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8 ABSTRACT: Nanostructures were built at the solid/
9 liquid interface by self-assembly and/or coordination
10 bonds. Metalloporphyrins bearing two external coordina-
11 tion sites and long alkyl chains allowed the self-assembly
12 of the compounds on highly oriented pyrolitic graphite.
13 After addition of a metal ion, long transition-metal linked
14 porphyrin nanoribbons were obtained and visualized by
15 scanning tunneling microscopy. In these porphyrin
16 ribbons electronic delocalization is possible through the
17 d orbitals of the connecting metal ions.

18 Building well-ordered supramolecular architectures from
19 functional subunits might be potentially useful for
20 applications in (opto)electronics, magnetism, energy harvest-
21 ing, or smart coatings. The bottom-up synthesis is an
22 interesting method to obtain such ordered nanomaterials by
23 using noncovalent interactions. This strategy was discussed
24 two decades ago by leading scientists.1,2 In particular, using
25 these approaches to prepare nanowires or nanotubes will be of
26 importance for future technological applications. Porphyrins
27 are good candidates for the construction of nanostructures in
28 many fields of applications due to their interesting optoelec-
29 tronical properties. The synthesis of long conjugated porphyrin
30 wires using covalent linkages was started more than two
31 decades ago. Triple bonds as connecting functions were the
32 most widely used because strong electronic or magnetic
33 interactions occur between the subunits.3,4 At the beginning of
34 this century, the Osuka group synthesized very long conjugated
35 porphyrin tapes, in which the individual porphyrins are fused
36 and linked by three covalent bonds.5 However, the syntheses of
37 all these molecules often remain a challenge and therefore
38 preclude possible practical applications.
39 It was possible to assemble porphyrins bearing external
40 coordination sites with metal ions in solution.6 Strong
41 electronic interactions were demonstrated between the

c1 42 individual subunits in porphyrin dimers (see 1 in Chart 1,
43 top) by using enamino(thio)ketones as ligands for the
44 connecting ions. These external coordination sites can also
45 be described as noninnocent ligands, thus allowing electronic
46 delocalization over the entire molecule through the d orbitals
47 of the linking metal ion, and this was corroborated by DFT
48 studies.7 Larger molecules were obtained by using porphyrins
49 bearing two external coordination sites (examples of such

50molecules used in these studies are shown in Chart 1, 2a and
513a bottom).8,9

52However, the selective preparation of molecules containing
53more than three or four porphyrins by this coordination
54chemistry linkage approach proved to be as challenging as the
55covalent bond formation approach.
56On-surface synthesis to obtain new functional molecules has
57attracted intense attention over the past decade. Steering the
58reaction outcome and improving the chemo- and regioselec-
59tivity during these processes remain a real challenge because it
60is difficult to modify the reaction parameters under UHV
61conditions.10 Most previous studies were conducted on
62metallic surfaces at relatively high temperatures to obtain
63potential functional nanostructures containing conjugated
64molecules, polyaromatics, or even oligoporphyrins.11−15 The
65on-surface approach, but under much milder reaction
66conditions, in solvents and using noncovalent bond forming
67reactions as assembling tools at a liquid/HOPG interface was
68therefore considered by different groups.16−19 The self-
69assembled structures have been revealed by using scanning
70tunneling microscopy20,21 (STM) at the solid/liquid inter-
71face.22−24 Well-organized structures can be generated this way,
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Chart 1. Porphyrin Dimers 1 Linked by Metal Ions (Top);
Two Porphyrin Monomers Used in This Study: 2 with a
Center of Symmetry and 3 with a Plane of Symmetry
(Bottom)
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72 but interactions between the individual units are generally
73 rather small.25−34

74 Porphyrin monomers or presynthesized dimers such as 1
75 bearing long alkoxy chains self-assembled at the liquid/highly
76 oriented pyrolytic graphite (HOPG) surface.9 To prepare
77 higher oligoporphyrins linked by metal ions, porphyrins
78 bearing two external coordination sites in addition to long
79 meso-alkylphenyl groups are needed. The Ar meso substituents
80 used in the present studies were phenyl groups bearing C18H37
81 alkyl chains in the para positions (Ph−C18H37). To obtain
82 linear porphyrin ribbons, two series of symmetrical porphyrin
83 2 and 3 (with a center or a plane of symmetry) were used for
84 the self-assembly process. Porphyrins such as 2b and 3b were
85 obtained by following procedures used earlier for the
86 preparation of similar porphyrins (see Supporting Information
87 (SI) for experimental details).
88 Before starting the on-surface studies, we had noticed in the
89 X-ray structure of compound 3c that linear tapes with
90 molecules held together by hydrogen bonds were present

f1 91 (see Figure 1). In the solid state, the molecules of 3c (bearing

92 two Ph−C12H25 meso groups) are arranged in such a way that
93 the two external coordination sites were already preorganized
94 to build square planar metal complexes if divalent metal ions
95 are added.35 Similar arrangements of porphyrin 3b at the
96 solid/liquid interface were therefore expected, and the
97 construction of linear ribbons with porphyrins linked by
98 metal ions could be envisaged directly at the interface
99 (according to the schematic representation shown in Figure
100 1 at the right).
101 Drop casting a phenyloctane solution of porphyrin 3b onto a
102 HOPG surface gave a well-organized arrangement of the
103 porphyrins at the solid/liquid interface. However, the addi-
104 tional interactions of the alkyl chains with the hexagonal
105 HOPG surface led to a different arrangement of the molecules
106 than in the solid-state structure. Two porphyrins were
107 assembled in centro-symmetric pairs held together by
108 hydrogen bonds, and all pairs were separated by a space (see

f2 109 Figure 2a and 2b).
110 Apart from this observation, the expected alternating
111 arrangement of molecules was present at the interface and
112 the porphyrins were aligned in rows separated by spaces filled
113 by the alkyl chains that interact with HOPG. The distance (L1
114 in Figure 2b) between the porphyrin rows was 2.8 ± 0.1 nm.

115The C18 alkyl chains were sandwiched between the porphyrin
116rows with an angle of ca. 40°. Varying the concentration of the
117porphyrin 3b down to 0.1 mM gave similar arrangements at
118the interface (see SI). It should be emphasized at this point
119that these very ruffled porphyrins36 are functionalized with
120only two C18H37 alkyl chains, thus necessitating the use of
121rather high concentrations (from 0.05 to 1 mM). Addition of
122an equimolar amount of nickel(II) (Ni(acac)2 in CH2Cl2/
123phenyloctane) drastically changed the arrangement of the
124molecules at the interface. We noticed in the early stage of this
125study that these arrangements also evolved over time after the
126addition of the metal salt and that the equilibrium was reached
127after approximately 1 h. Figure 2c and 2d show the
128arrangements of porphyrin 3b 1 h after addition of nickel(II).
129The formation of long linear ribbons (maximum length ca. 30
130nm) of porphyrins linked by nickel(II) can be visualized in
131Figure 2d. Note that similar observations of linear ribbons were
132available for both a premixed solution of Ni(II) and 3b as well
133as after in situ addition of Ni(II) to the deposited solution of
1343b on the HOPG surface. These results suggest that oligomers
135observed for the in situ experiment might be preferentially
136formed in solution and then compete with monomers
137adsorbed at the interface.
138At the 1 mM concentration, most of the individual ribbons
139were not separated by alkyl chain areas and were densely
140 f3packed at the interface (Figure 3a), as shown by the measured
141distance between the neighboring ribbons (L2 = 1.6 ± 0.1 nm;
142Figure 3b). The interactions of the long aromatic systems with
143HOPG were large enough to keep the linear arrays on HOPG,
144and the alkyl chains were oriented toward the solution.
145Lowering stepwise the concentration from 1 mM to 0.05 mM

Figure 1. X-ray structure of compound 3c (Ar = PhC12H25).
Hydrogen bonds between the individual porphyrins are schematically
drawn in light blue, d(Ni−Ni) = 14.339 Å (left). Right: expected
formation of nickel(II)-connected porphyrin nanoribbons.

Figure 2. STM height images of compound 3b (Ar = PhC18H37)
before (a, b) and after the addition of nickel(II) (c, d) at the HOPG/
phenyloctane interface (c = 1 mM). Pairs are highlighted with
brackets in (b). Proposed molecular models were superimposed on
the STM images in (b) and (d). In (d), the C18 alkyl chains were
replaced by CH3 groups. Arrows indicate the HOPG lattice directions.
Tunneling conditions: (a) I = 1.1 pA, V = −103 mV, (b) I = 1.2 pA, V
= −164 mV, (c) I = 1.6 pA, V = −989 mV, (d) I = 1.4 pA, V = −818
mV.
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146 gave images with more sparsely packed areas (see Figure 3). At
147 a concentration of 0.1 mM, well-separated ribbons were
148 formed almost exclusively. The distance L3 between them was
149 2.7 ± 0.1 nm, which was almost identical to the value of L1

150 found for 3b without Ni(II). This result suggests that the
151 nanoribbons are adsorbed on the HOPG with the assistance of
152 alkyl chains, which are packed between the porphyrin rows.
153 It is not possible to compare studies in solution with studies
154 at the HOPG/liquid interface. However, in order to have an
155 idea of the electronic structure of the linear arrays at the
156 surface, solution experiments were performed at concen-
157 trations close to those used earlier to generate the nanoribbons
158 at the interface. An equimolar amount of Ni(acac)2 was added
159 to a toluene solution of porphyrin 3b in a thin quartz cell. The
160 electronic spectrum was recorded as a function of time. The

f4 161 results of the first measurements are depicted in Figure 4. As
162 the complexation reaction progressed in solution, a bath-
163 ochromic shift of all absorption bands was observed. The

164reaction could not be monitored to completion because the
165metal ion linked oligoporphyrins formed after addition of
166Ni(acac)2 were also adsorbed on the quartz faces of the
167cuvette, giving rise to light-diffusion phenomena. However, the
168evolution of the first four spectra clearly indicated that strong
169interactions between porphyrin subunits linked by nickel(II)
170ions were present in the oligoporphyrins. A flattening and
171broadening of the bands in the Soret area (from 450 to 600
172nm) and a bathochromic shift of the Q bands to wavelengths
173higher than 900 nm are the signature of strong electronic
174interactions between the aromatic π-electrons of each
175individual porphyrin induced by the participation of the d
176orbitals of the linking metal ions.
177To demonstrate that this approach was not limited to
178porphyrin 3b, centro-symmetric porphyrin monomer 2b (Ar =
179PhC18H37) was also prepared. Once more, the self-assembly of
180the individual molecules was studied at the HOPG/liquid
181interface. The STM images obtained for millimolar phenyl-
182octane solutions of 2b were not as well resolved as for
183 f5porphyrin 3b (see Figure 5a). However, to see if the
184oligoporphyrins could be constructed and visualized at the
185interface, the same procedure described earlier for 3b was
186followed. The STM images in Figure 5b clearly showed that,
187again, long linear nanoribbons of porphyrins were present at
188the interface. As observed before for 3b, large areas of the
189surface were occupied by alkyl chains for monomer 2b, but
190upon addition of Ni(acac)2, the porphyrin nanoribbons were
191again densely packed on the surface.
192In conclusion, we have demonstrated that long linear
193porphyrin nanoribbons can be constructed at the HOPG/
194liquid interface by using a combination of weak interactions
195(hydrogen bonds, van der Waals interactions with the surface
196and/or between alkyl chains) and also stronger coordination
197linkages. By combining these two factors, the best of both

Figure 3. STM height images of porphyrin 3b at different concentrations after addition of 1 equiv of nickel(II). Assuming a similar orientation of
the alkyl chains (as in Figure 2b), a molecular model of linear ribbons with sparse packing was superimposed on the STM image in (f).
Concentrations of the solution are indicated on each STM image. Tunneling conditions: (a) I = 1.0 pA, V = −752 mV, (b) I = 2.0 pA, V = −948
mV, (c) I = 1.9 pA, V = −740 mV, (d) I = 3.8 pA, V = −823 mV, (e) I = 2.4 pA, V = −942 mV, (f) I = 3.1 pA, V = −744 mV, (g) I = 1.0 pA, V =
−1000 mV, (h) I = 5.0 pA, V = −1000 mV.

Figure 4. Electronic spectra of monomer 3b as a function of time after
addition of 1 equiv of Ni(acac)2 in toluene (t = 0, 5, 20, and 60 min).
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198 worlds was reached, i.e. the rapid reversibility of the weak
199 interactions followed by stable coordination linkages. The
200 coordination linkages (divalent metal ions + enaminoketone
201 chelating ligands) used in this study also present the advantage
202 of adding electronic communication between the subunits in
203 addition to their connecting role.
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