized into major groups (rotifers, cladocerans,

calanids and cyclopids). 

2.3.5. C and N isotopic analyses

In 2015, the natural abundances of carbon and nitrogen stable isotopes (δ13C and δ15N)

contained in the plankton were analyzed in the studied lakes at all sampling campaigns. The

isotopic  signature  of  soils  in  catchments  was  also  determined  for  comparison  with  the

plankton values, by sampling the soil at three different sites randomly selected in catchments.
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Subsamples of water were first filtered (0.7 - 20 µm filters) to obtain the finest fraction of the

seston,  most  likely  to  concentrate  the  phytoplankton fraction.  Subsamples  of  zooplankton

were first  maintained alive for 24 h in sampled water,  to allow for gut evacuation.  Then,

filters, zooplankton, and soils samples were dried at + 60 °C. Half of the samples were used

for δ15N analyses, while the other half were decarbonated by acid-fuming (HCl 37 %) for δ13C

analyses.  Homogeneous  samples  were  weighed  into  tin  capsules  and  analyzed  using  an

Elemental Analyzer (EA) coupled to an IRMS Delta Plus – Conflo II at the Stable Isotopes in

Nature Laboratory (Canada).

2.3.6. Heterotrophic prokaryotic plankton (HP)

In  2016,  water  subsamples  were  used  to  assess  the  abundance  of  free-living

heterotrophic prokaryotic (HP) plankton in the studied lakes. The subsamples were filtered

through sterile 40 µm filters,  fixed with glutaraldehyde (0.25 %, final concentration),  and

frozen (- 80 °C) for later analysis. Heterotrophic prokaryotes were enumerated with an Accuri

C6 flow cytometer (BD) after SYBR- green staining (0.5X final concentration) according to

previous work (Grégori et al., 2001). Briefly, after exclusion of doublets and red-fluorescent

particles, SYBR-green-stained particles of small size and low complexity were considered as

heterotrophic prokaryotes and expressed as cells per unit of volume (cell mL-1).

2.4. Statistical analyses

We performed direct gradient analyses, also known as constrained ordination, to test

for significant  effect of catchment  area on phytoplankton composition in each geographic

area. The dataset was divided between area 1 lakes (PIS, COR, LAU and EGO) and area 2

lakes (FRE and TRE). We selected linear response models, i.e. redundancy analyses (RDAs),
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to fit the data because preliminary detrended correspondence analyses (DCA, detrending by

segment) showed relatively low turnover in phytoplankton datasets (gradient lengths < 3 on

the first  axis).  Phytoplankton abundances  were log-transformed (y'= log [y + 1]), and the

RDAs were centered by species. 

We used three explanatory variables in the RDAs. The catchment-to-lake ratio (CAT =

Catchment  area  (ha)  /  Lake  area  (ha))  was  used  to  test  for  catchment  influence  on

phytoplankton composition (Hu et al., 2014). In addition, two variables were used to assess

temporal variability in phytoplankton composition related to sampling design: between the

two years of sampling (YEAR), and during the ice-free season (SUMMER). For the latter, we

calculated the number of days between the date of sampling and the thawing phase in early

summer, roughly estimated as the date when the temperature at 1 m below the lake surface

lastingly exceeded + 4°C. 

RDAs were run separately for each of the three explanatory variables to compare their

marginal effects in lakes. Each ordination was run six times, since the lakes were located

within  two  geographic  areas  and  the  phytoplankton  taxa  were  classified  under  three

classifications  with  more  than  two  groups:  TAX,  FG,  and  MBFG  classifications.  The

significance of the variance in phytoplankton composition explained by CAT, YEAR and

SUMMER was tested by Monte Carlo permutation tests (999 unrestricted permutations). The

Van  Dobben  circle  technique  was  used  to  determine  which  phytoplankton  groups  were

significantly  correlated  to  CAT  (t-value  of  regression  coefficient  greater  than  2.0).  The

phytoplankton-environment relationship was investigated by passively projecting the biotic

and abiotic parameters measured in lakes as supplementary variables in ordination spaces.

The remaining phytoplankton variability was calculated by running a partial unconstrained

ordination with CAT, YEAR and SUMMER as covariables. 
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Finally,  Spearman's  rank  correlation  tests  and  tests  of  Mann  and  Whitney  were

performed  to  test  for  significant  changes  in  PFGs  relative  abundances,  and  community

structure  (α-diversity  indices)  with  CAT,  in  area  1  and  2  respectively.  These  tests  were

performed on the summer phytoplankton assemblages, and per summer sampling time (early

summer = late June and early July, and late summer = September). All multivariate analyses

were  run  using  CANOCO 5.1  (Šmilauer  & Lepš,  2014).  Other  statistical  analyses  were

performed on the R software environment (v.3.1.1). 

3. Results

3.1. Characteristics of the studied lakes

3.1.1. Phytoplankton assemblages

The phytoplankton taxa from the six lakes were classified into 13 taxonomic groups,

two PFG groups, six MBFG groups, and 21 FG groups. A brief description of functional

groups,  correspondences  among  taxonomic  and  functional  groups,  and  examples  of  the

phytoplankton taxa identified are given in Supporting Information (Table S1).

Figure  2 provides  an  overview  of  the  taxonomic  and  functional  composition  of

phytoplankton  assemblages  found  in  each  geographic  area.  The  proportion  of  strict

photoautotrophs (PA) and constitutive mixotrophs (CM) did not significantly vary between

the  two  geographic  areas.  Mixotroph  taxa  represented  28  ±  4  %  and  39  ±  8  %  of

phytoplankton  assemblages  in  area  1  and  2  lakes,  respectively.  In  the  area  1  lakes,

phytoplankton assemblages were dominated by diatoms (52 ± 5 %). The accompanying taxa
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mainly consisted of chlorophytes (12 ± 2 %), cryptophytes (12 ± 3 %) and chrysophytes (11 ±

2 %). The main functional groups were the MBFG group VI (52 ± 5 %), and the FG group A

(26 ± 6 %). In the area 2 lakes, phytoplankton assemblages were dominated by chlorophytes

(49 ± 9 %). The accompanying taxa were mainly cryptophytes (21 ± 7 %) and dinoflagellates

(16 ± 6 %). The main functional groups were MBFG groups V (36 ± 8 %) and VII (38 ± 9

%), and FG groups Y (22 ± 7 %) and F (40 ± 9 %).

Whatever  the taxonomic and functional  classifications  used to calculate  α-diversity

indices, the richness (S) and evenness (J’) of phytoplankton assemblages did not significantly

vary between the two geographic areas.

3.1.2. Biotic and abiotic environment

Data from multiparameter profiles indicated that the lakes were not, or were weakly,

stratified, with no aphotic layer and/or anoxic layer, and with highest Chla at the bottom (data

not shown) during the study. The average values of biotic and abiotic parameters measured in

the six studied lakes are available in  Table 2. All the lakes were poorly productive, with a

trophic state ranging from ultra-oligotrophic (Max summer Chla < 2.5 µg L-1; Annual mean

total phosphorus < 4 µg L-1) to oligotrophic (2.5 µg L-1 < Max summer Chla < 8 µg L-1; 4 µg

L-1 < Annual mean total phosphorus < 10 µg L-1) according to the Organization for Economic

Co-operation and Development (OECD) classification  (Hart, 1984). The lakes were clear,

with low DOC concentrations (1 mg L-1 < DOC < 11 mg L-1). The C/N ratios (7 < C/N < 13)

indicated that the POM was mainly of phytoplankton origin, with a low fraction of terrestrial

organic matter (C/N >> 10) (Gasiorowski & Sienkiewicz, 2013). The DIN:SRP ratios above

the Redfield ratio of 7:1 on a mass basis (80 ± 20 < DIN:SRP < 367 ± 80) indicated that P

was  the  main  limiting  nutrient  in  all  lakes,  as  shown  in  a  previous  experimental  study

15



(Jacquemin et al., 2018).

Six parameters significantly differed between the two geographic areas (Fig. 3). The

catchment lithology, composed of granite and gneiss bedrocks, led to limited mineralization

and neutral water in the area 2 lakes (Conductivity = 23.43 ± 5.02 µS cm-1; pH = 7.60 ± 0.13;

DIC = 2.84 ± 0.41 mg L-1),  similar  to that  reported in other  Alpine high mountain lakes

(Tolotti et al., 2006). Contrastingly, the schist, shale and sandstone bedrocks of the area 1

lakes led to greater mineralization and more basic water (Conductivity = 152.49 ± 14.52 µS

cm-1; pH = 8.25 ± 0.06; DIC = 17.89 ± 1.45 mg L -1) (Mann-Whitney, p-value < 0.001). The

area 2 lakes showed higher DIN, Chla concentrations and cladocerans abundances (DIN =

0.560 ± 0.030 mg L-1; Chla = 1.68 ± 0.59 µg L-1; Clado = 3354 ± 1136 ind m-3) than the area 1

lakes (DIN = 0.290 ± 0.040 mg L-1; Chla = 0.36 ± 0.07 µg L-1; Clado = 46 ± 11 ind m-3)

(Mann-Whitney, p-value < 0.01). 

3.2. Catchment influence on phytoplankton assemblages

3.2.1. PFG composition and α-diversity indices

The relative proportions of strict photoautotrophs (PA) and constitutive mixotrophs

(CM) in phytoplankton assemblages are shown in  Fig. 4.  In the area 1 lakes, the relative

abundance of mixotroph taxa was positively correlated to CAT in late summer (Spearman’s

rank correlation test,  rs = 0.84,  p-value < 0.001). In the area 2 lakes,  there was a higher

proportion of mixotroph taxa in the lake with a large catchment (TRE lake) than in the lake

with a small catchment (FRE lake), both in early summer (FRE CM = 71 ± 4 %, TRE CM =

87 ± 1 %, Mann-Whitney, p-value < 0.01) and in late summer (FRE CM = 2 ± 1 %, TRE CM

= 4 ± 0 %, Mann-Whitney, p-value < 0.05). 
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The average richness and evenness of phytoplankton assemblages calculated from the

four taxonomic and functional classifications are shown in Table 3. In area 1, we found no

evidence of a significant linear relationship between CAT and α-diversity indices calculated

from TAX, MBFG, and FG phytoplankton classifications. However, the richness indices were

all  significantly  lower  in  lake  PIS,  the  lake  with  the  smallest  catchment  area  (One-way

ANOVA, p-value < 0.001). In the area 2 lakes, the richness of FG functional groups and the

evenness  of  MBFG  functional  groups  were  significantly  lower  in  the  lake  with  a  small

watershed (FRE lake)  (Mann-Whitney,  p-value  < 0.05).  The lowest  average  richness  and

evenness of phytoplankton assemblages were systematically found in lakes PIS and FRE, the

lakes with the smallest catchment areas in area 1 and 2 respectively.

3.2.2. TAX, FG, and MBFG composition

RDAs performed for each phytoplankton classification and each geographic area are

summarized in Table 4. In the area 1 lakes, the effect of CAT on taxonomic and functional

composition ranged from 7 to 10 % (p-value < 0.001). CAT was a better explanatory variable

than  intra-summer  variability  (SUMMER =  3  to  6  %,  p-value  <  0.05)  and  inter-annual

variability (YEAR = 7 % for TAX, p-value < 0.001). In the area 2 lakes, the effect of CAT on

phytoplankton composition ranged from 7 to 23 % (p-value < 0.05). CAT better explained

taxonomic  composition  (CAT  =  23  %,  p-value  <  0.001)  than  intra-summer  variability

(SUMMER = 13 %, p-value < 0.001), but explained MBFG composition (CAT = 0 to 7 %, p-

value < 0.05) less well than intra-summer variability (SUMMER = 19 %, p-value < 0.001).

CAT explained FG composition (CAT = 14 %, p-value < 0.001) almost as well as intra-

summer variability (SUMMER = 15 %, p-value < 0.001). 

The  RDA  ordinations  constrained  by  CAT  performed  for  each  phytoplankton
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classification and each geographic area are displayed in Fig. 5. The scores and contributions

(%)  of  the  phytoplankton  groups  significantly  correlated  with  CAT  are  available  in

Supporting Information (Table S2). 

In the area 1 lakes, three taxonomic groups were positively correlated with CAT. In

descending order of significant contribution on the first axis, these were chrysophytes (29 %),

synurophytes (20 %) and cryptophytes (11 %). The functional groups significantly favored by

larger CAT were MBFG group II (31 %), and FG groups Y (15 %), P (12 %) and Tc (8 %).

In contrast, two taxonomic groups were negatively correlated with CAT: diatoms (68 %) and

euglenophytes (13 %). The corresponding groups in functional classifications were MBFG

group VI (68 %), and FG groups A (65 %), S2 (13 %) and W2 (13 %). 

In  the  area  2 lakes,  three  taxonomic  groups were positively  correlated  with  CAT:

diatoms  (61  %),  cryptophytes  (39  %)  and  cyanobacteria  chroococcales  (27  %),  all  more

represented in the lake with a large catchment area (TRE lake). The corresponding groups in

functional classifications were MBFG group VI (45 %), and FG groups J (63 %), P (35 %),

MP (34 %), UN (32 %), X3 (21 %), and A (16 %). In contrast, only two taxonomic groups,

dinoflagellates (68 %) and cyanobacteria oscillatoriales (21 %), were favored in the lake with

a small catchment area (FRE lake).  

3.2.3. Phytoplankton environment relationship

The  biotic  and  abiotic  parameters  measured  during  the  sampling  campaigns  were

projected as supplementary variables in RDA ordinations constrained by CAT (Fig. 5). The

parameters coinciding with the first,  constrained, axis were those whose variation was the

most  correlated  with  changes  in  phytoplankton  composition  explained  by  CAT.  The

environmental parameters coinciding with the second, unconstrained, axis were those whose
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variation was the most correlated with the greatest phytoplankton variability not explained by

CAT. 

The best fitted area 1 lake parameter on the first axis was the isotopic signature of

POM and zooplankton, positively related with CAT for δ15N, and negatively related with CAT

for δ13C. In the remaining ordination spaces, highest DIN concentrations were found in the

lake with the smallest catchment (PIS lake). DIN concentrations were negatively related with

two sets of parameters. The first set was composed of chemical variables represented by DIC

concentrations  and  conductivity,  closer  to  axis  1,  mainly  concerning  chrysophytes  and

cryptophytes, MBFG group  II, and FG groups  P and  Y. The second set was composed of

biotic variables represented by zooplankton rotifers and cladocerans, closer to axis 2, mainly

concerning the phytoplankton assemblages of lake COR, that is, chlorophytes, MBFG group

VII, and FG groups E, X1 and F.

The best fitted area 2 lake parameters on the first axis were the isotopic signature of

zooplankton (δ15N), DIC concentrations and conductivity, positively related with CAT. Mean

summer temperature (Ts) was also negatively related with CAT. On the second axis, intra-

summer variability (SUMMER) was the main factor explaining the variance in phytoplankton

composition not explained by CAT. SUMMER was mainly related with chlorophytes,  the

MBFG group VII, and the FG group F.
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4. Discussion

The French Alps,  the  southernmost  and westernmost  part  of  the  European  Alpine

chain, stand at the crossroads of Mediterranean and Alpine climatic influences. Data collected

during a fifteen-year program monitoring and evaluating atmospheric deposition in Europe

(EMEP) revealed that the southern French Alps were exposed to atmospheric N deposition

rates twice as high as those of its northern counterpart over the years 2000-2013 (Fagerli et

al.,  2015).  In addition,  the southern French Alps are  on the trajectory  of enriched P-dust

emitted from the Sahara Desert and the semi-arid Sahelian region, conveyed at altitudes of

between 1500 and 4000 m above sea level  (Moulin & Chiapello, 2004). This field study in

northern  and  southern  French  Alpine  lakes  with  contrasting  nutrient  deposition  regimes

addresses the following issues:

4.1. Catchment influence on functional diversity

The French Alpine lakes studied here shared features typical of high-altitude lakes

(Rose et al., 2015). The lakes were clear, with little accumulation of dissolved and particulate

organic matter of terrestrial origin in the pelagic zone. They were poorly productive, with a

trophic state ranging from ultra-oligotrophic to oligotrophic. As the studied lakes have been

shown to be mainly limited by P in a previous experimental study (Jacquemin et al., 2018),

the southern lakes were characterized by higher phytoplankton biomass that likely reflected

higher P-deposition regime.  The almost  twice as high dissolved inorganic nitrogen (DIN)

concentrations measured in these lakes was consistent with their exposition to almost twice as

high N-deposition rates.
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In high altitude lakes, phytoplankton development is particularly subject to nutrient

limitation during the ice-free summer, when temperature and light reach non-limiting levels

(Bergstrom et al., 2013; Lewis, 2011). During this period, we found that the lakes with the

smallest rocky catchments showed the lowest taxonomic, MBFG, and FG functional richness

of phytoplankton communities in northern French Alpine lakes, and the lowest FG functional

richness in the southern French Alpine lakes. The lakes with larger vegetated catchments were

characterized by the coexistence of phytoplankton taxa with more diverse strategies in the

acquisition and utilization of nutrient resources. 

In the northern lakes exposed to low NP deposition, the lake with the largest vegetated

catchment had a catchment-to-lake ratio 15 times higher than the lake with the smallest rocky

catchment.  The  composition  of  phytoplankton  communities  varied  from  dominant

phytoplankton  taxa  functionally  adapted  to  very  low nutrient  levels  in  the  lake  with  the

smallest rocky catchment, to coexisting phytoplankton taxa requiring higher nutrient levels or

requiring alternative organic sources of nutrients to support their growth in the lakes with

larger vegetated catchments. 

Indeed, in the lake with the smallest rocky catchment, the phytoplankton communities

were dominated by small centric diatoms (Pantocsekiella comensis) belonging to the MBFG

group VI, i.e. non-flagellated organisms with siliceous exoskeletons, and to the FG group A.

Group  A diatoms are typically found in base-poor lakes  (Padisak et al., 2009). Because of

these small centric diatoms’ low volume and spherical shape, they have a high affinity for

nutrients and can grow under conditions of limited resources that deter larger pennate diatoms

(Litchman  &  Klausmeier,  2008).  Larger  pennate  diatoms  belonging  to  the  FG  group  P

(Fragilaria tenera var. nanana, Fragilaria acus, Hannaea arcus), usually found in lakes with

higher  inorganic  nutrient  status  (Padisak et  al.,  2009),  developed in the lakes  with larger
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vegetated catchments. 

The  other  phytoplankton  groups  favored  by  larger  catchment  areas  were

phytoflagellates:  chrysophytes  and  synurophytes  from  the  MBFG  group  II,  i.e. small

flagellated organisms with siliceous exoskeletal structure belonging to the FG groups E (e.g.

Dinobryon sociale var americanum, Mallomonas sp.) and X2 (e.g. Kephyrion sp.), as well as

cryptophytes from the MBFG group  V,  i.e. unicellular flagellates of medium to large size

belonging to the FG groups Y (e.g. Cryptomonas sp.) and X2 (Plagioselmis nannoplanctica,

Chroomonas sp.).  Only dinoflagellates from the MBFG group  V (e.g. Peridiniopsis edax,

Parvodinium goslaviense, Gymnodinium sp.) were unaffected by catchment area. 

Phytoflagellates have been shown to be a major component of the plankton in high

altitude lakes (Rott, 1988; Tolotti et al., 2006; Tolotti et al., 2003), particularly well- adapted

to the  extreme environmental  conditions  prevailing  in  these ecosystems (e.g. oligotrophic

conditions, thermal conditions, light regime and high UV radiation). Phytoflagellates are well

known for their mixotroph ability, i.e. their physiological ability to combine photoautotrophy

with  heterotrophy  to  support  new cell  production  (Mitra et  al.,  2016).  The  phagotrophic

consumption of prey (e.g. bacteria and small eukaryotic cells) can constitute a valuable source

of mineral nutrients, such as N and P, in phytoplankton cells. While prey digestion generally

involves carbon (C) loss and nutrient release to maintain cell elemental balance (C:N:P), the

synergistic acquisition of C by photosynthesis in mixotroph cells partly compensates for C

loss and promotes N and/or P retention in cells  (Sterner & Elser, 2002). This is one of the

reasons  why  mixotroph  ability  contributes  to  the  competitive  advantage  of  mixotroph

phytoplankton in oligotrophic high altitude lakes (Medina-Sanchez et al., 2004). 

Although much is known about which organisms are mixotrophs and how they feed,

there is less confidence about questions linked to “under what conditions” and “at what rate”
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(Flynn et al., 2018; Rottberger et al., 2013; Weisse et al., 2016). However, nutrient conditions

seem to be of major importance in determining the ecological performance of mixotrophs and

their proportion in phytoplankton communities. The growth of mixotrophs may depends on

the  supply  and  availability  of  dissolved  inorganic  nutrients,  as  well  as  the  quantity  and

nutritional  quality  of available  prey  (Mitra  & Flynn, 2005; Olrik,  1998).  The majority  of

mixotroph taxa are relatively poor competitors for inorganic N and P (Litchman et al., 2007).

However, mixotrophy can enable growth to be sustained during periods of inorganic nutrient

deficiency  for  non-mixotrophic  competitors,  when  limiting  nutrients  become  much  more

available in microbial prey (Jones, 1994, 2001). 

In the northern lakes exposed to a low NP deposition regime, we first suggest that the

supply of terrestrial organic matter constituted a valuable source of energy and/or inorganic

nutrients  (mostly  P  in  this  case)  for  the  heterotrophic  prokaryotic  plankton  (HP),  which

ultimately enhanced the ecological performance of mixotroph phytoplankton in the lakes with

large vegetated catchments during the summer. In late summer, the abundance of potential

mixotrophs was positively correlated with catchment area, their proportion increasing from

0% to 75% at the expense of diatoms and other less represented photoautotroph groups in

phytoplankton assemblages. Such processes have already been shown in oligotrophic humic

lakes of the temperate boreal zone, where the transfer of C to higher trophic levels appeared

mainly supported by the terrestrial organic compounds consumed by the bacterioplankton, in

turn predated by mixotroph phytoplankton outcompeting strict photoautotrophs (Bergstrom et

al., 2003; Jansson et al., 1996). In alpine lakes, the occurrence of  nutrient-poor conditions

associated  with increased concentrations  of dissolved organic carbon have been shown to

stimulate the appearance of small mixotrophic algal species, partially offsetting the decline in

autotrophic phytoplankton biomass and increasing algal species richness (Parker et al., 2008).

Second, we also suggest that having a larger catchment could be a configuration favoring
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more frequent pulses of P in lakes via permanent tributaries (either organic or inorganic) that

could also lead to the prevalence of mixotrophs provided that P supply remains under a given

threshold. Field survey and experimental studies conducted in lake La Caldera in the Spanish

Sierra Nevada show a consistent response pattern with the prevalence of mixotroph under low

but frequent inorganic nutrient inputs, whereas photoautotrophs responded to high inorganic

nutrient inputs, denoting the differential growth strategy that both groups adopted with the

nutrient-input schedule (Cabrerizo et al., 2017).

In the southern lakes exposed to a high NP deposition regime, the lake with the largest

vegetated catchment had a catchment-to-lake ratio 1.3 times greater than the lake with the

smallest rocky catchment. However, its catchment is actually 17 times larger if the vegetated

areas are taken into account. This time, mixotroph strategists were not especially favored by a

larger  catchment  area.  The  phytoflagellates  constituted  the  major  fraction  of  the

phytoplankton assemblages in early summer (71% to 87%) and were mainly represented by

dinoflagellates  from the  MBFG group  V (Peridinium umbonatum, Gymnodinium sp.)  and

cryptophytes from the FG group V (Cryptomonas sp., Plagioselmis nannoplanctica). In late

summer,  the  phytoplankton  communities  were  largely  dominated  by  photoautotrophs

chlorophyte chlorococcales (96% to 98%). Under higher P-deposition regime, it is likely that

photoautotroph  growth  was  less  limited  by  inorganic  P  during  the  summer  than  in  the

northern lakes, leading to marked dominance by photoautotrophs in late summer whatever the

catchment  area.  These  findings  are  consistent  with  the  widely  observed  trend  for

photoautotrophs to out-compete mixotroph algae after nutrient inputs (Andersson et al., 2006;

Isaksson et al., 1999). The dominance of chlorophytes has already been reported under high

trophic conditions in the Alps  (Tolotti et al., 2006). Furthermore, enriched P-dust has been

shown to enhance the trophic state and to promote the development of chlorophytes in the

Spanish Sierra Nevada lakes since the late 1990s (Carrillo et al., 2017; Delgado-Molina et al.,
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2009).  
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In  these  conditions,  the  late  summer  phytoplankton  communities  varied  from

dominant phytoplankton taxa functionally adapted to moderate nutrient levels in the lake with

small rocky catchment, to coexisting phytoplankton taxa requiring diverse nutrient levels in

the lake with large vegetated catchment. 

Indeed, the photoautotroph phytoplankton in the lake with small rocky catchment was

largely  dominated  by  phytoplankton  taxa  (Oocystis  parva,  Planktosphaeria  gelatinosa)

belonging to the MBFG group VII, i.e. large mucilaginous colonies, and to the FG group F.

The members of these groups are usually reported in clear meso-eutrophic lakes, as they are

characterized by high saturating concentrations but a tolerance for poor nutrient conditions

(Kruk & Segura, 2012; Padisak et al., 2009). 

The  FG functional  diversity  of  photoautotrophs  was  greatest  in  the  lake  with  the

largest vegetated catchment. The F chlorophytes were still present, but the FG groups X3 and

J were  also  well-represented.  X3 chlorophytes  (Schroederia  setigera)  and  most  J

chlorophytes  (Coelastrum  microporum,  Crucigeniella  apiculata)  belonged  to  the  MBFG

group IV, while some J chlorophytes (Hegewaldia parvula, Scenedesmus ecornis) belonged

to the  MBFG group  I.  These  functional  groups are  reported  to  occur  in  different  habitat

templates, from oligotrophic environments for  X3 to enriched systems for  J (Padisak et al.,

2009). Members of group  IV are usually characterized by moderate nutrient gathering, and

members of group  I by good nutrient gathering and low saturating concentrations  (Kruk &

Segura,  2012).  Diatoms were  also  more  abundant  in  this  lake,  represented  by P pennate

diatoms (Fragilaria acus),  MP pennate diatoms (Achnanthidium minutissimum, Staurosira

construens) (i.e. diatoms housed in the plankton), and A centric diatoms (Cyclotella sp.) with

varying nutrient affinity. 
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In phytoplankton, several mechanisms play a role in maintaining diversity and species

coexistence. Connell’s (1978) Intermediate Disturbance Hypothesis (IDH) states that in the

absence of disturbance, competitive exclusion will reduce the number of species surviving to

minimal level. If equilibrium assemblages develop, they consist of few K-selected species that

corresponds  to  certain  functional  assemblages  (Naselli-Flores et  al.,  2003;  Tilman,  1977,

1982), and whose number should be equivalent to the number of limiting factors present if

considering Hardin’s competitive exclusion principle (1960). Nutrient scarcity may select for

species  with  high  affinity  for  nutrient  uptake  (affinity-adapted),  or  of  any  other  kind  of

nutrient-related strategy. In strongly selective environments, such as lakes characterized by

extreme oligotrophy, equilibrium dynamics predict an eventual total suppression of diversity

(Reynolds et al., 1993). However, steady-state develop very rarely in nature because potential

limiting factors fluctuates at different frequencies. Such disturbances represent opportunities

for  the  re-establishment  of  pioneer  r-selected  species,  while  successful  competitors  can

withstand  disturbance  without  completely  taking  over  the  community.  Intermediate

frequencies  and  intensities  of  disturbance  should  allow  the  maintenance  of  a  strong

compositional  diversity  (Padisak,  1993).  Under  very  intense  disturbance,  only  a  few

populations of r-selected species can re-establish themselves after each disturbance event. 

The pattern of functional diversity we observed in this study could be discussed in the

framework of  the  IDH concept.  We suggest  that  nutrient  fluctuations,  i.e. frequency and

intensity  of  N and/or  P  supply  from catchments,  could  be  assimilated  to  disturbances  in

oligotrophic high altitude lakes. In this view, we would expect a more complete steady-state

in the lakes with small rocky catchment during the ice-free season. Indeed, a flow of nutrient-

enriched water may  enter these lakes during the snowmelt and results in a greater pool of

nutrients available in spring. Then, in lakes limited by P, the phytoplankton growth may be

mainly supported by steady P-recycling processes (e.g. microbial loop, zooplankton excretion,
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internal load from sediments) during the summer (Villar-Argaiz et al., 2001). Conversely, a

large catchment is probably a configuration favoring more fluctuations of nutrient supply in

lakes, such as more frequent low-intensity events via permanent run-off in tributaries and/or

more intense events during rainfalls due to large drainage area. Even without disturbance, the

presence  of  vegetation  cover  should  increase  the  number  of  coexisting  species  at  the

equilibrium by the supply of more diversified sources of nutrient in lakes (terrestrial organic

matter)  (Kopacek et  al.,  2011).  Both catchment  characteristics  (larger  size and vegetation

cover) may allow for more functional  coexistence in phytoplankton communities,  without

necessarily implying phytoplankton biomass increase.

These assumptions deserve to be tested in the future. However, we can notice that

consistent results have already been reported in a large-scale geographical study in the Alps.

As  in  our  study,  Tolotti et  al. (2006) found  a  greater  heterogeneity  in  the  size  of

phytoplankton units in lakes characterized by larger catchments with greater vegetation cover,

lower N concentration (Nitrate-NO3
-), and higher nutrient level. Cell size in phytoplankton is

a master trait  that can affect numerous functional traits  and core metabolic rates  (Naselli-

Flores & Barone, 2011). Size diversity can reflect diverse strategies to gather and to exploit

nutrient resources in phytoplankton communities  (Litchman & Klausmeier, 2008; Reynolds,

1988). 

On overall, our results suggest a non-linear relationship between functional diversity

and  catchment  area,  thus  sharing  similarities  with  the  hump-shaped  relationship  between

productivity and diversity (Borics et al., 2014; Dodson et al., 2000; Mittelbach et al., 2001).

However, the nutrient deposition regime (intense P-pulse) appeared to be of major importance

in determining which functional  groups ultimately  developed in late  summer,  such as the

mixotroph and photoautotroph balance in the phytoplankton communities of lakes. 
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4.2. Catchment influence mediated by nutrient supply

During  the  summer,  functional  changes  in  phytoplankton  composition  induced  by

catchments were likely related to the supply of the limiting nutrient, inorganic and organic P,

in lakes. Because P is rapidly processed in water  (Lewis & Wurtsbaugh, 2008), the soluble

reactive phosphorus (SRP) concentrations were low in the lakes studied. Being above the tree

line, the lakes were also characterized by low accumulation of terrestrial organic compounds

in the pelagic zone. Therefore, we failed to find direct evidence of the relationship between

terrestrial  nutrient  supply  and  phytoplankton  composition  in  lakes  with  larger  catchment

areas. 

However,  multiple  parameters  indicate  that  there  was  sufficient  difference  in  the

catchments to ensure that the supply of elements differed in lakes. First, weathering processes

in larger catchments may have resulted in a higher leaching of inorganic ions in lakes, which

increased  the  conductivity  and DIC concentrations  measured.  Second,  analyses  of  carbon

(δ13C) and nitrogen (δ15N) stable isotopes ratios in seston and zooplankton appeared indirectly

to point to leaching of terrestrial organic matter in the lakes. 

Stable  isotope  ratios  can  be  used  to  monitor  different  elements  in  lacustrine

environments, provided that the elements exhibit distinct isotopic signatures according to their

origin (isotopic baseline), and that the isotopic signatures are transferred conservatively or

changed predictably as elements cycle through the biosphere (isotopic fractionation) (Peterson

& Fry, 1987). C can enter the plankton food web by two pathways: the dissolved inorganic

carbon  (DIC)  fixed  by  photosynthesis,  and  the  dissolved  organic  carbon  (DOC)  and

particulate  organic  carbon  (POC)  mainly  processed  by  HP  plankton.  The  photosynthetic

pathway should involve a net fractionation of δ13C in primary producers about 21 ‰ more
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negative than the initial DIC uptake. Among potential sources of DIC, the CO2 in air (-7 ‰) is

depleted in 13C compared to carbonates (0 ‰), and the production of respired CO2 can lead to

even more 13C-depleted DIC in lakes (Cole et al., 2002). Therefore, in carbonate-rich marine

environments, photosynthesis results in phytoplankton δ13C values of about -24 to -19 ‰. In

freshwater environments, the δ13C values of phytoplankton usually lie between −30 and −25

‰ (Jones et al., 2001; Karlsson et al., 2003). In lakes where respiration inputs are very strong,

δ13C values for phytoplankton can reach -45 ‰ (Peterson & Fry, 1987). Since fractionation of

13C between trophic levels is insignificant (0 to 1 ‰), δ13C values are often used to evaluate

the main source of C incorporated into food webs (Tiunov, 2007). Over the lakes studied, δ13C

values in soils did not vary according to catchment area, ranging from -27 ‰ to -25 ‰. These

results suggest a similar baseline of terrestrial organic matter received by the lakes (dissolved

and/or particulate), typical of soils with dominant vegetation constituted by C3 plants (-28 ‰)

(Feng, 2002; Kohn, 2010).

In the northern lakes exposed to a low NP deposition regime, the δ13C values of the

plankton tended to decrease with increasing catchment area. Because plankton values (-22 ‰

to -33 ‰) overlapped the baseline of terrestrial organic matter, the mineralization of terrestrial

organic C did not appear to be the main pathway for C acquisition in the plankton food webs.

Instead, we suggest that the contribution of atmospheric CO2 to DIC uptake was decreasing in

line with increasing availability of respired CO2 in the lakes. Terrestrial organic matter has

long  been  thought  to  be  refractory  to  biological  use,  but  there  is  multiple  evidence  that

substantial portions are microbially respired in aquatic ecosystems (Ask et al., 2009; Battin et

al.,  2008).  The  plankton  δ13C  values  may  indirectly  indicate  the  effective  supply  and

mineralization of terrestrial organic matter in the lakes with large vegetated catchments, but

not the incorporation of terrestrial organic matter as the main source of C in the plankton food

web. Indeed, some studies have already reported disproportionally low reliance on terrestrial
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organic matter at higher trophic levels in the plankton web, compared with its high rates of

input and high support of basic biomass production in lakes (Karlsson et al., 2012).

In the southern lakes exposed to a high NP deposition regime, the plankton δ13C values

varied more during the summer than between lakes. We were not able to determine the main

source  of  DIC  used  in  the  plankton  food  web,  but  the  lake  with  the  largest  vegetated

catchment  was not  characterized  by more heterotrophic  conditions  than the  lake with the

smallest rocky catchment.

There are far more confounding factors involved in interpreting the 15N isotopic ratios

in  plankton,  including  trophic,  species-specific  and microbial-loop fractionation  processes

(Ostrom et al., 1998). However, since plankton δ15N values tended to increase with increasing

catchment area in both the northern and southern lakes, it is worth considering the possibility

that different baseline DIN supplies were incorporated into plankton food webs according to

catchment  area.  Lakes  receive  DIN  from  atmospheric  precipitations  and  terrestrial

ecosystems.  In  catchments,  heavy  15N  is  accumulated  in  soils  through  a  complex  of

interrelated  mechanisms  (Handley  &  Scrimgeour,  1997).  Very  short  contact  times  are

required for the retention of atmospheric 15N-depleted DIN and the production of 15N-enriched

DIN by bacterial mineralization and nitrification of organic N in soils (Curtis et al., 2011). In

many systems, there is a positive relationship between DIN retention, DIN transformation and

DOC leaching in lakes, which appears to be related to the amount of stable pools of C in

catchments  (Camarero et al., 2009; Evans et al., 2006; Helliwell et al., 2007). In the lakes

studied, we suggest that hydrological ‘bypass’ of atmospheric DIN decreased and that water–

soil  interaction  (DIN  cycling  and  retention)  increased  in  the  lakes  with  large  vegetated

catchments. Assuming homogenous isotopic signature for DIN in precipitations, this would

both explain the higher plankton δ15N values and the lower DIN concentrations measured in
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lakes  with  large  vegetated  catchments.  Therefore,  the  plankton  δ15N values  could  further

support  the  assumption  of  stronger  water–soil  interaction  in  lakes  with  larger  vegetated

catchments,  involving  higher  P  leaching  from  catchments  and  functional  changes  in

phytoplankton composition.

5. Conclusion

The  response  of  lakes  to  environmental  changes  will  vary  in  relation  to  a  set  of

landscape filters and potentially unique in-lake filters  (Blenckner, 2005). At high altitudes,

catchments are poorly productive and composed of a patchwork of rock scree, bare soil and

alpine  meadows.  Our  findings  show  that  even  subtle  differences  in  nutrient  conditions

regulated by catchment characteristics can impact the functional diversity of phytoplankton

communities in high altitude lakes, whatever the context of atmospheric nutrient deposition.

The  nutrient  deposition  regime  appeared  to  interact  with  catchment  characteristics  in

determining which functional groups ultimately developed in lakes, especially the mixotroph

and  photoautotroph  balance  in  lakes’  phytoplankton  communities.  The  balance  between

photoautotroph and mixotroph phytoplankton could substantially impact the overall plankton

food web in lakes, and likely, its response to environmental changes (González-Olalla et al.,

2018). There is even more reason to consider the role played by catchments when seeking to

determine  the  vulnerability  of  high  altitude  lakes  to  future  changes,  as  catchments’  own

properties will vary under changes related to climate and airborne contaminants.
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Tables

Table 1. Environmental and morphological characteristics of the studied lakes. Geographical

coordinates are in Lambert 93 projection. Annual N-deposition rates were extracted from the

EMEP website, and averaged over the period 2000-2013 (Fagerli et al., 2015). Lithological

data are from the French office of geological and mining research (http://infoterre.brgm.fr/).

Mean ± standard errors.

Area 1 Area 2
LAKES PIS COR LAU EGO FRE TRE

Longitude (X) 967507 999315 1008392 1015554 1039746 1047261
Latitude (Y) 6408301 6423409 6371959 6410654 6347961 6344711
Altitude (m) 2495 2447 2284 2394 2348 2150

N deposition rate 
(kg N km–2 yr–1 ± SE)

558 ± 21 435 ± 14 666 ± 29 435 ± 14 1123 ± 49 1123 ± 49

Lake area (ha) 1.7 1.8 3.3 3.9 0.8 1.4
Lake maximum depth (m) 8 9 7.5 7.5 9 8

Catchment area (ha) 21 140 380 686 75 170
Catchment alpine

meadows (ha)
2 84 114 377 4 119

Catchment lithology
Sedimentary 

Rock 
(Sandstone)

Metamorphic
Rock 

(Blue Shale)

Sedimentary
Rock

(Sandstone)

Metamorphic
Rock 

(Glossy schists)

Igneous Rock

(Granite and
Aplite)

Metamorphic
Rock 

(Gneiss)
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Table 2. Biotic and abiotic parameters measured in the studied lakes and averaged over the

sampling  period.  Mean  ±  standard  errors.  Ts  =  Mean  summer  temperature;  T  =  Mean

temperature at sampling campaigns; O2 = Dissolved oxygen ; TURBI = Turbidity ; COND =

Conductivity;  Chla = Chlorophyll  a;  DIN = Dissolved inorganic nitrogen;  SRP = Soluble

reactive  phosphorus;  SI  =  Silica;  DOC  =  Dissolved  organic  carbon;  DIC  =  Dissolved

inorganic carbon; POM = Particulate organic matter; ROTI = Rotifers; CALA = Calanids;

CYCLO = Cyclopids; CLADO = Cladocerans; HP = Heterotrophic prokaryotic plankton.
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Area 1 Area 2

LAKES PIS COR LAU EGO FRE TRE

pH 8.00 ± 0.08 8.49 ± 0.14 8.29 ± 0.04 8.20 ± 0.10 7.36 ± 0.23 7.83 ± 0.08

Ts (°C) 8.70 ± 0.04 11.82 ± 0.05 8.80 ± 0.02 10.00 ± 0.08 11.67 ± 0.04 9.80 ± 0.04

T (°C) 9.19 ± 1.71 11.67 ± 1.46 8.34 ± 0.96 10.25 ± 1.57 11.23 ± 1.28 9.84 ± 1.10

O2 (%) 63 ± 19 98 ± 8 84 ± 7 72 ± 10 92 ± 8 93 ± 8

TURBI (NTU) - 10 ± 9 - 11 ± 7 - 12 ± 7 71 ± 68 2 ± 11 - 11 ± 7

COND (µs cm-1) 64 ± 19 189 ± 3 166 ± 9 191 ± 13 9 ± 1 38 ± 3

Chla (µg L-1) 0.255 ± 0.061 0.575 ± 0.183 0.246 ± 0.068 0.350 ± 0.149 1.99 ± 1.398 1.376 ± 0.281

DIN (mg L-1) 0.437 ± 0.087 0.140 ± 0.051 0.272 ± 0.033 0.318 ± 0.084 0.612 ± 0.057 0.503 ± 0.032

SRP (µg L-1) 5 ± 2 5 ± 2 4 ± 2 4 ± 2 3 ± 1 5 ± 2

DIN:SRP 210 ± 52 80 ± 20 179 ± 43 168 ± 53 367 ± 80 186 ± 44

SI (mg L-1) 0.827 ± 0.178 0.769 ± 0.063 1.359 ± 0.250 0.505 ± 0.038 0.569 ± 0.204 0.892 ± 0.022

DOC (mg L-1) 1.911 ± 0.782 2.631 ± 1.126 3.341 ± 1.494 3.858 ± 2.588 1.025 ± 0.262 1.165 ± 0.111

DIC (mg L-1) 8.879 ± 0.484 23.150 ± 0.588 18.235 ± 0.596 21.282 ± 0.941 1.628 ± 0.081 4.052 ± 0.208

C/N POM 10.03 ± 0.88 9.99 ± 1.08 11.39 ± 0.85 11.02 ± 1.00 10.59 ± 0.91 9.42 ± 1.02

ROTI (ind m-3) 48 ± 12 14635 ± 3292 81 ± 32 9 ± 4 2550 ± 1331 8 ± 3

CALA (ind m-3) 1499 ± 567 2 ± 1 0 237 ± 73 1 ± 0 0

CYCLO (ind m-3) 391 ± 98 12 ± 3 2953 ± 954 1505 ± 542 2118 ± 429 606 ± 123

CLADO (ind m-3) 6 ± 1 129 ± 31 29 ± 3 19 ± 8 1867 ± 596 4840 ± 2154

δ15N POM (‰)
-2.648
± 0.744

-0.625
± 0.483

-0.563
± 0.411

2.845
± 0.296

-3.127
± 0.399

-1.898
± 1.44

δ15N Zoo (‰)
- 2.440
± 0.599

0.782
± 0.264

1.371
± 0.217

3.679
± 0.099

- 2.348
± 0.226

- 0.039
± 0.312

δ15N Soil (‰)
1.599

± 0.676
1.691

± 1.078
2.404

± 1.185
2.347

± 0.516
1.938

± 0.455
1.992

± 1.810

δ13C POM (‰)
-23.635
± 0.301

-30.055
± 0.890

-26.888
± 0.767

-30.692
± 0.854

-31.124
± 0.527

28.244
± 1.295

δ13C Zoo (‰)
-21.962
± 1.469

-27.543
± 0.080

-28.462
± 0.282

-32.107
± 0.329

-30.372
± 0.269

-28.32
± 0.492

δ13C Soil (‰)
-26.075
± 0.160

-25.654
± 0.169

-25.447
± 0.034

-25.389
± 0.220

-25.321
± 0.233

-26.666
± 0.429

HP (cell mL-1)
9.46 105 

± 1.55 105
4.25 105 

± 0.32 105
5.76 105 

± 0.67 105
6.70 105 

± 2.36 105
4.61 105 

± 0.83 105
9.86 105 

± 2.70 105

Table 3. Diversity  indices  of richness (S) and evenness (J’)  for the three  taxonomic  and

functional classifications of phytoplankton assemblages. Mean ± standard errors. 

Area 1 Area 2

Diversity
index

Functional
classification

PIS COR LAU EGO FRE TRE

S

TAX 3.92 ± 0.40 6.33 ± 0.38 7.83 ± 0.34 6.25 ± 0.45 4.83 ± 0.55 5.18 ± 0.48

MBFG 3.00 ± 0.25 5.17 ± 0.21 5.42 ± 0.15 5.17 ± 0.27 4.42 ± 0.31 4.82 ± 0.42

FG 6.25 ± 0.49 10.58 ± 0.42
10.25 ±

0.25
9.50 ± 0.42 5.67 ± 0.74 8.64 ± 0.68

J'

TAX 0.26 ± 0.08 0.74 ± 0.03 0.45 ± 0.04 0.62 ± 0.05 0.34 ± 0.08 0.42 ± 0.03

MBFG 0.30 ± 0.09 0.81 ± 0.03 0.53 ± 0.06 0.62 ± 0.06 0.33 ± 0.07 0.55 ± 0.04

FG 0.29 ± 0.08 0.73 ± 0.02 0.58 ± 0.03 0.64 ± 0.04 0.36 ± 0.09 0.46 ± 0.03
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Table 4. Summary of redundancy analyses performed on taxonomic and functional groups in

phytoplankton assemblages in each geographic area.

 Area 1 Area 2

Explanatory variable
% of all 
adj. expl. F

% of all 
adj. expl. F

TAX Total inertia - 1st axis 29.58 33.92

CAT 7.41 4.8 *** 23.36 7.7 ***

SUMMER 6.23 4.1 *** 12.95 4.3 ***

YEAR 6.67 4.4 *** 2.01 1.5

Residual 75.37 47.86

MBFG Total inertia - 1st axis 40.35 34.97

CAT 11.05 6.8 *** 7.11 2.8 *

SUMMER 3.33 2.6 * 18.52 6.2 ***

YEAR 0.00 0.6 0.00 0.3

Residual 80.77 64.37

FG Total inertia - 1st axis 38.89 30.36

CAT 9.43 5.9 *** 14.47 4.7 ***

SUMMER 5.17 3.6 ** 15.05 4.9 ***

YEAR 0.00 0.9 12.21 4.1 **

Residual 79.45 65.12
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Figures

Fig. 1. Location of the six French Alpine lakes studied.
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Fig. 2. Phytoplankton composition in each geographic area (error bars correspond to standard

errors). Only taxonomic and functional groups whose relative abundance in phytoplankton

assemblages  was  greater  than  5%  are  shown.  Diat  =  Diatoms;  Chloro  =  Chlorophytes

chlorococcales;  Crypto  =  Cryptophytes;  Chryso  =  Chrysophytes;  Dino  =  Dinoflagellates;

Oscil  =  Cyanobacteria  oscillatoriales;  Chroo  =  Cyanobacteria  chroococcales;  PA  =

Photoautotroph phytoplankton; CM = Constitutive mixotroph phytoplankton.
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Fig. 3. Biotic and abiotic parameters differing between the two geographic areas. Significant

p-values <0.001***. 

Fig.  4. Percentages  of  mixotroph taxa  in  phytoplankton  assemblages  of  the  studied  lakes

(error bars correspond to standard errors).
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Fig. 5. Ordinations from the series of redundancy analyses constrained by CAT performed on

taxonomic  and  functional  groups  in  phytoplankton  assemblages  in  each  geographic  area.

Black  arrowhead  corresponds  to  phytoplankton  groups,  empty  arrowhead  to  quantitative

environmental  variables,  and empty squares to qualitative environmental  variables (lakes).

Are only shown the variables with a regression coefficient exceeding 0.5 on the first two axes.
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Appendix A. Supplementary material.

48



Fig. S1. Functional groups and phylogenetic affiliation of phytoplankton taxa identified in the studied lakes.   

MBF
G

FG
MBFG description (Kruk et al., 2010) 

FG habitat template (Padisak et al., 2009)
TAX PFG Examples of phytoplankton taxa

I  
Small,  high  surface-to-volume  ratio,  unicells

and colonies
   

B
Mesotrophic, small and medium-sized lakes to large 
shallow lakes with species sensitive to the onset of 
stratification

Eustigmatophytes
Strict

photoautotrophs
Pseudotetraëdriella kamillae

F Clear epilimnia, deeply mixed meso-eutrophic lakes
Chlorophytes 
chlorococcales

Strict
photoautotrophs

Dictyosphaerium  chlorelloides;  Kirchneriella
arcuata

J Shallow, mixed, highly enriched systems
Chlorophytes 
chlorococcales

Strict
photoautotrophs

Desmodesmus  spinosus;  Hegewaldia  parvula;
Tetradesmus lagerheimii; Tetradesmus obliquus;
Tetraëdron minimum

K Shallow, nutrient-rich water columns

Chlorophytes 
chlorococcales
Cyanobacteria 
chroococcales

Strict
photoautotrophs

Mychonastes  homosphaera;  Synechocystis
aquatilis

L0
All lentic ecosystems, summer epilimnia in mesotrophic 
lakes

Cyanobacteria 
chroococcales 
Cyanobacteria 
oscillatoriales

Strict
photoautotrophs

Chroococcus minutus; Rhabdoderma lineare

MP
All types of lakes, or frequently stirred up, inorganically 
turbid shallow lakes (littoral diatoms housed in the 
plankton)

Cyanobacteria 
chroococcales

Strict
photoautotrophs

Pseudocapsa sp.

N Continuous or semi-continuous mixed layer 2-3m thick Conjugatophytes
Strict

photoautotrophs

Cosmarium  bioculatum;  Cosmarium
pseudobiremum;   Cosmarium  pygmaeum  var.
heimerlii

X1 Shallow, eu-hypertrophic environments
Chlorophytes 
chlorococcales

Strict
photoautotrophs

Chlorella  vulgaris;  Monoraphidium  minutum;
Monoraphidium tatrae
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Z Metalimnia or upper hypolimnia of oligotrophic lakes
Cyanobacteria 
chroococcales

Strict
photoautotrophs

Aphanocapsa nubilum

II  
Small flagellated organisms with siliceous 

exoskeletal structure
 

E
Usually small, shallow, base-poor lakes or heterotrophic
ponds

Choanoflagellates
Chrysophytes
Synurophytes

Constitutive
mixotrophs

Dinobryon  divergens;  Mallomonas  sp;
Protospongia sp.

X2 Shallow, meso-eutrophic environments Chrysophytes
Constitutive

mixotrophs
Chrysolykos  planctonicus;  Kephyrion  spirale;
Pseudokephyrion ellipsoideum

X3 Shallow, eu-hypertrophic environments Chrysophytes
Constitutive

mixotrophs
Chromulina nannos; Chrysococcus minutus

IV  
Medium-sized unicells, colonies and filaments without specialized traits (e.g. aerotopes, 

flagella, mucilage)
 

F Clear, deeply mixed meso-eutrophic lakes
Chlorophytes
chlorococcales

Strict
photoautotrophs

Elakatothrix gelatinosa; Gregiochloris lacustris

J Shallow, mixed, highly-enriched systems
Chlorophytes
chlorococcales

Strict
photoautotrophs

Coelastrum  microporum;  Willea  apiculata;
Desmodesmus  magnus;  Pediastrum  boryanum;
Scenedesmus  pecsensis;  Tetradesmus
wisconsinensis

MP
All types of lakes, or frequently stirred up, inorganically
turbid  shallow  lakes  (littoral  diatoms  housed  in  the
plankton)

Cyanobacteria
oscillatoriales

Strict
photoautotrophs

Pseudanabaena sp.

N Continuous or semi-continuous mixed layer 2-3m thick Conjugatophytes
Strict

photoautotrophs

Cosmarium  undulatum  var.  minutum;
Staurodesmus  brevispina;  Staurodesmus
dejectus

P
Similar to that of codon N but at higher trophic states
(i.e. eutrophic epilimnia)

Chlorophytes
chlorococcales

Strict
photoautotrophs

Closteriopsis acicularis

S2 Warm, shallow, and often highly alcaline waters
Cyanobacteria
oscillatoriales

Strict
photoautotrophs

Spirulina sp.

Tc Stirred up in water column from macrophytes: epiphytic
cyanobacteria  (Eutrophic  standing  waters,  or  slow-

Cyanobacteria
oscillatoriales

Strict
photoautotrophs

Leptolyngbya sp.
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flowing rivers with emerging macrophytes)

X1 Shallow, eu-hypertrophic environments
Chlorophytes
chlorococcales

Strict
photoautotrophs

Ankistrodesmus  arcuatus;  Chlorolobion  braunii;
Monoraphidium kormakova

X3
Shallow,  well-mixed  oligotrophic  environments  (clear,
mixed environments)

Chlorophytes
chlorococcales

Strict
photoautotrophs

Schroederia setigera

V  Unicellular flagellates of medium to large size  

L0
All lentic ecosystems (summer epilimnia in mesotrophic
lakes)

Dinoflagellates
Constitutive

mixotrophs

Parvodinium  goslaviense;  Tyrannodinium  edax;
Parvodinium  umbonatum;  Prosoaulax  lacustris;
Tovellia coronata; Tyrannodinium edax

W2 Meso-eutrophic ponds, even temporary, shallow lakes Euglenophytes
Constitutive

mixotrophs
Trachelomonas volvocina

X2 Shallow, meso-eutrophic environments
Chlorophytes volvocaceans
Cryptophytes

Strict
photoautotrophs
        Constitutive
mixotrophs

Chlamydomonas  haematococcoides;
Chroomonas  sp.;  Tetraselmis  sp.;  Plagioselmis
nannoplanctica

Y
All  lentic  ecosystems  when  grazing  pressure  is  low,
usually small, enriched lakes

Cryptophytes
Dinoflagellates

Constitutive
mixotrophs

Cryptomonas sp; Gymnodinium varians

VI  
Non-flagellated organisms with siliceous 

exoskeletons
 

A Clear, deep, often well-mixed, base-poor lakes Diatoms
Strict

photoautotrophs
Pantocsekiella comensis

B
Mesotrophic,  small  and  medium-sized  lakes  to  large
shallow  lakes  with  species  sensitive  to  the  onset  of
stratification

Diatoms
Strict

photoautotrophs
Cyclotella  distinguenda;  Cyclotella  planctonica;
Lindavia comta; Pantocsekiella delicatula

C
Eutrophic,  small  and  medium-sized  lakes  with  species
sensitive to the onset of stratification

Diatoms
Strict

photoautotrophs
Asterionella ralfsii

D Shallow, turbid waters including rivers Diatoms
Strict

photoautotrophs
Nitzschia acicularis

MP All types of lakes, or frequently stirred up, inorganically
turbid  shallow  lakes  (littoral  diatoms  housed  in  the

Diatoms Strict Achnanthidium  minutissimum;  Amphora  ovalis;
Cymbella  affinis;  Encyonema  ventricosum;
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plankton) photoautotrophs
Encyonopsis  microcephala;  Navicula
cryptocephala;  Staurosira  construens;  Ulnaria
ulna

P
Similar to that of codon N but at higher trophic states
(i.e. eutrophic epilimnia)

Diatoms
Strict

photoautotrophs
Fragilaria  acus;  Fragilaria  tenera  var.  nanana;
Hannaea arcus

UN
“Unclassified” phytoplankton taxa,  uncertainty in diatom
FG assignment

Diatoms
Strict

photoautotrophs
Denticula  tenuis;  Eunotia  minor;  Meridion
circulare; Odontidium mesodon

VII  Large mucilaginous colonies  

F Clear, deeply-mixed meso-eutrophic lakes
Chlorophytes
chlorococcales

Strict
photoautotrophs

Oocystis  marssonii;  Oocystis  parva;
Planktosphaeria  gelatinosa;  Sphaerocystis
planctonica; Sphaerocystis schroeteri

J Shallow, mixed, highly-enriched systems
Chlorophytes
chlorococcales

Strict
photoautotrophs

Westella botryoides

L0
All lentic ecosystems (summer epilimnia in mesotrophic
lakes)

Cyanobacteria
chroococcales

Strict
photoautotrophs

Woronichinia sp.
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Fig. S2. Scores and contributions of phytoplankton groups on the first axis of redundancy
analyses constrained by CAT, performed on taxonomic and functional classifications, in each
geographic area. Phytoplankton groups significantly correlated with CAT are in bold (t-value
>2).

AREA 1 AREA 2

Classification Phytoplankton groups Score
(Resp.1)

Contribution
(CFit.1)

Score
(Resp.1)

Contributio
n

(CFit.1)
TAX Diatoms 2.6984 0.6827 1.5109 0.6129

Chlorophytes chlorococcales -0.3127 0.0092 -0.1719 0.0079

Chlorophytes volvocaceans 0.1316 0.0016 -0.5658 0.0859

Conjugatophytes -0.4793 0.0215 0.5609 0.0845

Choanoflagellates 0.2888 0.0078 / /

Chrysophytes -1.7586 0.2900 -0.1332 0.0048

Synurophytes -1.4630 0.2007 0.2936 0.0231

Cryptophytes -1.1046 0.1144 1.2006 0.3870

Dinoflagellates 0.2753 0.0071 -1.5965 0.6843

Euglenophytes 1.1696 0.1283 / /

Cyanobacteria chroococcales -0.4567 0.0196 1.0102 0.2740

Cyanobacteria oscillatoriales 0.2686 0.0068 -0.8865 0.2110

MBFG I -0.0461 0.0003 -0.2694 0.0081

II -1.5479 0.3101 0.4090 0.0187

IV -0.5460 0.0386 -0.5801 0.0375

V 0.2180 0.0062 0.2155 0.0052

VI 2.2966 0.6827 -2.0185 0.4544

VII -0.5759 0.0429 0.8570 0.0819

FG A 2.3982 0.6532 0.9436 0.1635

B 0.1710 0.0033 / /

C -0.5881 0.0393 / /

D -0.5881 0.0393 / /

E -0.5576 0.0353 0.3551 0.0231

F -0.4521 0.0232 -0.7125 0.0932

J -0.2436 0.0067 1.8497 0.6282

K -0.0833 0.0008 / /

L0 0.0903 0.0009 -0.2381 0.0104

MP 0.2573 0.0075 1.3522 0.3357

N -0.4355 0.0215 0.6782 0.0845

UN -0.3892 0.0172 1.3234 0.3215

P -1.0288 0.1202 1.3842 0.3518

S2 1.0703 0.1301 / /

Tc -0.8320 0.0786 / /

W2 1.0627 0.1283 / /

X1 -0.5161 0.0302 0.1046 0.0020

X2 -0.4850 0.0267 0.6731 0.0832

X3 / / 1.0784 0.2135

Y -1.1387 0.1473 0.3698 0.0251

Z / / -0.6882 0.0869
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