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Estimating the division rate from indirect measurements of single cells

Is it possible to estimate the dependence of a growing and dividing population on a given trait in the case where this trait is not directly accessible by experimental measurements, but making use of measurements of another variable? This article adresses this general question for a very recent and popular model describing bacterial growth, the so-called incremental or adder model. In this model, the division rate depends on the increment of size between birth and division, whereas the most accessible trait is the size itself. We prove that estimating the division rate from size measurements is possible, we state a reconstruction formula in a deterministic and then in a statistical setting, and solve numerically the problem on simulated and experimental data. Though this represents a severely ill-posed inverse problem, our numerical results prove to be satisfactory.

Introduction

The field of structured population equations has attracted much interest for more than sixty years, leading to substantial progress in their mathematical understanding. These equations describe a population dynamics in terms of well-chosen traits, which offer a relevant characterization of the individual behaviour. More recently, thanks to considerable progress in experimental measurements, the question of estimating the parameters from single-cell measurements also attracts a growing interest, since it finally allows comparing models model and data, and thus investigating which variable is biologically relevant as a structuring variable -see for instance [START_REF] Robert | Division in Escherichia coli is triggered by a size-sensing rather than a timing mechanism[END_REF] for the application to age-structured and size-structured models for bacterial growth.

However, the so-called structuring variable of the model may be quite abstract ("maturity", "satiety"...), and/or not directly measurable, whereas the quantities that are effectively measured may be linked to the structuring one in an unknown or intricate manner. As an illustration of this idea, we can cite the interesting series of articles by H.T. Banks and co-authors, concerning the estimation of the division rate in data sets where the measured quantity was the fluorescence (carboxyfluorescein succinimidyl ester (CFSE)) of the cells. Initially, they designed a fluorescencestructured model [START_REF] Banks | Estimation of cell proliferation dynamics using cfse data[END_REF], but then the estimated division rates appeared difficult to interpret biologically. Indeed, the fluorescence was artificially added to the cells, thus it was not structuring: the

The incremental model for bacterial growth

Let us denote u(t, a, x) the density of cells at time t of size x which have an increment a = x -y between their actual size x and their size at birth y. We denote this increment a as it may be viewed as a kind of age, since it increases monotonically and starts at zero at birth -but an age that would have a link with the size: if g(x) denotes the growth rate of a cell of size x, its "aging rate" is also g(x). We have the following increment-and-size model, as proposed in Taheri-Araghi et al. [START_REF] Sattar | Cell-size control and homeostasis in bacteria[END_REF] for bacteria, and also designed in a different context by Hall et al. in [START_REF] Hall | Steady size distributions for cells in one-dimensional plant tissues[END_REF] : ∂ ∂t u(t, a, x) + ∂ ∂a (g(x)u(t, a, x)) + ∂ ∂x (g(x)u(t, a, x)) + g(x)B(a, x)u(t, a, x) = 0, (1) g(x)u(t, 0, x) = 4 ∞ 0 g(2x)B(a, 2x)u(t, a, 2x)da, g(0)u(t, a, 0) = 0, u(0, a, x) = u in (a, x).

(2)

The instantaneous probability to divide is, as in [START_REF] Hall | Steady size distributions for cells in one-dimensional plant tissues[END_REF], g(x)B(a, x) for a cell of size-increment a and size x. From a modelling point of view, writing the division rate as the product of g and a function B allows us to interpret B as the instantaneous probability to divide in a unit of growth instead of a unit of time. This is coherent with the fact that the cell may ignore the "time" and use its growth as a clock. As will be explained below, in the case proposed by Taheri-Araghi et al. [START_REF] Sattar | Cell-size control and homeostasis in bacteria[END_REF] where B(a, x) = B(a), this is also coherent with a much simpler and more natural underlying piecewise deterministic Markov process (PDMP), where the time of division is a simple renewal process of jump rate B(a), so that the increments of dividing cells are mutually independent and distributed according to the density f B (a) = B(a) exp -a 0 B(s)ds .

Asymptotic behaviour of the incremental model

Under suitable assumptions on the coefficients g and B (for instance the theorem 3.7. of [START_REF] Doumic | Analysis of a population model structured by the cells molecular content[END_REF] may be adapted and provides a proof for smooth growth and division rates, and most recently [START_REF] Gabriel | Steady distribution of the incremental model for bacteria proliferation[END_REF] studies the case g(x) = x, with fairly general division rate B), we have a dominant eigentriplet (λ, U, φ) unique solution of

λU (a, x) + ∂ ∂a (g(x)U (a, x)) + ∂ ∂x (g(x)U (a, x)) + g(x)B(a)U (a, x) = 0, (3) 
g(x)U (0, x) = 4 ∞ 0 g(2x)B(a)U (a, 2x)da, g(0)U (a, 0) = 0, (4) 
λφ(a, x) -g(x) ∂ ∂a φ(a, x) -g(x) ∂ ∂x φ(a, x) + g(x)B(a)φ(a, x) = 2g(x)B(a)φ(0, x 2 ), (5) 
λ > 0, φ ≥ 0, U ≥ 0, U (a, x)dadx = 1, U (a, x)φ(a, x)dadx = 1. (6) 
Moreover, using for instance the general relative entropy inequalities, we have under some more assumptions (theorem 4.5. in [START_REF] Doumic | Analysis of a population model structured by the cells molecular content[END_REF])

|u(t, a, x)e -λt - u in (a, x)φ(a, x)dadx U (a, x)|φ(a, x)dadx → t→∞ 0.
Let us however notice that under the assumption made in [START_REF] Sattar | Cell-size control and homeostasis in bacteria[END_REF], namely that g(x) = x, this precise asymptotic behaviour fails to happen and a cyclic behaviour is observed, as already proved for the growth-fragmentation equation [START_REF] Bernard | Cyclic asymptotic behaviour of a population reproducing by fission into two equal parts[END_REF][START_REF] Greiner | Growth of cell populations via one-parameter semigroups of positive operators[END_REF]. This corresponds to an idealised case; in reality, there is always some variability, leading to a growth slightly different from perfectly exponential and to a division into two slightly unequal parts, see for instance [START_REF] Robert | Division in Escherichia coli is triggered by a size-sensing rather than a timing mechanism[END_REF]. From a numerical perspective, this slight "imperfection" has to be included, else the cyclic behaviour will perturb the results, see Section 3 for more details.

Mathematical formulation of the inverse problem

From now on, we denote U by U B to underline the dependence in the unknown division rate.

Let us assume that we measure the steady size-distribution, which is modeled by the marginal

U B,x (x) = ∞ 0 U B (a, x)da.
Such a measurement may be done for instance via a sample of n cells for which we measure their sizes (x 1 , • • • , x n ), assumed to be the realization of an i.i.d. sample distributed along U B,x , in the spirit of Doumic, Hoffmann, Reynaud-Bouret and Rivoirard [START_REF] Doumic | Nonparametric estimation of the division rate of a size-structured population[END_REF]. We also assume division into two equally-sized daughters, as modelled in [START_REF] Antonio | Topics in inverse problems. Publicações Matemáticas do IMPA[END_REF], and that g(x) and λ are already known from an independent measurement or previous knowledge. Typically, λ may be measured through the time evolution of the total mass, which is classical in biology [START_REF] Monod | The growth of bacterial cultures[END_REF], and under the consensual assumption of exponential growth g(x) = τ x, we have λ = τ. In this article, we do not consider the noise in the measurement of λ and g, which could be included in future work.

The problem we want to solve in order to have a fully determined model is:

Given λ, g(•) and given measurements of x → U B,x (x), can we estimate the division rate a → B(a)?

In Section 1, we provide an explicit though intricate formula for the estimation of B from U B , without taking the noise into account. We then provide a statistical estimator in Section 2, numerically implemented in Section 3 both on simulated data and real data. These numerical results provides us with clues concerning directions for future work, which we comment in the discussion (Section 4).

1 Reconstruction formula in a deterministic setting Before providing the reconstruction formula for B, let us introduce some useful notation. As standard in the field of renewal processes, we introduce the probability distribution function f B and the survival function S B of the increments of dividing cells:

f B (a) := B(a) exp(- a 0 B(s))ds, S B (a) := ∞ a f B (s)ds = e - a 0 B(s)ds . (7) 
Symetrically, we introduce the size-distribution of dividing cells, that we denote

L B L B (x) = x 0 g(x)B(a)U B (a, x)da. (8) 
As shown below, the function L B is an important intermediate to formulate B from the measurement of U B,x . Though we cannot write it as an explicit function of U B,x , it can be obtained in a similar way as the distribution of dividing cells for the size-structured equation, see [START_REF] Doumic | Numerical solution of an inverse problem in sizestructured population dynamics[END_REF].

Lemma 1. Let g be a positive continuous function on (0, ∞), λ ≥ 0, and U B,x a positive function on (0, ∞) such that λU B,x + d dx (gU B,x ) ∈ L 2 (x p dx) with p ∈ [0, ∞) \ {3}. Then there exists a unique solution

L B ∈ L 2 (x p dx) such that λU B,x (x) + d dx (gU B,x (x) = 4L B (2x) -L B (x), (9) 
and there exists C p > 0 such that

L B L 2 (x p dx) ≤ C p λU B,x + d dx (gU B,x ) L 2 (x p dx) .
If moreover there exists

U B ∈ W 1,1 ((0, ∞) × (0, ∞)) solution of the system (3)-(4) such that U B,x = ∞ 0
U B (a, x)da, then this unique solution coincides with the size-distribution of dividing cells defined by [START_REF] Cadart | Size control in mammalian cells involves modulation of both growth rate and cell cycle duration[END_REF].

Proof. The existence, uniqueness and continuity part directly follows from [START_REF] Doumic | Numerical solution of an inverse problem in sizestructured population dynamics[END_REF] Proposition A.1.

If U B is solution to (3)-( 4) , we integrate Equation (3) along the increment a, use the boundary condition (4), and obtain Equation ( 9) with L B defined by [START_REF] Cadart | Size control in mammalian cells involves modulation of both growth rate and cell cycle duration[END_REF].

With this lemma, we see that the estimation of L B from U B,x is an inverse problem of degree of ill-posedness 1 when stated in a space L 2 (x p dx) (degree 3/2 in the framework of a statistical noise [START_REF] Doumic | Nonparametric estimation of the division rate of a size-structured population[END_REF][START_REF] Nussbaum | The degrees of ill-posedness in stochastic and deterministic noise models[END_REF]), as already known from [START_REF] Perthame | On the inverse problem for a size-structured population model[END_REF]. Interestingly, we remark that this would remain true also if the division rate would depend on other structuring variables, as soon as the growth rate and the division kernel are known: this allows one to reconstruct the size distribution of dividing cells from the size distribution of all cells, in any framework.

We are now ready to formulate B in terms of U B,x , L B , and the parameters λ and g. This is done in the next proposition.

In all what follows, we denote by f * the Fourier transform of a function f :

f * (ξ) = +∞ -∞ f (x)e ixξ dx.
Proposition 1. Let B and g be such that there exists a unique positive eigentriplet (λ, U B , φ B ) solution of the eigenproblem (3)- [START_REF] Bourgeron | Estimating the division rate of the growthfragmentation equation with a self-similar kernel[END_REF]. Let us furthermore assume λU B,x + d dx (gU B,x ) ∈ L 2 (x p dx) and define L B as the unique solution of Equation [START_REF] Campos | A constant size extension drives bacterial cell size homeostasis[END_REF] given by Lemma 1.

We define f B and S B by [START_REF] Brikci | Analysis of a molecular structured population model with possible polynomial growth for the cell division cycle[END_REF]. We define two intermediate functions N B and G B by

G B (y) = 4e λG(y) L B (2y), N B (y) = g(y)e λG(y) U B,x (y), (10) 
with G(x) an anti-derivative of 1/g(x). We assume that N * B and G * B are the well-defined Fourier transforms of N B and G B .

We have the following reconstruction formula for B in terms of λ, U B,x and g :

B(a) = f B (a) S B (a) = +∞ -∞ 1 + iξ N * B (ξ) G * B (ξ) e -iaξ dξ +∞ a +∞ -∞ 1 + iξ N * B (ξ) G * B (ξ) e -isξ dξ ds , ( 11 
)
provided that all the inverse Fourier transforms are well defined and that neither G * B nor the denominator vanishes.

Corollary 1. Under the assumptions of Proposition 1, if g(x) = τ x we have λ = τ , G B (y) = 4yL B (2y) and N B (y) = τ y 2 U B,x (y).

Remark 1. At this stage, the reconstruction formula is formal: to give it a rigorous meaning and ensure its validity, we would have to prove that all the quantities are well-defined, in particular that the Fourier transform G * B never vanishes. This requires a full study per se, and is beyond the scope of this work: in another case study, this has been done for instance for the estimation of the fragmentation kernel of the growth-fragmentation equation in the article [START_REF] Doumic | Estimating the division rate and kernel in the fragmentation equation[END_REF], using the Cauchy integral to prove that a Mellin transform never vanishes, proof adapted to another case in [START_REF] Hoang | Nonparametric estimation of the fragmentation kernel based on a PDE stationary distribution approximation[END_REF]. For these two cases however, the proofs used strongly an explicit formulation of the solution with the use of Mellin or Fourier transforms, thanks to the fact that B was a power law in [START_REF] Doumic | Estimating the division rate and kernel in the fragmentation equation[END_REF], and constant in [START_REF] Hoang | Nonparametric estimation of the fragmentation kernel based on a PDE stationary distribution approximation[END_REF]. We let it for future work.

Proof. The aim is to use the classical formula

B(a) = f B (a)
S B (a) , and to find a formulation for f B in terms of U B,x , then express S B as its integral.

First step. Formulating U B,x in terms of λ, g, L B and B.

As done for the study of the eigenvalue problem carried out for instance in [START_REF] Doumic | Analysis of a population model structured by the cells molecular content[END_REF][START_REF] Gabriel | Steady distribution of the incremental model for bacteria proliferation[END_REF], we can classically obtain a formulation of U B (a, x) in terms of L B . We first write Equation ( 4) under the form

g(x)U B (0, x) = 4L B (2x), (12) 
and then use the method of characteristics to solve (3) and [START_REF] Doumic | Analysis of a population model structured by the cells molecular content[END_REF]. We define an intermediate function

C(a, x) = g(x)U B (a, x) solution of ∂ ∂a C(a, x) + ∂ ∂x C(a, x) + λ g(x) + B(a) C(a, x) = 0, we define C(a, x) = C(a, x + a)e a 0 λ g(x+s) +B(s) ds , which satisfies ∂ ∂a C(a, x) = 0, so that C(a, x + a)e a 0 λ g(x+s) +B(s) ds = C(0, x),
which gives for U B :

g(y)U B (a, y) = g(y-a)U B (0, y-a)e - a 0 λ g(y-a+s) +B(s) ds = 4L B 2(y-a) e - a 0 λ g(y-a+s) +B(s) ds , (13) 
using [START_REF] Doumic | Analysis of a population model structured by the cells molecular content[END_REF] for the last equality. We integrate the equation ( 13) in a and obtain 

g(y)U B,x (y) = y 0 4L B 2(y -a) e
We define G B by [START_REF] Deforet | Cell-size homeostasis and the incremental rule in a bacterial pathogen[END_REF], thus Equation ( 14) is nothing but Extending all the functions on R -by zero (with a slight abuse of notation, we keep the same notation for the function and for its extension), we rewrite [START_REF] Doumic | Nonparametric estimation of the division rate of a size-structured population[END_REF] in the Fourier domain, and for ξ ∈ R such that G * B (ξ) = 0:

N B (x) = G B S B (x). ( 15 
N * B = G * B S * B =⇒ S * B (ξ) = N * B G * B (ξ).
Since f B is a probability density for which we assume continuity around 0 and f B (0 = 0, we can extend it continuously by 0 on R -, we have f * B (0) = 1, and and since f B = -dS B da for a > 0 we get

f * B = 1 + iξS * B = 1 + iξ N * B (ξ) G * B (ξ) , for ξ ∈ R such that G * B (ξ) = 0.
The 1 expresses the Fourier transform of the discontinuity of the prolongation of S B in 0, since S B (0 + ) = 1; however, this term should be compensated by iξ

N * B (ξ) G * B (ξ) , since we have assumed f B (0) = 0.
Fourth step. Inverse Fourier transforms. f B and S B are given by the formulae

f B (a) = 1 2π +∞ -∞ 1 + iξ N * B (ξ) G * B (ξ) e -iaξ dξ and S B (a) = +∞ a f B (s)ds,
provided all these quantities exist, and we have proved the formula [START_REF] Doumic | Analysis of a population model structured by the cells molecular content[END_REF].

Remark 2. An alternative formula for B(a) would be obtained using a direct formula for the survival function,

S B (a) = 1 2π +∞ -∞ N * B G * B (ξ)e -iaξ dξ.
2 Statistical setting: estimation procedure

Let us assume that we have a sample X 1 , . . . , X n independent and identically distributed according to U B,x . This idealizes the case where, for instance, a picture of all individuals at a given time is taken, and their sizes experimentally measured. We give here a procedure to estimate B from such a sample.

Estimation of G B

Step 1. Estimation of U B,x by a kernel estimator

U n,x (y) = 1 n n j=1 K h 1 (y -X j ) with K h 1 (•) = h -1 1 K(h -1 1 •). Estimation of D(y) = gU B,x (y) by D n (y) = 1 n n j=1 g(X j )K h 2 (y -X j ).
For the choice of the regularization parameters h 1 = h 1,n and h 2 = h 2,n , see Section 3.

Step 2. Inversion of ( 9) replacing the left-hand side by λ U n,x (y) + D n (y). We obtain L n (y) an estimator of L B (y). For this step, we follow [START_REF] Bourgeron | Estimating the division rate of the growthfragmentation equation with a self-similar kernel[END_REF], and concatenate the inverse given in Lemma 1 in L 2 (dx) for x ≤ x, that we denote L n,l (y), with the inverse in L 2 (x 4 dx), denoted L n,r (y), for x ≥ x, for a given (to be determined numerically) x > 0: we set

L n (y) = L n,l (y)1l x≤x + L n,r (y)1l x>x .
Step 3. We deduce an estimator of G B (y) using its definition [START_REF] Deforet | Cell-size homeostasis and the incremental rule in a bacterial pathogen[END_REF]: 

G n (y) = 4e λG(y) L n (2y).
N * B (ξ) = ∞ 0 g(x)e λG(x) e ixξ U B,x (x)dx,
which can be estimated by

N * n (ξ) = 1 n n j=1
g(X j )e λG(X j ) e iX j ξ .

When growth is exponential i.e. in the specific case g(x) = τ x, we have λ = τ and G(x) = ln(x)/τ . Thus the previous formula simplifies into

N * n (ξ) = τ n n j=1 (X j ) 2 e iX j ξ .
Estimation of G * B . We compute the Fourier transform of G n (y) (see Section 3 for the practical details). It gives us an estimator G * n of G * B (y).

Estimation of the Fourier transform f *

B

We have an estimator of the Fourier transform of f B by

f * n (ξ) = 1 + iξ N * n (ξ) G * n (ξ) 1 Ωn (ξ)
with

Ω n = {ξ ∈ R; | G * n (ξ)| ≥ ξ}, with ξ = ξ n a well-adapted threshold.
2.4 Inverse Fourier transforms to estimate S B and f B .

Estimators of f B and S B are

f n,h 3 (a) = 1 2π 1/h 3 -1/h 3 f * n (ξ)e -iaξ dξ and S n,h 3 (a) = ∞ a f n,h 3 (s)ds
with h 3 = h 3,n a parameter of regularization to be well-chosen (see Section 3).

Reconstruction of B.

Finally the division rate B can be estimated at a given point a by

B n,h (a) = f n,h (a) S n,h (a) ∨ 2 = 1/h -1/h 1 + iξ N * n (ξ) G * n (ξ) 1 Ωn (ξ) e -iaξ dξ +∞ s 1/h -1/h 1 + iξ N * n (ξ) G * n (ξ)
1 Ωn (ξ) e -isξ dξ ds ∨ with = n a well-adapted threshold.

Remark 3. Following Remark 2, an alternative estimator of B would be obtained using

S n,h 4 (a) = 1 2π 1/h 4 -1/h 4 S * n (ξ)e -iaξ dξ where S * n (ξ) = N * n G * n (ξ)1 Ωn (ξ)
with h 4 = h 4,n a regularization parameter to be well-chosen. Note that such a procedure would not guarantee the decaying property of S B , or yet the fact that f B = -S B , S B (0) = 1 and S B (∞) = 0.

3 Numerical study

Numerical implementation

For a given estimator ĝ of a function g (with real or complex values), we evaluate ĝ on a regular grid with mesh ∆t and compute the empirical error as

e = ĝ -g 2,∆t g 2,∆t
where • 2,∆t is the L 2 -discrete norm over the numerical sampling.

Choice of the regularization parameters

In the aboveseen formulae, we have distinguished five successive steps, and several regularization parameters which need careful implementation: h 1 , h 2 and x for the estimation of L B ; h 3 for the integration domain of the inverse Fourier transform; and the thresholds ξ and to avoid explosion when the denominators vanish in the formulae. Each of the five steps have been tested separately, and we discuss below practical ways to determine such regularization parameters.

• The parameter h 1 is either automatically chosen by the kernel smoothing function ksdensity of Matlab, or chosen via an adaptive method such as Goldenschluger and Lepski, or Penalized Comparison to Overfitting (PCO) most recently introduced [START_REF] Lacour | Estimator selection: a new method with applications to kernel density estimation[END_REF][START_REF] Varet | Numerical performance of penalized comparison to overfitting for multivariate kernel density estimation[END_REF]. Similarly for h 2 , we can use an adaptive method or choose it a priori, in relation with h 1 -for instance, if we have the a priori that U B,x ∈ H 1 , the order of an optimal choice for h 1 will be O(n

-1 3 ), for h 2 it is O(n -1 5
), so that we can choose a priori h 2 = h 1 .

• To compute x, we refer to the previous studies [START_REF] Bourgeron | Estimating the division rate of the growthfragmentation equation with a self-similar kernel[END_REF][START_REF] Robert | Division in Escherichia coli is triggered by a size-sensing rather than a timing mechanism[END_REF]. Since for any estimation U B,x ∈ H 1 ((1 + x p )dx) ∩ W 1,∞ with p > 3 the unique solution L 0 B in L 2 (dx) to Equation ( 9) is also in L 1 ∩ L ∞ , which is not the case for the unique solution L p B in L 2 (x p dx), we keep the solution in L 2 (x p dx) only for the right-hand tail of the distribution, which leads us to define x as

x := argmin x≥x 0 max | L p B -L 0 B |, x 0 max := argmax x≥0 L 0 B .
• The key parameter h 3 is chosen in an oracle way, that is to say that we minimise in h the criterion

e(h) = fn,h -f B 2,∆a f B 2,∆a . 
This oracle choice requires the knowledge of f B , which is impossible in practice, but our aim here is to learn how well our procedure can do (in ideal conditions, when the tuning parameters can be chosen perfectly). In practice we have set ξ = 0, since the regularization by h 3 suffices numerically. We chose n = 1/n.

Use of the regularity properties of the functions

The protocol described in Section 2 does not guarantee important properties of the functions, such that the positivity of f B and B, and f B da = 1. All these characteristics will be enforced in the numerical study to improve qualitatively the results.

Coming back to the first steps (Table 1) we observe that Protocol 2 achieves errors below 5%, whereas Protocol 1 leads to 10% error for the reconstruction of the density f B . Is this due to error compensation when computing the ratio in the reconstruction formula of Section 2.3? Figure 3d shows that the reconstruction of the Fourier transform of the density is good in modulus for frequency |ξ| < 5 for Protocol 2, whereas the reconstruction by Protocol 1 deteriorates from smaller frequencies (around ξ = ±3). Both protocols underestimate the maximum of the density f B , but this is amplified using Protocol 1. As a consequence of the bias in the estimation of the density f B , we observe a bias in the estimation of the division rate B. It is slightly overestimated for increments of size lower than 1 and underestimated beyond.

Protocol 3 -Reconstruction of B when U B,x is reconstructed from X 1 , . . . , X n i.i.d. ∼ U B,x and L B is given with highest accuracy.

See Figure 4 for the different steps of the protocol. See Figures 5,8 and 10 for results.

Protocol 4 -Reconstruction of B from X 1 , . . . , X n i.i.d. ∼ U B,x .
See Figure 6 for the different steps of the protocol. See Figures 7,8 and 10 for results. Protocols 3 and 4 have been repeated M = 100 times for each tested n ranging from 500 to 50 000. This enables us to obtain empirical confidence intervals (CI) for the estimation of the division rate B and for the different intermediate reconstructions. As expected the computed 95%-CI shrink as n grows (Figure 8). The reconstruction of B is satisfactory on the range [0; 1.75] when n = 500, and slightly beyond 2 when n = 50 000. We observe the same bias as the one already mentioned for Protocols 1 and 2. It seems even amplified looking at the mean of the 100 reconstructions, to such an extent that the true division rate B(a) = a 2 is on the fringe of the 95%-CI when n = 50 000.

One can plot the mean error over the M = 100 reconstructions versus the sample size n in log-log scale (Figure 10). Doing so linear curves are obtained and the extracted-slopes give us the speeds in the decrease of the error (with respect to n) for our different reconstructions. The speeds are surprisingly slightly better for Protocol 4 than for Protocol 3, which is in line with the comparison of Protocols 1 and 2.

As regards Protocol 4, the speed for the estimation of U B,x is close to n -0.4 , which is expected (indeed (n 0 + 1)/(2(n 0 + 1) + 1) = 0.4 with n 0 = 1 the order of a Gaussian kernel). For the estimation of U B,x we expect (n 0 + 1)/(2(n 0 + 1) + 2) ≈ 0.33 and we obtain worse (slope of -0.25). The inversion step in order to obtain L B (and G B ) does not deteriorate this speed hugely (slope of -0.23). After the computation of the Fourier transform, the speed for the estimation of G B is of the same order (slope of -0.25). For the estimation of N B we obtain the expected slope -0.5 which corresponds to a parametric speed in n -1/2 . It is not possible to predict a priori the speed of a quotient estimator, and we obtain a slope of -0.24 for the estimation of f * B . We obtain a final speed of n -0.16 for the estimation of B (for Protocol 4). This is much more difficult to interpret these last speeds since the regularity of N B and G B comes in. We refer to the Discussion below and to Johannes [START_REF] Johannes | Deconvolution with unknown error distribution[END_REF] for general results on the quality of density estimators in a deconvolution problem when the "noise" law is unknown, generalizing results such as Fan [START_REF] Fan | On the optimal rates of convergence for nonparametric deconvolution problems[END_REF] when the "noise" law is known. See also the study of Belomestny and Goldenshluger [START_REF] Belomestny | Nonparametric density estimation from observations with multiplicative measurement errors[END_REF] in the case of a multiplicative measurement error leading to the use of Mellin transform techniques (instead of an additive error leading to the use of Fourier transform ones).

Last but not least we observe a saturation of the error for very large n (n ≥ 20 000 in Protocol 3 and n ≥ 30 000 in Protocol 4). Thus the slopes were computed taking into account this effect when necessary (removing the last points).

Numerical results on experimental data

We now turn to experimental data of bacterial growth to test the method. In the corresponding experiments cells are followed through time and the joint distribution of instantaneous size and size increment is estimated, as well as the joint distribution of size and size increment of dividing cells. This allows us to compare our results obtained through our indirect method with a direct estimation of the division rate B(a) from kernel density estimation of f B (a) and S B (a).

The dataset we analysed comes from a single-cell experimental study on E. coli growth, performed by Stewart et al. [START_REF] Stewart | Aging and death in an organism that reproduces by morphologically symmetric division[END_REF], and we used the data analysis performed in [START_REF] Robert | Division in Escherichia coli is triggered by a size-sensing rather than a timing mechanism[END_REF] (see Methods -data analysis). Following the results of [START_REF] Robert | Division in Escherichia coli is triggered by a size-sensing rather than a timing mechanism[END_REF], we can assume here that all cells grow with approximately the same growth rate g(x) = τ x with τ = 0.0275min -1 . Corollary 1 then states that we have G B (y) = 4yL B (2y) and N B (y) = τ y 2 U B,x (y).

The experimental sample contains n = 31, 333 measurements of cell sizes. We perform a kernel density estimation with h 1 = 0.125 on Figure 11a to display it (Step 1 of the estimation procedure, Section 2.1).

The second step consists in the estimation L n of the size distribution of dividing cells L B , through the numerical solution of Equation ( 9) (Step 2 of the procedure, Section 2.1). In our case of a rich dataset, we also have access to a sample of n d = 1, 679 dividing cells, so that we can compare our estimation with the kernel density estimation of this sample (done here with h d = 0.167): we denote this estimate L h d n d , and both are displayed in Figure 11b. We see that this approximation is relatively satisfactory, though far from being perfect. The distance between the two distributions has two main reasons. First, the sample of dividing cells may be noisier than the sample of all cells: since the measurement is done only on time intervals of 2min, there is an error due to the size growth of the cell during these 2min. Second, the cells may not all grow at exactly the same growth rate τ (see Figure S4 in [START_REF] Robert | Division in Escherichia coli is triggered by a size-sensing rather than a timing mechanism[END_REF]) so that Equation ( 9) is an approximation, see for instance [START_REF] Doumic | Statistical estimation of a growthfragmentation model observed on a genealogical tree[END_REF] for a more complete model including growth rate variability. However, we also note that this way of computing the size distribution of cells remains valid even if the division rate would depend on other variables, so that Equation ( 9) allows one to estimate the size distribution of dividing cells from the measurement of a size sample, provided the approximation of homogeneous growth rate is valid, and if this growth rate is measured independently.

For the following steps, we do not have a direct way to compare the Fourier transforms of the intermediate functions G B and N B to directly measured quantities, but we can estimate f B (and

so S B = ∞ a f B (s)ds and B = f B
S B , as classically done for renewal processes) from the increment-andsize experimental distribution of dividing cells. Let us recall that f B is not equal to the increment distribution of dividing cells, due to the well known bias selection effect [START_REF] Hoffmann | Nonparametric estimation of the division rate of an age dependent branching process[END_REF][START_REF] Robert | Division in Escherichia coli is triggered by a size-sensing rather than a timing mechanism[END_REF] of keeping the two daughter cells at each division step. However, for the specific case of a linear growth rate, we have an easy relation between the increment-and-size distribution of dividing cells and f B . We notice that the function U 1 (a, x) := xU (a,x) xU (a,x)dadx ≥ 0, is solution of the system

∂ ∂a (g(x)U 1 (a, x)) + ∂ ∂x (g(x)U (a, x)) + g(x)B(a)U 1 (a, x) = 0, (16) 
g(x)U 1 (0, x) = 2 ∞ 0 g(2x)B(a)U 1 (a, 2x)da, g(0)U 1 (a, 0) = 0, ( 17 
)
U ≥ 0, U (a, x)dadx = 1, (18) 
which defines the increment-and-size distribution of all cells in the conservative case, i.e. when only one child is kept at each division. We thus have

f B (a) = τ xB(a)U 1 (a, x)dx τ xB(a)U 1 (a, x)dadx = x(xB(a)U (a, x))dx x 2 B(a)U (a, x)dadx ,
and we notice that this formula is nothing but a weighted average of

xB(a)U (a,x)
xB(a)U (a,x)dadx , which is the increment-and-size distribution of dividing cells taken in experimental conditions, that is, when the two children are kept at each division (for a more detailed explanation on the links between the two points of view, we refer to [START_REF] Doumic | Statistical estimation of a growthfragmentation model observed on a genealogical tree[END_REF], Section 4.2). All these considerations provide us with the following estimate of f B from the increment-and-size sample of dividing cells: let us denote (A j , X j ) 1≤j≤n d the 2-dimensional sample of increment A and size X at division, that we assume to behave as if (A j , X j ) were independent identically distributed according to the probability law

xB(a)U (a,x) xB(a)U (a,x)dadx : we have f B,n d (a) := 1 n d n d j=1 K h d (a -A j )X j .
In Figure 12a we compare f B,n to a kernel density estimation of the increment distribution of dividing cells; and finally in Figure 12b we compare our estimator

B n to B n d = f B,n d ∞ a f B,n d (s)ds∨ 2
. If the results may be viewed as qualitatively in agreement, they are not fully satisfactory, and especially not comparable with the results obtained on simulated data. The reasons may be twofold. First, modeling errors: the incremental model is in good agreement with the data but cannot completely describe the full complexity of the biological process, including all potential fluctuations Second, our problem being severely-ill posed, even if the results on simulated data are of good quality, we did not take into account the experimental noise, which is due to errors and/or imprecision of image analysis, leading to noise in size measurement and division timing, and to the sampling in time (which affects only the measurements on dividing cells), with a time step that is only ten times less than the cell generation time. This means that relatively important differences in the increment distribution of dividing cells / in the increment-structured division rate, may lead to differences on the size distribution of all cells which, for this level of noise, are not significant.

Discussion

In this article, we have proposed an explicit reconstruction formula to estimate the incrementstructured division rate of a population dividing by fission into two equal parts. The formula may be easily generalized to other types of division kernels, as done for the size-structured equation in [START_REF] Bourgeron | Estimating the division rate of the growthfragmentation equation with a self-similar kernel[END_REF]. Based on this formula, we designed and implemented a numerical protocol, which we used to investigate numerically which rates of convergence could be expected. We finally tested the method on experimental data; though our results reveal qualitatively satisfactory, they did not reach the precision obtained for simulated data. This highlighted inherent difficulties of the problem, which deserve to be further investigated. These difficulties are linked to two sources of noise, not yet adressed neither theoretically nor numerically: modelling error and single-cell measurement errors. Investigating the influence of modelling error, e.g. heterogeneity of cells with respect to growth rate or fragmentation kernel, or yet dependence of the division rate on another trait different from the increment, could give first insights in this direction. To take into account single-cell measurement errors, we need to add a deconvolution problem to our noise model, assuming for instance that we measure realizations of an i.i.d. sample Y i = X i + σξ i where X i are i.i.d. random variables distributed along U B,x and ξ i are i.i.d. normally distributed random variable, σ being the level of noise.

Let us now discuss some possible variants of the method, and directions to prove estimation inequalities.

Possible variants of the method

Instead of estimating L B from U B,x by Lemma 1, using L 2 (dx) for x < x and L 2 (x 4 dx) for x > x, and only then take its Fourier transform, we could use the following lemma 2: first define an estimate of the function Γ B from the sample, and then solve Equation [START_REF] Fievet | Single-cell analysis of growth and cell division of the anaerobe desulfovibrio vulgaris hildenborough[END_REF]. It seems attractive since the Fourier transform then admits a simple and explicit definition from the sample (X 1 , • • • X n ); but in practice, it appeared difficult to handle and would deserve a full study -in particular to determine, as for x, a convenient threshold ξ to use one or the other of the spaces L 2 (x p dx).

Lemma 2. Let G B defined by [START_REF] Deforet | Cell-size homeostasis and the incremental rule in a bacterial pathogen[END_REF], and G * B its Fourier transform. Then G * B is solution of the following equation

G * B (2ξ) = G * B (ξ) + Γ B (ξ) (19) 
with Γ B defined by

Γ B (ξ) = iτ ξ ∞ 0 x 2 e ixξ U B,x (x)dx. ( 20 
)
For Γ B ∈ L 2 (ξ p dξ) with p ≥ 0, this functional equation admits a unique solution G * B ∈ L 2 (ξ p dξ). Proof. At the view of ( 9) and ( 10) one immediately gets Let us compute the first term:

G * B (ξ) = ∞ 0 G B (x)e ixξ dx =
T 1 = ∞ 0 λe λG(x)+ixξ U B,x (x)dx + (gU B,x )(x)e λG(x)+ixξ ∞ x=0 - ∞ 0 (gU B,x )(x) λ g(x)
+ iξ e λG(x)+ixξ dx = -iξ ∞ 0 e λG(x)+ixξ g(x)U B,x (x)dx.

In order to treat the second term, we assume the growth is exponential i.e. g(x) = τ x. In this special case we have G(x) = ln(x)/τ and thus

G(2x) = G(2) + G(x). Then T 2 = 2 ∞ 0 e λG(2x) L B (2x)e i2xξ dx = 1 2 e λG(2) ∞ 0 4e λG(x) L B (2x)e ix(2ξ) dx = G * B (2ξ)
using at last e λG(2) = 2 since λ = τ . Gathering the two terms we obtain [START_REF] Fievet | Single-cell analysis of growth and cell division of the anaerobe desulfovibrio vulgaris hildenborough[END_REF]. The existence and uniqueness in L 2 (x p dx) for p = -1 directly follows from [START_REF] Doumic | Numerical solution of an inverse problem in sizestructured population dynamics[END_REF] Proposition A.1.applied to the equation transformed for

u(ξ) = 1 ξ 2 G * B (ξ), which satisfies 4u(2ξ) -u(ξ) = Γ B (ξ) ξ 2 ,
which admits a unique solution for Γ B x 2 ∈ L 2 (ξ q dξ) for q = 3, which is equivalent to Γ B ∈ L 2 (ξ p dξ) with p = -1. Since we have G * B (0) = ∞ 0 4yL B (2y)dy > 0 (it represents the average size of dividing cells), we are only interested in p ≥ 0.

The function Γ B can be easily estimated by Γ n (ξ) = iτ ξ n n j=1 X 2 j e iX j ξ truncated for |ξ| ≤ ξ. Then, in the same spirit as for the solution of (9), we could solve Equation ( 19) by writing

G * B (ξ) = - ∞ k=0 Γ B (2 k ξ), =⇒ G n = - N k=0 Γ n (2 k ξ), ∀ξ ∈ R,
but numerically it happens not to give better estimation results and to be less easily compared with the original function in the space state, so that we preferred the method explained above.

Other variants and improvements of the method would be to constraint the space of solutions for f n,h to the space of probability measures. This is done manually in our procedure, taking the positive and real part of the estimated inverse Fourier transform (see Section 2.3), but constrained optimization or projection on a finite-dimension space approximating probability measures could improve the results. This will be investigated in future work.

Estimation inequalities

To prove estimation inequalities, several difficulties appear, which give a roadmap for further investigation of the problem.

First, we have to prove that the denominator of our ratios in our inverse Fourier transforms, namely G * B , does not vanish. This has been done for related problems (estimation of the fragmentation kernel) in two recent papers, by using complex analysis methods (Lemma 1.iii in [START_REF] Hoang | Nonparametric estimation of the fragmentation kernel based on a PDE stationary distribution approximation[END_REF], Theorem 2.i in [START_REF] Doumic | Estimating the division rate and kernel in the fragmentation equation[END_REF]). In [START_REF] Doumic | Estimating the division rate and kernel in the fragmentation equation[END_REF], it was the central and most technical point of the study. Here however, the proof carried out in [START_REF] Hoang | Nonparametric estimation of the fragmentation kernel based on a PDE stationary distribution approximation[END_REF] based on the argument principal could probably be adapted.

Second, the deconvolution problem (15) appears as a deconvolution problem with unknown "noise", since G B plays the role of the noise. The difficulty is thus to investigate whether G B is ordinary smooth or super smooth, with the following definitions: The smoother the "noise", the more ill-posed the problem. Once a given order of magnitude for the decay of G * B assumed, speeds of convergence and orders of magnitude for the choice of the regularization constant h 3 may be classically obtained, see for instance [START_REF] Antonio | Topics in inverse problems. Publicações Matemáticas do IMPA[END_REF] (ch.4, Section 4.2.2). However, assuming a given decay for G * B means that we assume a certain degree of regularity -and no more -for G B , i.e. for L B , i.e. for the unknown B itself. If regularity results exist and can be extended to higher regularity by the chain rule for our equation, see e.g. [START_REF] Doumic | Analysis of a population model structured by the cells molecular content[END_REF][START_REF] Gabriel | Steady distribution of the incremental model for bacteria proliferation[END_REF], the reverse is false -results such as: if B is not derivable, then U B,x cannot be twice derivable. This shows the importance of designing a posteriori and adaptive methods. h for the following operator. For a suitable function f , 
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  a+s) +B(s) ds da. Second step. Formulating two deconvolution problems for S B and f B . Denoting by G an antiderivative of 1/g, and defining an intermediate function N B , the previous formula is equivalent to N B (y) := g(y)e λG(y) U B,x (y) = 4 y 0 e λG(y-a) L B 2(y -a) e -

)

  This is a deconvolution problem, where S B is the unknown. If we find estimators of N B and G B , we can reconstruct S B . Since f B = -d da S B , integrating by parts we can transform (15) into a deconvolution problem for f B . Third step. Solution of the deconvolution problems by Fourier transform.

2. 2

 2 Estimation of the Fourier transforms G * B and N * B Estimation of N * B . Recall Equation (14) giving the definition of N B . Then

∞ 0 4e 2 with T 1 = ∞ 0 e

 0210 λG(x) L B (2x)e ixξ dx = T 1 + T λG(x) λU B,x (x) + (gU B,x ) (x) e ixξ dx and T 2 = ∞ 0 e λG(x) L B (x)e ixξ dx.

••

  Ordinary smooth of order β: c 1 |t| -β ≤ |G * B (t)| ≤ c 2 |t| -β for any |t| ≥ M , for positive constants. Super smooth of order β: c 1 |t| γ 1 e -c 0 |t| β ≤ |G * B (t)| ≤ c 2 |t| γ 2 e -c 0 |t| β for any |t| ≥ M , for positive constants.
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  Figure 4: Protocol 3 -Reconstruction of B when U B,x is reconstructed from X 1 , . . . , X n i.i.d. ∼ U B,x but L B is (almost) exactly known. The oracle choice for h 3 gives us values that range between 1/3.25 for n = 500 and 1/4.75 for n = 50 000. We set n = 1/n.
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 10 Figure 10: Results of Protocols 3 and 4 -Reduction of the mean error over M = 100 samples (in logscale) in function of the sample size (from n = 500 to n = 50 000). Empirical errors are computed over the following regular grids: (a)-(e) [0; 6], ∆x = 6 500 ; (f)-(h) [-10; 10], ∆ξ = 0.05; (i)-(j) [0; 2.25], ∆a = 1 √ n ; (k) [0; 2], ∆a = 1 √ n .

Figure 11 :
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( a )Figure 12 :
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Table 1 :

 1 Errors of Protocols 1 and 2 for the intermediate steps.

	50;50]	[ -1 4.75 ; 1 4.75 ]	[0;5]	[0;5]

Table 2 :

 2 Reconstruction of B when both U B,x and L B are (almost) exactly known. The oracle choice for h gives us the value 1/4.75. Errors of Protocols 1 and 2 for B in function of the numerical sampling.

	Reconstruction of	B	B
	Numerical	[0;2]	[0;2.5 ]
	sampling	∆a = 0.01 ∆a = 0.01
	Protocol 1	0.0730	0.2065
	Protocol 2	0.0849	0.1321
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Numerical results on simulated data

In order to evaluate the quality of the reconstruction and the influence of each step of the protocol, we first studied separately each estimation necessary for the reconstruction of B. For the simulations, growth is exponential with rate 1, g(x) = x, so that λ B = 1. We choose for the division rate B(a) = a 2 for a ≥ 0. We thus immediately deduce formulae for the density f B and the survival function S B . We compute numerically the Fourier transform f * B . All Fourier and Inverse Fourier transforms were computed by an integral using the same scheme as in [START_REF] Bourgeron | Estimating the division rate of the growthfragmentation equation with a self-similar kernel[END_REF] (see Technical aspects of Section 4.1 in [START_REF] Bourgeron | Estimating the division rate of the growthfragmentation equation with a self-similar kernel[END_REF]).

Numerical solution for U B,x

To compute numerically the first eigenvector U solution of (3)-( 6), we follow the classical first order finite volume scheme proposed for instance in [START_REF] Brikci | Analysis of a molecular structured population model with possible polynomial growth for the cell division cycle[END_REF][START_REF] Doumic | Analysis of a population model structured by the cells molecular content[END_REF] for similar equations, renormalize the solution at each time step, and stop the iterations when the distribution has converged, the error between two successive steps being smaller than the precision desired. An important point is to allow the scheme to be slightly dissipative -which is the case by choosing a regular grid -contrarily to the one proposed for instance in [START_REF] Bernard | Cyclic asymptotic behaviour of a population reproducing by fission into two equal parts[END_REF], which would give rise to an oscillatory behaviour.

The solution U B,x is computed in our framework (g(x) = x and B(a) = a 2 ) with regular grids: size ranges from 0 to 6 and increment ranges form 0 to 3 with meshes ∆x = ∆a = 6/500. We require a precision of 0.01%. Besides the stationary distribution in size we compute the size-distribution of dividing cells L B . By formula [START_REF] Deforet | Cell-size homeostasis and the incremental rule in a bacterial pathogen[END_REF] For the reconstruction of B we use directly the numerical and high-resolution solutions of U B,x and L B of the previous step. The noise is thus limited to the numerical error, itself very limited thanks to the high resolution of the grid and to the requirement of a very small error in the long-time asymptotics.

See Figure 1 for the different steps of the protocol. See Figure 3 (red curves) and Tables 1 and2 for results.

Protocol 2 -Reconstruction of B when U B,x is given with highest accuracy but L B is unknown.

See Figure 2 for the different steps of the protocol. See Figure 3 (yellow curves) and Tables 1 and2 for results.

Both of the Protocols 1 and 2 give a satisfactory reconstruction of the division rate B on the range [0; 2], with an error around 8% (Table 2). The estimation deteriorates for an increment of size higher than 2 since the probability for a cell to exceed this increment is less than 10%. Computing the error on the wider range [0; 2.5], we surprisingly observe that Protocol 2 (with an error around 13%) gives a more robust estimation than Protocol 1, which includes fewer statistical unknowns (error around 20%).