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Abstract—We propose a neural network architecture that
emulates the behavior of a physics solver that solves electric-
ity differential equations to compute electricity flow in power
grids (so-called “load flow”). Load flow computation is a well
studied and understood problem, but current methods (based on
Newton-Raphson) are slow. With increasing usage expectations
of the current infrastructure, it is important to find methods
to accelerate computations. One avenue we are pursuing in this
paper is to use proxies based on “graph neural networks”. In
contrast with previous neural network approaches, which could
only handle fixed grid topologies, our novel graph-based method,
trained on data from power grids of a given size, generalizes to
larger or smaller ones. We experimentally demonstrate viability
of the method on randomly connected artificial grids of size 30
nodes. We achieve better accuracy than the DC-approximation (a
standard benchmark linearizing physical equations) on random
power grids whose size range from 10 nodes to 110 nodes, the
scale of real-world power grids. Our neural network learns to
solve the load flow problem without overfitting to a specific
instance of the problem.

Index Terms—Graph Neural Solver, Neural Solver, Graph
Neural Net, Power Systems

I. BACKGROUND & MOTIVATIONS

TSOs (Transmission System Operators) such as RTE
(Réseau de Transport d’électricité) need to ensure the security
and resilience of power grids. By transporting electricity across
states, countries, or continents, they are vital components of
modern societies, playing the central economical and societal
role to supply power reliably to industries, services, and con-
sumers. In particular they should avoid “blackouts”. Currently,
TSOs perform security analyses by using “load flow” solvers
based on the physical equations of the system [13]. Such
solvers compute the flows of electricity through each line of
a power grid using physical laws depending on:

• the power grid topology, i.e. the way the electrical nodes
are interconnected;

• the amount and location of power being produced or
consumed (so-called “injections”);

• the physical properties of the power lines.

These load flow solvers use Newton-Raphson optimization
methods [18], [19] to iteratively satisfy Kirchhoff’s laws
(conservation of energy) by reducing progressively the mis-
match between ingoing and outgoing power in every electrical
node. Although load flow solvers are more accurate and
better understood than neural networks, they are comparatively
slower, leaving room for use of the latter for fast screening,
in conjunction with load flow solvers [7], [8]. In particular,
speeding up computation would allow TSOs to perform more
comprehensive security analyses, and thus increase the quality
of services or make a tighter use of existing infrastructure and
reduce risks. This would lend itself to a probabilistic approach
of security analysis emphasizing rare events (see e.g. [10]).

While pioneer work in the area has demonstrated feasibility
of the use of neural networks to estimate power flow, all
methods developed prior to our work exposed in this paper
are geared towards a given grid topology. They are dedicated
to one instance (or a small set of grid instances) and thus do
not actually learn how to perform a general load flow on every
grid topology.

Our work is in line with Donnot et al. in [9] who proposed a
method capable of generalizing to a set of power grid topolo-
gies, which remain close to a reference topology. However this
method is limited to small perturbations and cannot generalize
to completely different grids.

The main issue of former approaches is that they do not ex-
ploit the graph structure of the data, and ignore the knowledge
of the underlying physics. As explained in [1], one should use
“relational inductive bias” to guide the learning process. Our
proposed architecture aims to achieve “combinatorial general-
ization” by using elementary learning blocks that have been
laid out based on our knowledge and understanding of the load
flow problem. We apply a novel class of algorithms combining
deep learning and knowledge about graph structure: Graph
Neural Network. This class of artificial neural networks was
first introduced by F. Scarselli in [26] and further developed in
[20] and [12]. The algorithms operate on network structures by
iteratively propagating the influence of vertices through edges.



The architecture can be seen as a generalization of convolu-
tional neural networks to graph structures, by unfolding a finite
number of iterations. Theoretical properties have been further
developed in [15], [28].

Prior to our work, such methods have been successfully
applied to various problems that deal with graph structures,
as well as problems that do not explicitly exhibit graph-like
structures : classification of graphs [3], [5], [11], classification
of nodes [14], [17], and relational reasoning [25]. Recent
work such as [2], [16], [21] unveil the emergence of hybrid
approaches that rely on deep learning and structure knowledge.

Recently, the use of fast neural solvers based on AI for
physics problems has begun to develop, as it could provide
much faster tools for simulation and design for complex
problems. Computational Fluid Dynamics computations have
been successfully accelerated by Tompson et al. in [27] by
replacing a process that always estimates the same function
but at different locations by a neural network. Ling et al.
applied Deep Learning to a Reynolds averaged turbulence
modelling problem in [22]. It has also been applied to the
Schrödinger equation with success by Mills at al. in [23].
Exploiting the graph structures of the physics problems, and
drawing inspiration from these efforts to model physics using
deep learning seems to be a good direction towards fast neural
approximations that learn to solve any instance of a given
problem, while not being dedicated to only one instance of it.

The main contribution of this paper is therefore to devise
a neural network architecture allowing to predict accurately
power flows, without specializing to a given grid topology. By
design, our proposed architecture achieves zero-shot learning
[24] on novel grid topologies, as confirmed experimentally:
After being trained on random grid topologies of constant size,
state-of-the-art prediction accuracy is attained on both smaller
and larger power grids (of any type). It is completely in line
with the approach developed in [1] as it combines the relational
structure between the power line and agnostic neural network
blocks that are intricately laid out.

This paper is organized as follows. First we introduce
notations and concepts about the load flow problem, and
develop our proposed Graph Neural Solver architecture. We
then present three different experiments that gradually outline
the ability of our proposed architecture to generalize to power
grid sizes that have never been encountered during training.
Finally, we talk about the limits of the current architecture and
give directions for future investigations towards an even more
robust neural solver for power systems.

II. PROPOSED METHODOLOGY

In this section we state the problem and introduce our
approach and notations. As illustrated with the toy example
of Figure 1, the problem is, given injections (productions
and consumptions) inj1, inj2, inj3, to compute the flows
of electricity in all lines l1, l2, l3, l4. In what follows, for
simplicity, all lines will be assumed to share the same physical
characteristics.

Our neural network architecture was developed while keep-
ing in mind a few constraints. First of all, we want an architec-
ture that learns a strategy to solve any power flow, and does
not specialize to any specific instance of the problem. This
concerns the number of electrical nodes, transmission lines,
productions or consumptions on the power grid. Therefore,
the neural network needs to embed information about line
interconnections, and make use of modular generic learning
blocks. The amount of learning blocks, as well as their internal
dimensions have to be independent from any power grid
specific characteristics.

Secondly, while power grids are often represented as a graph
of nodes (so-called “buses”) interconnected by power lines,
the mathematical treatment is simplified by noting that the
topological invariant is the set of lines not the set of nodes
(which can vary when line interconnections are changed).
Hence, we work on the dual graph structure of interconnected
power lines (See Figure 1).

Thirdly, we want to emulate the behavior of an AC power
flow solver taking into account physical line characteristics,
although we restrict ourselves to power grids where line
impedances are all equal. Since there are losses in the power
lines, the inflow via one side does not equal to the outflow via
the other side. Therefore we have to distinguish between line
extremities and origins (denoted in Figure 1 by resp. “ex” and
“or”). This choice can also be justified by the fact the the flow
through a power line is oriented. This forces us to consider
multiple adjacency matrices, that are introduced below.

Fig. 1. Construction of the power lines graph - This schematics shows
how one goes from the classical graph of electrical nodes to the equivalent
graph of transmission lines. In the first representation, the nodes are connected
through electrical lines, while in the second, power lines are seen as vertices
of a graph, and electrical nodes as edges. Our neural network architecture
considers the second representation. One should also notice the fact that each
power line has an origin (called or) and an extremity (called ex). For the sake
of consistency and understandability, this toy example will be used throughout
the whole paper.

A. Notations

This architecture takes as inputs 3 different types of vari-
ables:

• Injections X: The input vector X concatenates informa-
tion about the electrical power that is being produced and
consumed everywhere on the grid.
Specifically, each production p ∈ P is defined by an
active power infeed Pp (in MegaWatts) and a voltage
infeed Vp (in Volts). Therefore each production p ∈ P is
defined by a 2-dimensional information.



Similarly, a consumption c ∈ C is defined by an active
power consumption Pc (in MegaWatts) and a reactive
power consumption Qc (in MegaVolt-Amps reactive).
Each consumption c ∈ C is thus also defined by a 2-
dimensional information.
We denote by nin the total number of injections: nin =
|P| + |C|. Each injection has an information in din = 2
dimensions. Therefore, X ∈ Rnin×din is a vector that
concatenates all these injection characteristics.

• Lines adjacency matrices Aor and Aex: Since we model
transmission lines as bipolar objects, we need to make a
distinction between the extremity and the origin of each
transmission line. Each connection between two power
lines can thus be of four different types. Let ori and exi

be respectively the origin and the extremity of line i.

Ai,j
or = 1 if ori is connected to orj (1)

= −1 if ori is connected to exj (2)
= 0 otherwise (3)

Ai,j
ex = 1 if exi is connected to orj (4)

= −1 if exi is connected to exj (5)
= 0 otherwise (6)

Note that the choice of the polarity of the lines is
arbitrary. Changing it only changes the sign of current
flowing.

• Injections adjacency matrix Ainj : This matrix encodes
the way injections (productions and consumptions) are
connected to lines, and through which pole (origin or
extremity). Let inji be the injection i (regardless of it
being a production or consumption).

Ai,j
inj = 1 if ori is connected to injj (7)

= −1 if exi is connected to injj (8)
= 0 otherwise (9)

The output we want to predict is the flows through the lines
(both in Amps A and in MegaWatts MW ) at the origin and
the extremity of every line, which we denote by vector Y ∈
Rn×dout , where for each of the n lines, we try to predict flow
information in dout = 4 dimensions.

The system we are interested in emulating is therefore:

Y = S(X,Aor, Aex, Ainj) (10)

B. Graph Neural Solver architecture

Our neural network architecture can be written:

NN : Rnin×din → Rn×dout (11)

X 7→ Ŷ (12)

where nin = |P| + |C| is the number of injections, n is
the number of power lines in the Power Grid, din is the
dimensionality of the input information of each injection, and
dout is the dimensionality of the output for each power line.
In the toy example of Figure 1, we have nin = 3, n = 4,
din = 2 and dout = 4. The Graph Neural Solver operates on

2D matrices: the input is a nin × din matrix and the output
is a n × dout matrix. In what follows we will use compact
notations: F will denote a vectorial function applying the
same function F to a number of inputs (e.g. power flows or
injections) and A a function that is a right side multiplication
with the corresponding adjacency matrix A.

The overall workflow of the approach, which is described
in Figures 5 and 6 is described in more details below. It con-
sists of 3 steps: Embedding, propagation, and decoding. The
embedding step transforms input space in an abstract vector
space, taking into account the grid topology. The propagation
space implements a relaxation procedure to compute the flows
in a finite number of iterations unfolded in time, and the
decoding step transforms back results into our output space.

a) Embedding: This step aims at embedding the initial
information contained in each injection (din-dimensional) into
a d-dimensional space. It applies the same neural network E :
Rdin → Rd to each injection. It then proceeds to send this
information from the injections to the transmission lines they
are connected to. Mathematically, this consists in a right-side
matrix multiplication with the adjacency matrix Ainj .

H(0) = Ainj ◦E(X) (13)

The dimension d is a hyperparameter of our architecture. One
should notice that E affects each of the injections similarly,
while Ainj affects each of the d dimensions similarly. Since
we have two different types of injections (productions and
consumptions), we use two different types of embedding func-
tions: Ep for productions and Ec for consumptions. This step
is important for two reasons. First we want the information
of both productions and consumptions to be compatible (they
originally have different meanings and units), so they need
to be embedded into a consistent latent space. Secondly, we
experimentally observed that using a large embedding space
(d ≈ 100) provides a faster learning.

b) Propagation: In this step, we iteratively update the
latent state of each of the n power lines by performing latent
leaps that depend on the value of their direct neighbors.
Because of the bipolar nature of power lines, we consider sep-
arately the influence of neighbors connected to their origins,
and neighbors connected to their extremities. This is the reason
why in Figures 6 and 5 we consider two separate entries into
functions L(k). At each iteration k, the same neural network
L(k) : Rd × Rd → Rd is used to update the embedding of
each of the power lines. The aim of the right-side matrix
multiplications by Aor and Aex is to sum the information
of the direct neighbors connected to respectively the origin
and the extremity of each power line. Moreover, this sum
is weighted by ±1 depending on whether the neighbors are
connected by their own origin or extremity.

H(k+1) = H(k) + L(k)(AorH
(k), AexH

(k)) (14)

≡ (I+ L(k) ◦ (Aor,Aex))(H
(k)) (15)

for k ∈ {0, . . . ,K − 1}, where I is the identity function.



Fig. 2. Embedding step - The input data is a nin × din (i.e. 3 × 2 here)
matrix (a). We first embed the din-dimensional information of each of the
nin injection into a d-dimensional space. This results in a nin × d matrix
(b). We then proceed to assign the information of each of the nin injections,
to the n power lines they are respectively connected to (see Figure 6). We
then end up with a nin × din (i.e. 4× 5 here) matrix (c). This is based on
the toy example from Figure 1.

Fig. 3. Propagation step - The embedding of each line is iteratively updated
depending on the embeddings of its direct neighbors. There is no direct
propagation between power lines 1 and 4.

c) Decoding: This step consists in a simple decoding
from the embedding space to the output space. It applies the
same function D : Rd → Rdout to each of the n power lines.
There is no exchange of information between power lines.

Ŷ = D(H(K)) (16)

Fig. 4. Decoding step - The same decoding function D is applied to the
embedding of each power line. There is no exchange between power lines.
H(K) is a n×d (i.e. 4×5 here) latent matrix that is decoded into a n×dout
(i.e. 4× 4 here) output matrix.

The proposed architecture can be summed up by the fol-
lowing function composition:

Ŷ =D ◦ (I+ L(K−1) ◦ (Aor,Aor)) ◦ . . . (17)

· · · ◦ (I+ L(0) ◦ (Aor,Aor)) ◦Ainj ◦E(X) (18)

C. Regarding the design of the architecture
Our neural network architecture consists in K + 3 learning

blocks that are intricately laid out:

Ep : Rdin → Rd (19)

Ec : Rdin → Rd (20)

L(k) : Rd × Rd → Rd, k ∈ {0, . . . ,K − 1} (21)

D : Rd → Rdout (22)

One should also observe that there is no information ex-
change between power lines except through a matrix multi-
plication with the adjacency matrices. This point is key to
the ability of our neural net to be compatible with various
power grid shapes. There is no exchange between lines when
the learning blocks are applied, only combinations between
the d or din internal components of each of the n power line
or nin injection. The learning blocks internal dimensions are
independent from the power Grid it is working on. Thus it can
perform inference and learn on a power grid of any size and
shape.

The computational complexity of inference for this archi-
tecture is in O(Knd [lLd+ 2n]), where K is the number
of propagation steps, n the number of power lines, d the
dimension of the lines latent embeddings and lL the depth of
each block Lk. This complexity estimation does not exploit the
sparsity of the adjacency matrices, and could thus be reduced.



Fig. 5. Architecture of the neural network - This schematic presents the way the different operations are laid out. The input X is taken as a regular input
to a neural network, while the adjacency matrices directly affect the architecture. (1) Round operations consist in right-side matrix multiplications, there is
no exchange between the d dimensions during these steps. Those operations are not learned, and are based on the adjacency matrices that are inputed. (2)
Rectangle operations consist in applying the same neural network for each of the n power lines or nin injections, there is no exchange between them. Those
are the neural networks that are actually learned during training.

Fig. 6. Full architecture of the neural network - This schematic offers a more precise overview of the neural network architecture, and unveils the way
the adjacency matrices actually impact the connections within the neural nets, based on the toy example from Figure 1. At the top of the Figure are displayed
the dimensions of the latent embeddings throughout the architecture. At the bottom are presented the different formulas of some of the main steps of the
architecture. For the sake of readability, we chose not to show the sign (±1) of the links created by the adjacency matrices. However, these signs can be
deduced from the bottom equations. The double brackets in these equations signify that we are dealing with 2D matrices.

III. EXPERIMENTS

In this section we first compare our architecture to a fully
connected neural net when the grid topology is the same during
both training and testing. We then assess the generalization
ability of our neural network to both larger and smaller power
grids than those observed during training. Finally, we compare
the computational requirements of our architecture to that of
a regular physics solver.

In our experiments, we optimized the `2-loss (sum of square
errors) with regards to the normalized flows through both the
origin and the extremity of each line.

Current intensities that induce Joule’s effect which can cause
potential damage to lines and other equipment are flows in
Amps. Hence, we adopted the MAPE90A metric for power
system security analysis applications as introduced in [6]. It

consists in a percentage of error on the 10% of largest flows in
Amps in absolute value (per power line). This reflects the idea
that when one tries to predict the flows through transmission
lines, it is most important to be accurate on extreme values
that can actually cause damage.

We used RTE’s proprietary load flow solver to compute
flows (given the power grid topology, and the set of injections)
to obtain the ground truth of predictions. Our neural network’s
goal is to emulate the behavior of this solver.

As baseline, we compare every result to a standard reference
method in power systems: the DC-approximation, which is a
linearization of the physical equations. One of our goals is to
beat the DC-approximation in terms of efficiency.

Each model was trained 20 times with random initialization
of weights and mini batches. This allowed us to compute the



median, and the 20th and 80th percentiles for each of the
observed metrics.

Experiment A : Constant Power Grid Topology
The first experiment we conducted is a sanity check, at fixed

grid topology, similarly to what has been done previously in
the literature. We show good performance of our new method
but at the expense of additional computational expenses com-
pared to a fully connected network. However, this is not the
case for which our method was designed.

Specifically, in this experiment, the power grid topology
(i.e. Aor, Aex and Ainj) is the same in every datapoint in
both Train and Test sets. Thus, only the injections vary and
are randomly sampled. See [6] for more informations about
the injection sampling. We focus on a fictitious power grids
consisting in 30 nodes, 42 power lines, 20 consumptions and 6
productions (which are the same characteristics as the standard
30 nodes case [29]). We then compare the performance of our
architecture with a Fully Connected neural network. A cross-
validation has been performed on both architectures.

For both architectures, each of the 20 models has been
trained for a number of 200,000 iterations (with mini batches
of size 100). Training sets consist of 100,000 samples, and
Test sets of 1,000 samples. We used fully connected neural
networks for the learning blocks of our proposed architecture
(i.e. E, L(k), D), with leaky ReLu activations. We also used
leaky Relu in the FC baseline.

Figure 7 shows that our GNS architecture (our proposed
method) learns faster in number of iterations. However, due
to the larger number of parameters in our GNS, it takes ≈ 4
times longer for each iteration. This is due to the fact that our
proposed architecture is a lot larger and more complex than a
Fully Connected (FC) network. Although the figure presents
our proposed architecture as faster, one may prefer a simple
Fully Connected network for this task.

Table I presents the Test MAPE90A obtained for both
models and the DC-approximation. Both baselines easily out-
perform the DC-approximation, and there is a slight advantage
in favor our GNS architecture. For each architecture, the
median is displayed, as well as the 20th and 80th percentiles
of the 20 independently learned models.

The Fully Connected (FC) network is able to learn in this
setup partly because the Power Grid topology is constant: it
specializes in one specific instance of the load flow problem.
In the next experiment, where we randomly vary the power
grid topology in both Train and Test sets, it will be infeasible
to learn to generalize to other grid architectures for a FC net.

TABLE I
EXPERIMENT A - IDENTICAL TOPOLOGY IN BOTH TRAIN AND TEST

MEDIAN OF THE METRICS ON TEST SET FOR 20 TRAINED MODELS (20TH
AND 80TH PERCENTILES BETWEEN BRACKETS)

FC proposed GNS DC-approx.
Loss 0.0494 0.0332 0.68

[0.0483; 0.0507] [0.0273; 0.0636]

MAPE90A 0.534 0.472 3.21
(% of error) [0.508; 0.578] [0.3880.501]

Fig. 7. Experiment A : Learning curves - Both the Fully Connected and
our Graphical Neural Solver manage to outperform the DC approximation
before the 1000th learning iteration. The Fully Connected seems to quickly
reach an asymptote, while our proposed architecture still keeps on learning
at the end of the 200,000 iterations. The plain line is the median of the 20
runs for each model, and the shaded areas is delimited by the 20th and 80th
percentiles of the 20 runs.

Experiment B : Random Grid Topologies of Constant Sizes

In this experiment, both injections and power grid topolo-
gies are randomly sampled. We randomly sample the power
grid topologies (using the sampling method described below)
in the set of connected power grids that have 30 nodes, 42
power lines, 20 consumptions and 6 productions. Each point
in both Train and Test set is a randomly sampled power grid,
with a set of randomly sampled injections (same method). The
distribution are the same in Train and Test sets.

Random power grid generation: Given m the number of
electrical nodes, n the number of power lines, |P| the number
of productions and |C| the number of consumptions, we use
the following process to generate random power grids:

• Generate a random spanning tree of m nodes.
• Uniformly create random edge in the graph until there

are n edges.
• Attribute the |P| productions and |C| consumptions to

randomly picked nodes on the graph. Each electrical node
can be neutral, production, consumption or both. It is
however impossible for a node to have multiple injections
of the same type.

We chose not to present the results of the Fully Connected
network because it proved to be unable to learn on such a
dataset. The experimental setup has been specifically designed
so as to help our proposed architecture to generalize well.

Table II shows that our architecture is able to generalize to
power grids that it has potentially never encountered in the
training set. While the Fully Connected baseline from the pre-
vious experiment is completely unable to extract information
from a dataset in which the Power Grid topology constantly
changes, our proposed architecture still manages to beat the
DC approximation on graphs that it has never encountered
in the Train set. For our Graph Neural Solver, the median is



displayed, as well as the 20th and 80th percentiles of the 20
learned models.

TABLE II
EXPERIMENT B - RANDOM TOPOLOGIES OF CONSTANT SIZE

MEDIAN OF THE METRICS ON TEST SET FOR 20 TRAINED MODELS (20TH
AND 80TH PERCENTILES BETWEEN BRACKETS)

proposed GNS DC-approx.
Loss 0.0715 0.0678

[0.0623; 0.0882]

MAPE90A 0.729 3.17
(% of error) [0.705; 0.873]

Experiment C : Random Grid Topologies of Various Sizes
This experiment has the exact same training protocol as

the previous one, but the testing occurs on several datasets in
which the power grid sizes can be different. Predicting in such
a setting is impossible for a Fully Connected network, because
of a matrix dimension mismatch, which prevents the size of the
input to change. Figure 8 shows the different Test MAPE90A
for datasets that consist in random power grids of sizes in
{10, 15, . . . , 105, 110}. In every case, the architecture has been
trained only on random 30 nodes Power Grids. This means
that while having observed solely Power Grids with 30 nodes
during Training, our architecture is able to achieve a better
MAPE90A than the DC-approximation, on Power Grids whose
sizes range from 10 nodes to 110 nodes. This experimentally
proves the ability of our neural net to generalize to both larger
and smaller power grids. It seems to be able to learn how to
solve the load flow problem in general, while not specializing
in a specific instance of the problem.

A quite unexpected result that can be observed in this plot,
is that the trained models are consistently more accurate on
power grids that have 10 nodes than on power grids that
have 30 nodes, even though the models were solely trained
on power grids with 30 nodes.

While most error bars are quite consistent in Figure 8,
there seems to be a larger error on power grids of 100 nodes
(that still remains below the DC-approximation). We have not
identified what causes it to be higher than expected, but we
think that some networks sampled in this test set were not
representative enough of actual power systems, thus causing
our neural network to perform a poorer accuracy than on the
95 nodes and 105 nodes test sets.

Computational Time
Being able to decrease the computation time of complex

problems such as load flows, computational fluid dynamics,
etc. can be a major catalyser in being able to iterate over
many different device design / situation, thus increasing our
abilities in terms of installation design and security analysis.

In its current implementation and on power grids whose size
range from 10 nodes to 110 nodes, our Graph Neural Solver
is approximately twice as fast as the proprietary Load-Flow
solver used at RTE (which is already thoroughly optimized).
Our current implementation does not exploit the sparsity of
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Fig. 8. Experiment C : Generalization to both larger and smaller Power
Grids - This graph shows the MAPE90A metric on various Test sets. We test
our trained models on sizes that range from 10 to 110 nodes. While having
observed only Power Grids with 30 nodes during Training, our proposed
Graph Neural Solver manages to consistently beat the DC-approximation for
Power Grids whose sizes range from 10 to 110 nodes. 20 models were trained
of the same architecture but with different random initializations. The dots are
the median of the MAPE90A on each Test set, and the error bars are defined
by the 20th and 80th percentiles of these 20 runs. The red error bar sums
up the MAPE90A results on a Test set made of random Power Grid with 30
nodes (i.e. same size as during Training), while the blue error bars stand for
the various Test sets made of Power Grid larger of smaller than 30 nodes.

the adjacency matrices. This limitation is due to the lack of
an implementation of sparse matrices of rank strictly above
2 in TensorFlow. It strongly hinders the computational speed
of our implementation, and should be an important axis of
improvement in terms of speed.

IV. DISCUSSION & CONCLUSIONS

Our proposed architecture relies on iteratively updating the
embeddings of power lines according to the values of the direct
neighbors. It relies on ideas from the blooming field of Graph
Neural Networks, and aims at emulating the behavior of Load
Flow (LF) solvers. We experimentally showed its ability to
generalize to both larger and smaller power grids than that
used for training, opening the door for strongly generalizable
Neural Solver for other Physics applications.

The main limitation of our current model is that we made the
strong choice to work with power grids where every line has
the same physical characteristics. We are conscious that incor-
porating the line characteristics in our neural network model
would be critical to using it in real-world applications. We
already have several insights on how this could be performed:
one could for instance have the adjacency matrix coefficients
be functions of the line characteristics.

Another aspect that would require some attention is the
computational speed of our artificial neural network archi-
tecture. It currently treats the adjacency matrices as dense,
while they are actually very sparse. We envision that an
implementation of our architecture that would exploit this
sparsity could provide much faster computations. Even without
such optimization, our neural network is approximately twice
as fast as the Load Flow solver that we want to emulate.



Our current implementation uses different Leap functions
L(0), . . . , L(K−1) at each propagation step. However, it would
make sense to instead use the same propagation update at
each step. We will be further investigating some alterations
to the current formulation of the architecture, drawing some
inspiration from the recent and inspiring Neural Ordinary
Differential Equations [4]. Moreover, we will investigate the
idea of training in an unsupervised our proposed architecture
by directly minimizing the violation of the physical laws.

The sum operation in each propagation step ensures a
consistency between the latent representations. The meaning of
the d-dimensional information contained in each line, at each
propagation update is unchanging. We could plug the learned
decoder D in each power line and at each propagation step to
visualize the evolution of the flows.

We could also investigate an adaptative number of propa-
gation steps. The RNN domain already deals with this type of
problems and should provide us with ideas on how to build
Graph Neural Solver with an adaptable number of propagation
iterations. Another aspect is that it is possible for a Load
Flow computation to not converge, not because of numerical
instability, but because the power grid is actually in danger of
blackout. Our proposed architecture could be modified so as to
include predictions on whether the computation will converge
or not.

Currently, we only deal with stead-state power flows but
we could try to predict the dynamic aspects of power grids,
or try to tackle some other finite-element problems that can
have temporal components. The ability to develop extremely
fast AI-based proxies for Fluid Dynamics solvers could help
researchers and engineers perform much faster investigation
when it comes to designing novel buildings, aircrafts or wind
turbines. Those applications usually require heavy and slow
computations, which restrict the amount of designs that can
be tested.
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